

  A Fast Strategy for Determination of Vitamin B9 in Food and Pharmaceutical Samples Using an Ionic Liquid-Modified Nanostructure Voltammetric Sensor




A Fast Strategy for Determination of Vitamin B9 in Food and Pharmaceutical Samples Using an Ionic Liquid-Modified Nanostructure Voltammetric Sensor







Sensors 2016, 16(6), 747; doi:10.3390/s16060747




Article



A Fast Strategy for Determination of Vitamin B9 in Food and Pharmaceutical Samples Using an Ionic Liquid-Modified Nanostructure Voltammetric Sensor



Fatemeh Khaleghi 1,*, Abolfazl Elyasi Irai 2, Roya Sadeghi 3, Vinod Kumar Gupta 4,5,* and Yangping Wen 6





1



The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran






2



Young Researchers and Elite Club, Ayatollah Amoli Branch, Islamic Azad University, Mazandaran 46351-43358, Iran






3



Department of Physics, Science and Research Branch, Islamic Azad University, Mazandaran 1477893855, Iran






4



Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India






5



Department of Applied Chemistry, University of Johannesburg, Johannesburg 3204/6, South Africa






6



Key Laboratory of Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, China









*



Correspondences: Tel.: +98-911-107-1063 (F.K.); +91-133-228-5801 (V.K.G.)







Academic Editors: Xiangqun Zeng, Michael T. Carter and Abdul Rehman



Received: 8 April 2016 / Accepted: 19 May 2016 / Published: 24 May 2016



Abstract:



Vitamin B9 or folic acid is an important food supplement with wide clinical applications. Due to its importance and its side effects in pregnant women, fast determination of this vitamin is very important. In this study we present a new fast and sensitive voltammetric sensor for the analysis of trace levels of vitamin B9 using a carbon paste electrode (CPE) modified with 1,3-dipropylimidazolium bromide (1,3-DIBr) as a binder and ZnO/CNTs nanocomposite as a mediator. The electro-oxidation signal of vitamin B9 at the surface of the 1,3-DIBr/ZnO/CNTs/CPE electrode appeared at 800 mV, which was about 95 mV less positive compared to the corresponding unmodified CPE. The oxidation current of vitamin B9 by square wave voltammetry (SWV) increased linearly with its concentration in the range of 0.08–650 μM. The detection limit for vitamin B9 was 0.05 μM. Finally, the utility of the new 1,3-DIBr/ZnO/CNTs/CPE electrode was tested in the determination of vitamin B9 in food and pharmaceutical samples.
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1. Introduction


Interest in voltammetric sensors for fast analysis has increased in the recent years [1,2,3,4,5], but the high overvoltage and low electrical signal of electroactive compounds, especially in food, pharmaceutical, biological and environmental samples, is problematic for the application of voltammetric sensors [6,7,8,9,10,11,12]. Modified electrodes have been used as voltammetric sensors with good ability for trace level analysis [13,14,15,16,17,18,19,20]. Ionic liquids (ILs) have some unique properties, such as a low vapor pressure, good thermal stability, high polarity, tunable viscosity and an ability to dissolve many compounds, a wide electrochemical window, high conductivity, high heat capacity and they can act as solvents available to control reactions. ILs represent a new class of conductive binders and mediators for the modification of electrodes for trace analysis [21,22,23,24]. In general, the structure of an IL and its high conductivity at a surface of electrodes are extremely important for evaluating and selecting ionic liquids, especially room temperature ionic liquids, for electrochemical applications [25,26,27,28,29,30].



Nanotechnology and nanoscience represent new and enabling platforms that promise to provide a broad range of novel uses and improved technologies for environmental, biological and other scientific applications [31,32,33,34,35,36,37,38,39]. Nanomaterials have been another acceptable choice for the modification of electrochemical sensors in recent years [40,41,42,43,44,45]. These kinds of materials display high conductivity and have been used in different fields to increase the efficiency of electrochemical sensors in trace level analysis [46,47,48].



Vitamin B9 (folic acid) is a water soluble vitamin that is very important for the production and maintenance of new cells. In the human body it is necessary for make normal red blood cells and to prevent anemia [49]. There is also some evidence that sufficient folic acid in the diet can reduce the risk of heart disease, although this evidence is based on population studies and not on more definitive clinical trials, so there is no definitive evidence that taking folic acid supplements would help in this respect.



Many analytical methods have been reported for the analysis of vitamin B9, including electrochemical sensors [50,51,52], spectrophotometry [53], chemiluminescence [54], Capillary electrophoresis [55] and HPLC [56]. In this project, we have developed a simple and fast method for the synthesis of ZnO/CNTs nanocomposite and its application for the preparation of electrochemical sensors in the presence of 1,3-DIBr as a high conductive IL binder. Next, the analytical performance of the novel 1,3-DIBr/ZnO/CNTs/CPE electrode was checked in the square wave voltammetric electro-oxidation of vitamin B9 in food and pharmaceutical samples. The obtained results showed the superiority of 1,3-DIBr/ZnO/CNTs/CPE over unmodified electrodes in terms of better reversibility and higher sensitivity.




2. Experimental Section


2.1. Apparatus and Chemicals


Vitamin B9 (>97%) was obtained from Sigma-Aldrich (CAS Number 59-30-3, St. Louis, MS, USA) and graphite powder (<50 µm) and paraffin oil for the preparation of carbon paste electrode were obtained from Merck (Darmstadt, Germany). A stock 0.001 M solution of vitamin B9 was prepared by dissolving 0.015 g vitamin B9 in 100 mL of buffer solution. Phosphate buffer solutions (PBS) with different pH values were used for optimization of pH. Square wave and linear sweep voltammetric investigation were performed using a μ-Autolab potentiostat/galvanostat (Eco Chemie, Utrecht, The Netherlands) connected to a three-electrode cell. An Ag/AgCl/KClsat electrode, a platinum wire, and the novel 1,3-DIBr/ZnO/CNTs/CPE electrode were used as the reference, auxiliary and working electrodes, respectively. Scanning electron microscopy (KYKY-EM3200 Digital Scanning Electron Microscope, KYKY Technology Development Ltd., Beijing, China) was used for morphological investigation. X-ray powder diffraction studies were carried out using a STOE diffractometer (EQuniox 3000, Inel, France) with Cu-Kα radiation (k = 1.54 Å). ZnO/CNTs and 1,3-DIBr were synthesized according to previous published papers [17,57].




2.2. Preparation of the Electrode


1,3-DIBr/ZnO/CNTs/CPE was prepared by mixing 1,3-dipropylimidazolium bromide (1,3-DIBr 0.25 g), paraffin oil (0.75 g), ZnO/CNTs (0.1 g), and graphite powder (0.9 g). Next, the mixture was mixed well for 75 min until a uniformly wetted paste was obtained. A portion of the paste was firmly pressed into a glass tube to prepare the 1,3-DIBr/ZnO/CNTs/CPE electrode.




2.3. Preparation of Real Samples


Mint leaves (6 g) were extracted with 0.1 M pH 9.0 phosphate buffer (100 mL) and 0.1% (v/v) 2-mercaptoethanol (0.06 g), then the thus obtained mixture was shaken for 50 min in a rotational shaker, and centrifuged at 3500 rpm for 20 min. Finally, the obtained solution filtered with a 47 mm filter (Millipore, Boston, MA, USA). For pharmaceutical analysis, five commercial vitamin B9 tablets (50.0 mg per tablet) were completely ground and homogenized. Next, suitable amounts of the powders was accurately weighed and dissolved in 100 mL of buffer solution, and the mixture was filtered through a 42 mm filter. Fortified juice samples were obtained from local supermarkets and then centrifuged for 20 min at 2000 rpm. The supernatant was filtered using a 42 mm filter and the filtrate used for the real sample analysis.





3. Results and Discussion


3.1. ZnO/CNTs Characterization


Figure 1A shows the XRD pattern for the synthesized ZnO/CNTs nanocomposite over a 2θ range of 20°–80°. XRD pattern (Figure 1) confirmed that the synthesized materials were ZnO [56]. The peak at ~26 can be nicely indexed to the (002) plane of CNTs as marked with star in Figure 1A. Also, as can be seen in Figure 1B, the outside surface of the carbon nanotubes is uniformly dotted with ZnO nanostructures, which is in agreement with results obtained from the XRD pattern.


Figure 1. (A) XRD pattern of ZnO/CNTs nanocomposite; (B) SEM images of ZnO/CNTs nanocomposite.
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3.2. Voltammetric Investigation


In the first step we investigated the effect of pH on the electro-oxidation of vitamin B9 using the SWV technique (Figure 2 insert). As can be seen, the vitamin B9 peak current increased regularly from pH 6.0 to 9.0, and then conversely the current decreased when the pH value increased further from 9.0 to 11.0 (Figure 2). Therefore pH 9.0 was chosen as the optimal experimental condition for other experiments. The relationship between the oxidation peak potential and pH was also determined.


Figure 2. Plot of peak current (Ipa) vs. changing in pH value for the electro-oxidation of 100 µΜ vitamin B9 at a surface of 1,3-DIBr/ZnO/CNTs/CPE. Inset: influence of pH on square wave voltammograms of vitamin B9 at the surface of the modified electrode.
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A linear shift of Epa towards negative potential with increasing pH can be obtained, which fitted the regression equation Epa (V) = −0.057pH + 0.985, indicating that protons are directly involved in the oxidation of vitamin B9. A slope of 57 mV/pH suggests that the number of electrons transferred is equal to the number of protons involved in the electrode reaction [39]. The current density results are shown in the insert of Figure 3 for different electrodes. The results confirmed that the joint presence of ZnO/CNTs and 1,3-DIBr causes an increase in the electrode conductivity. In order to establish a good sensitivity and highly selective electrochemical sensor for the detection of vitamin B9 with ZnO/CNTs and 1,3-DIBr as the electron mediators, we first investigated the voltammetric behavior of vitamin B9 at the surface of different electrodes. The results indicated that the oxidation peak currents of vitamin B9 at 1,3-DIBr/ZnO/CNTs/CPE can be significantly enhanced, so it’s replacement for bare CPE, ZnO/CNTs/CPE and 1,3-DIBr/CPE was subsequently exploited as an electrochemical sensor for effective sensing of vitamin B9. As also seen from this figure, the electro-oxidation peak potential of vitamin B9 at the surface of the 1,3-DIBr/ZnO/CNTs/CPE appeared at 800 mV, which was about 95 mV lower than the oxidation peak potential at the surface of the bare CPE under similar conditions. At the same time, the electro-oxidation peak current was increased by ~2.83 times at the 1,3-DIBr/ZnO/CNTs/CPE surface compared to CPE.


Figure 3. Square wave voltammograms of (a) 1,3-DIBr/ZnO/CNTs/CPE; (b) 1,3-DIBr/CPE; (c) ZnO/CNTs/CPE and (d) CPE in presence of 100 μM vitamin B9 at pH 9.0, respectively. Inset: The current density derived from square wave voltammograms responses of 100 μM vitamin B9 at pH 9.0 at the surface of different electrodes.
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Figure 4 shows the effect of scan rate (υ) on the electro-oxidation of vitamin B9 under the optimum conditions. The results show that the peak current increased linearly as the square root of scan rate increased over a range of 10 to 100 mV/s. This result shows that the electrode process for oxidation of vitamin B9 is controlled by a diffusion step.


Figure 4. Plot of Ipavs. ν1/2 for the oxidation of vitamin B9 at 1,3-DIBr/ZnO/CNTs/CPE. Inset shows linear sweep voltammograms of vitamin B9 at 1,3-DIBr/ZnO/CNTs/CPE at different scan rates of (a) 10; (b) 25; (c) 60 and (d) 100 mV/s in 0.1 M phosphate buffer, pH 9.0.
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The value of α was obtained from a Tafel plot (Figure 5). The slope of the Tafel plot is equal to 2.3RT/n (1 − α) F which comes up to 0.1686 Vdecade−1. We obtained α as 0.82. On the other hand, we obtained the value of (α) 0.22 at a surface of a bare electrode. These values clearly show that not only is the overpotential for vitamin B9 oxidation reduced at the surface of 1,3-DIBr/ZnO/CNTs/CPE, but also the rate of the electron transfer process is greatly enhanced, a phenomenon confirmed by the larger Ipa values recorded during the voltammetric responses at 1,3-DIBr/ZnO/CNTs/CPE.


Figure 5. Tafel plot for 1,3-DIBr/ZnO/CNTs/CPE in 0.1 M PBS (pH 9.0) with a scan rate of 10 mV/s in the presence of vitamin B9.
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A chronoamperometric method was used for determination of the diffusion coefficient (D; can be obtained from slope of Cottrell plots) of vitamin B9 using the data derived from the raising part of the current-voltage curve (Figure 6A). From the result of Figure 6B and the Cottrell equation the mean value of the D was found to be 1.65 × 10−6 cm2/s.


Figure 6. (A) Chronoamperograms obtained at 1,3-DIBr/ZnO/CNTs/CPE in the presence of (line a) 300 and (line b) 400 μM vitamin B9 in the buffer solution (pH 9.0); (B) Cottrell plot for the data from the chronoamperograms.
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3.3. Analytical Parameters for Determination of Vitamin B9


SWV was used for the sensitive determination of vitamin B9 at the 1,3-DIBr/ZnO/CNTs/CPE electrode because of its higher current sensitivity. The quantitative evaluation was based on a linear correlation between the peak currents and the concentration added, resulting in a good correlation. The equation for the measurement of vitamin B9 was Ip(A) = 0.2058 C + 4.2628 (in the range 0.08–650 μM) with a correlation coefficient of R2 = 0.9975. The detection limit was determined at 0.05 μM vitamin B9 according to the definition of YLOD = YB + 3σ. This value of the detection limit and the linear dynamic range for vitamin B9 observed on the 1,3-DIBr/ZnO/CNTs/CPE electrode are comparable and even better than those obtained for other modified electrodes (Table 1).



Table 1. Comparison of the efficiency of some electrochemical methods in the determination of vitamin B9.







	
Method

	
Electrode

	
Modifier

	
pH

	
LOD a

	
LDR b

	
Reference






	
DPV c

	
GCE d

	
SWCNT/IL e

	
5.5

	
0.001

	
0.002–1.0

	
[52]




	
Cyclic voltammetry

	
Au

	
MBT/SAM f

	
7.4

	
0.004

	
0.008–1.0

	
[58]




	
SWV

	
CPE

	
ZnO/NPs/IL

	
9.0

	
0.01

	
0.05–550

	
[50]




	
SWV

	
CPE

	
Pt:Co nanoalloy/IL

	
9.0

	
0.04

	
0.1–500

	
[39]




	
SWV

	
CPE

	
Gold nanoparticles

	
6.5

	
0.0027

	
0.006–80

	
[59]




	
SWV

	
CPE

	
1,3-DIBr/ZnO/CNTs

	
9.0

	
0.05

	
0.08–650

	
This work








a Limit of detection; b linear dynamic range; c Differential pulse voltammetry; d Glassy carbon electrode; e Single-walled carbon nanotubes; f 2-mercaptobenzothiazole self-assembled gold electrode.









3.4. Stability and Reproducibility


The repeatability and stability of 1,3-DIBr/ZnO/CNTs/CPE was investigated by square wave voltammetry measurements of 5.0 µM vitamin B9. The relative standard deviation (RSD%) for eleven successive assays was 1.5%. When using ten different electrodes, the RSD% for eleven measurements was 2.1%. When the 1,3-DIBr/ZnO/CNTs/CPE electrode is stored in the laboratory, it retains 96% of its initial response after 5 days and 94% after 30 days (Figure 7). These results indicate that 1,3-DIBr/ZnO/CNTs/CPE has good stability and reproducibility, and could be used for vitamin B9 analysis.


Figure 7. Square wave voltammograms of 1,3-DIBr/ZnO/CNTs/CPE in the presence of 100 μM vitamin B9 at a pH 9.0 at a different times.
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3.5. Interference Study


For a successful voltammetric sensor for the detection of vitamin B9 in food and pharmaceutical samples, good selectivity and high sensitivity are the two most important requirements. To assess the selectivity of the 1,3-DIBr/ZnO/CNTs/CPE, some potential interferents were investigated in the presence of 10.0 μM vitamin B9. As can be seen in Table 2, the 1,3-DIBr/ZnO/CNTs/CPE has a good selectivity for the determination of vitamin B9.



Table 2. Interference study for the determination of 10.0 µM vitamin B9.







	
Species

	
Tolerance Limits (WSubstance/Wvitamin B9)






	
Glucose, leucine, glycine, methionine, alanine, valine, histidine

	
900




	
Uric acid and ascorbic acid, vitamin B6

	
400




	
Starch

	
Saturation











3.6. Real Sample Analysis


For the purposes of this study, vitamin B9 was electrochemically measured with the developed voltammetric sensor in vitamin B9 tablets and food samples. The data obtained by the proposed method was compared with a published method too [39] (see Table 3; a modified carbon paste electrode prepared with N-hexyl-3-methylimidazolium hexafluorophosphate and Pt:Co was used for comparing the obtained data). As can be seen from Table 3, the amounts of vitamin B9 determined by our 1,3-DIBr/ZnO/CNTs/CPE electrode in real samples were very similar to the labelled amount and there was no difference at the 95% confidence level (paired t test; n = 3) when compared with the published method [39]. Therefore, the 1,3-DIBr/ZnO/CNTs/CPE is very suitable for the voltammetric determination of vitamin B9 in real samples.



Table 3. Determination of vitamin B9 in real samples (n = 3).







	
Sample

	
Found (Vitamin B9) Proposed Method (μM)

	
Found (Vitamin B9) Other Method (μM)

	
Fex

	
Ftab

	
tex

	
ttab






	
Tablet

	
10.22 ± 0.55

	
9.22 ± 0.65

	
7.8

	
19.0

	
1.5

	
3.8




	
Mint vegetable

	
4.87 ± 0.25

	
5.32 ± 0.35

	
6.7

	
19.0

	
1.1

	
3.8




	
Orange juice

	
14.98 ± 0.75

	
15.78 ± 0.95

	
12.9

	
19.0

	
2.6

	
3.8




	
Apple juice

	
13.42 ± 0.69

	
12.98 ± 0.75

	
8.3

	
19.0

	
1.8

	
3.8








Fex is calculated F-value; Ftab is the F value obtained from one-tailed table of F-test; tex is calculated value of t-student test; ttab is the t-value obtained from the table of student t-test.










4. Conclusions


In the present work, the combination of the features of ZnO/CNTs nanocomposite and 1,3-dipropylimidazolium bromide were exploited for the development of a voltammetric sensor for the determination of vitamin B9. The developed voltammetric sensor based on carbon nanotubes-ionic liquid composite was shown to be simple, quick to prepare, reproducible, stable and precise for the voltammetric determination of vitamin B9. The new 1,3-DIBr/ZnO/CNTs/CPE electrode was successfully used for the determination of vitamin B9 in some food and pharmaceutical samples.
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