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Abstract: Residual stresses in fibre reinforced composites can give rise to a number of undesired
effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in
developing processing techniques to mitigate the development of residual stresses. However, tracking
and quantifying the development of these fabrication-induced stresses in real-time using conventional
non-destructive techniques is not straightforward. This article reports on the design and evaluation
of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy
prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell.
The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing.
A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development
of process-induced residual strain was monitored in-situ using embedded optical fibre sensors.
Surface-mounted electrical resistance strain gauges were used to measure the strain when the
composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels
were applied prior to processing the laminated preforms in an autoclave. The results showed that
the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform,
reduced the residual strain in the composite from ´600 µε (conventional processing without
pre-stress) to approximately zero. A good correlation was observed between the data obtained
from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors.
In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can
be obtained from pre-stressed composites. A subsequent publication will highlight the consequences
of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of
unidirectional E-glass composites.

Keywords: pre-stress; composites; autoclave; extrinsic fibre Fabry-Perot; fibre Bragg gratings; Strain;
temperature; residual stresses

1. Introduction

Advanced fibre reinforced organic matrix composites (AFRCs) are used extensively in applications
where weight is at a premium, for example aerospace, automotive and wind energy. A number
of techniques are available for manufacturing AFRCs, including filament winding, pultrusion,
autoclaving, resin transfer molding (and variants), spray layup and hand layup [1]. The general
production process involves the impregnation of the reinforcement or preform with a thermoplastic or
thermosetting resin system. Depending on the manufacturing technique in question, the impregnated
fibres or preforms are either stored until required (for example, prepregs), or used immediately
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(filament winding, pultrusion). In the case where semi-crystalline thermoplastic matrices are used,
the polymer is heated above its glass transition temperature (amorphous polymers) or melting
point (semi-crystalline polymers), shaped, consolidated and then cooled to ambient temperature.
Thermoset-based preforms are generally heated to between 80 and 180 ˝C to initiate the cross-linking
of the resin and hardener; a catalyst is used sometimes to accelerate the cross-linking reactions. These
reactions result in the conversion of the liquid resin system to a highly cross-linked solid polymer that
is insoluble. After a predefined processing schedule, the composite is cooled to ambient temperature.

Since the preforms associated with the production of composites are processed at elevated
temperatures, residual stresses can develop in the composite due to a number of reasons [2–6].
Twigg et al. [7] proposed that the sources of residual stresses in composites can be classified as extrinsic
or intrinsic. Examples of intrinsic sources of residual stresses include the following.

(i) Resin shrinkage: The crystallisation process in semi-crystalline thermoplastics is accompanied
by significant shrinkage. The rate of cooling of the thermoplastic matrix and the presence of
nucleating agents will influence the degree of crystallinity and hence, the magnitude of the
observed shrinkage. In a thermosetting resin, the shrinkage is due to the formation of covalent
bonds during the cross-linking (polymerisation) of the functional groups in the resin and hardener.

(ii) Mismatch in the coefficients of thermal expansion: Since there is generally a significant mismatch
in the thermal expansions of the fibre and matrix, and adjacent plies of different fibre orientation,
residual stresses will develop in the composite when it is cooled from the processing temperature.

Twigg et al. [8] reported that extrinsic factors such as an interaction between the preform and the
processing tool, and the shape of the component can also contribute to the development of residual
stresses. Other notable papers that addressed issues relating to residual stresses in organic-matrix
composites can be found in references [9–12]. An overview of residual stresses in other classes of
materials and the techniques for quantifying them can be found in reference [13].

The presence of residual stresses can result in the loss of dimensional stability and moreover,
these stresses can be high enough to cause cracking within the matrix, even before the application of
a mechanical load [14,15]. Hence, there has been significant research activity in the development of
techniques to minimise or mitigate the influence of process-induced residual stresses in fibre reinforced
composites. For example: (i) modification of the cure schedule [16–20]; (ii) electron beam curing [21];
(iii) modifying the interphase properties [22–25]; (iv) deployment of shape memory alloys [26,27];
(v) using expandable monomers [28,29] and (vi) pre-stressing the reinforcement or preform during the
production of fibre reinforced composites [30]. Other processing related issues that can influence the
performance of AFRCs include, fibre misalignment, waviness and voids [31–33].

The rationale for the current work was to develop a practical production method to reduce
the magnitude of the residual fabrication strain in a unidirectional glass fibre reinforced composite.
This was achieved by pre-stressing the preforms to a predetermined value prior to autoclave-based
processing. The primary areas of novelty in the current work include the following:

(i) The pre-stressing rig was based on a flat-bed design thus enabling conventional vacuum-bagging
and autoclave-based processing to be used. This enabled the production of void-free composites
thus giving greater confidence in assessing and understanding the consequence of pre-stressing
on the resultant physical and mechanical properties of the composite.

(ii) A load-cell was integrated into the rig to enable the magnitude of the applied pre-stress to be
monitored and quantified.

(iii) An end-tabbing procedure was developed to ensure that only the prepregs within the end-tab
regions were cross-linked or cured. This was achieved by cooling the prepregs outside the
end-tab regions. This meant that the applied pre-stress was distributed uniformly over the
preform. Furthermore, it enabled the relative orientation of the embedded optical fibre sensors to
be maintained during processing. It is known that the displacement of optical fibres from their
intended orientation can result in significant uncertainty in interpreting the output data.
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(iv) Two classes of optical fibre sensors were integrated into the prepregs during the lamination
stages—fibre Bragg gratings and extrinsic fibre Fabry-Perot interferometric strain sensors. Optical
fibre embedment procedures and protocols were developed to ensure their survival whilst
pre-stressing and subsequent vacuum bag-based autoclave processing.

(v) The embedded optical fibre sensors enabled the evolution of strain within the prepregs to be
monitored in real-time during the autoclave cure cycle, and also during the subsequent cooling
of the composite to ambient temperature.

(vi) Surface-mounted electrical resistance strain gauges and optical fibre strain sensors were used
to quantify the magnitude of the strain released when the composite was unclamped from the
pre-stressing rig.

The above-mentioned attributes represent a significant advancement over the techniques that
have been reported previously for pre-stressing preforms and monitoring the evolution of residual
fabrication strains during the production of fibre reinforced composites.

2. Review of Techniques for Manufacturing Pre-Stressed Composites

Pre-stressed composites are manufactured by applying and maintaining a pre-load on the
reinforcing fibres or laminated preforms during processing. Once the processing schedule has been
completed, the composite is cooled to room temperature and the previously applied pre-load is
released. The following section presents a brief review of selected papers that have reported on
techniques to manufacture pre-stressed composites.

2.1. Dead-Weight Loading

With reference to Figure 1, Jorge et al. [34] used a dead-weight technique to apply the required
load to E-glass fibre bundles which were traversed around a series of steel pins. They prepared
E-glass/polyester resin composites using a wet-layup process. The composite was cured at room
temperature for twenty four hours, followed by three hours of post-curing at 80 ˝C. The applied
pre-load was in the range 0–100 N.
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Figure 1. Schematic illustration of the pre-stressing method developed by Jorge et al. [34] where
the reinforcing fibres were wound around a series of pins; the pre-load was applied using weights.
“P” represents the load on the fibre bundle.

2.2. V-Slot-Based Pre-Stressing

Schulte and Marissen [35] used aluminium plates with two V-shaped slots and a pair of matched
loading-pins to pre-stress preforms. A schematic illustration of their pre-stressing rig is shown in
Figure 2. They prepared hybrid (0˝-Kevlar/90˝-carbon epoxy) cross-ply composites with a [0/90/90/0]
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lay-up sequence. The maximum pre-strain achieved using their pre-stressing rig was 1.1%. The preform
was cured in a hot-press at 125 ˝C.
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Marissen [35].

2.3. Filament Winding

With reference to Figure 3, Hadi and Ashton [36] demonstrated that pre-stressed composites
can be manufactured via filament winding. Here the tension on the fibre bundles was controlled as
a means of applying the required pre-tension. In the filament winding process, resin-impregnated
fibre bundles are traversed left and right continuously as they are wound around a rotating mandrel
to produce the preform. The relative traverse and rotation speeds of the impregnated fibres and the
mandrel respectively dictate the winding angle of the reinforcing fibres. Hadi and Ashton [36] prepared
unidirectional pre-stressed composites using a flat square-sided mandrel. Rose and Whitney [37] also
prepared cross-ply pre-stressed preforms using filament winding and the preforms were cured in
an autoclave.
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winding [36].

2.4. Hydraulic Pre-Stress Rig

This is a variation on the dead-weight loading method illustrated in Figure 1 where Tuttle et al. [38]
used a hydraulic device to pre-stress prepregs. The processing of the preform was carried out on a
hot-press as illustrated in Figure 4. The hydraulic loading fixture was mounted on a horizontal frame,
such that the pre-stressed plies remained parallel to the heated platens of the hot-press. One end of the
preform was attached to a fixed loading-rod, and the opposite end was connected to the hydraulic
ram through which the desired load was applied to the prepregs. They reported that in the initial
experiments, slippage occurred between the ply and loading-rod surface at high fibre pre-stress levels;
the slippage was eliminated by knurling the surface of the loading rods. The load applied to the fibres
was monitored using a pressure gauge that was attached on the hydraulic ram line.
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Figure 4. Schematic illustration of the hydraulic cylinder-based pre-stressing rig used by
Tuttle et al. [38].

2.5. Horizontal Tensile Loading Machine

Motahhari and Cameron [39] produced pre-stressed composites with the aid of a horizontal
tensile testing machine as illustrated in Figure 5. In their design, the ends of the fibres were secured
using clamps and the applied load was monitored via a load-cell. A U-shaped mold was used to
manufacture the composites. A similar method was used by Lee [40] and Ali [41] to pre-stress prepreg.
This pre-stressing technique was capable of measuring the magnitude of the applied pre-load during
the curing process.
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2.6. Fibre Pre-Stressing Rig

The pre-stressing rig design developed by Zhao and Cameron [42] is illustrated in Figure 6 where
the fibres were first wound onto a steel frame and then it was attached to a secondary frame. The
pre-stress loading of the fibres on the frame was achieved via a tensile test machine. Once the required
load was reached, locking-bolts were used to maintain the fibres in the stressed state. The pre-stressed
preform was cured using a hot-press.
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2.7. Biaxial Loading Frame

Jevons et al. [43] adapted the design originally proposed by Zhao and Cameron [42] and developed
a method for pre-stressing cross-ply laminates that could be processed in an autoclave. Their design
consisted of C-channel sections with four clamps linked to the frame by bolts as illustrated in Figure 7.
The intended end-tab regions, at the ends of the laminated prepregs, were cured in a hot-press and
end-tabbed. Several 10 mm diameter holes were drilled through the end-tabs and this assembly
was bolted on to the loading frame. The required pre-stress was applied through the loading pins
using a mechanical test machine; the locking-bolts between the clamps were then tightened when the
desired level of pre-load was applied to the prepregs. The frame with the pre-stressed prepregs was
vacuum-bagged and processed in an autoclave.
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Figure 7. Schematic illustration of the biaxial loading frame-based prepreg pre-stressing method [43].

In conclusion, a number of ingenious devices have been used for manufacturing pre-stressed
composites. The following sections report on the design and development of a fibre pre-stressing
technique that permitted the preforms to be processed in an autoclave. The development of the
residual strain in the composite during processing was monitored in-situ using embedded optical fibre
sensors [44].

3. Materials and Methods

3.1. Pre-Stressing Rig Design

The primary design requirements for the pre-stressing rig were as follows: (i) a means to apply
and monitor the magnitude of the pre-stress on the preform during and after processing; (ii) a
facility to enable optical fibres to be integrated into the preform and for the entry/exit points to be
protected; and (iii) processing the pre-stressed preforms in an autoclave using conventional vacuum
bagging procedures.

Schematic illustrations of the flat-bed pre-stressing rig design are presented in Figure 8a,b.
The basic mode of operation of the rig is the controlled separation of two sections of the flat-bed
with the aid of load-screws. With reference to Figure 8a, two blocks serve as the flat-beds of which
one is fixed to a base-plate and the other is able to slide on guide bars. The guide bars are attached to
the fixed block as shown in Figure 8b. These guide bars also aid in the alignment of the clamps of the
movable and fixed blocks. The applied load on the preform (when it is clamped in the rig) is monitored
via a load-cell that is housed within a recess on the fixed block as illustrated in Figure 8b. The end
of the load-screw is positioned in contact with the load-cell such that it is capable of transmitting the
applied pre-stress on the laminated prepregs. The locking bolts illustrated in Figure 8a,b are used
to lock the position of the movable block and this is achieved by clamping it to the base-plate after
applying the required pre-stress to the end-tabbed prepregs.
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Figure 8. (a) Side-elevation of the flatbed rig for applying the desired pre-stress on laminated prepregs;
(b) Top-elevation of the flat-bed pre-stressing rig.

The load-cell used in this study was Model No: 060-4771-01-08, RDP Electronics Ltd,
(Wolverhampton, UK). The capacity of the load cell was 44.5 kN in compression and it was rated for
operations up to 121 ˝C. The load-cell was calibrated by applying a static compressive load using
a pre-calibrated Instron mechanical test machine, model 8501 (Instron, High Wycombe, UK). The
calibration test was conducted at room temperature and the rate of loading was 0.125 kN/s. Static
compression tests were conducted at 70, 100 and 120 ˝C and these tests were carried out using a
mechanical test machine (Instron model 1195) equipped with an air-circulating oven.

3.2. Evaluation of the Pre-Stressing Rig

The pre-stressing rig was evaluated initially by clamping a steel plate and loading it in tension.
The steel plate was instrumented with an array of surface-mounted electrical resistance strain gauges
as shown in Figure 9. Mechanical loading was applied to the steel plate via the load-screw as described
previously. The magnitude of the applied load and strain were monitored using the load-cell on the
rig and the surface-mounted electrical resistance strain gauges respectively.
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Figure 9. Schematic illustration of the location of the surface-mounted electrical resistance strain gauges
that were used to monitor the strain on a steel plate when it was loaded on the flat-bed pre-stressing rig.

3.3. Fibre Optic Sensors

The optical fibre sensors used in this study were (i) extrinsic fibre Fabry-Perot interferometric
(EFPI) strain sensors and (ii) fibre Bragg grating (FBG) strain and temperature sensors. Single-mode
optical fibres designed for use at 800 nm and 1500 nm (SM 800 and SM 1500, Fibercore Ltd.,
Southampton, UK) were used to fabricate the sensors. The EFPI sensors with cavity lengths in
the range 50 to 100 µm were fabricated in-house using SM 800 (5.6/125 µm) optical fibres and 128 µm
precision bore fused silica capillaries. The details of the fabrication process and the mode of operation
of the sensors have been published previously [44–46]. The FBGs were inscribed on SM 1550 (9/125 µm)
optical fibres using the phase mask technique in conjunction with an excimer laser operating at 248 nm
(Bragg Star).

3.3.1. Interrogation of the EFPI Strain Sensor

A super-luminescent diode (SLD) operating at a center wavelength of 850 nm was used
to illuminate the EFPI sensor and the resulting interference fringes were detected using a CCD
spectrometer (HR 2000, Ocean Optics, Oxford, UK). The absolute cavity length was measured from the
interference spectrum using the following equation:

d “
λ1λ2

2.∆λ
(1)

where λ1 and λ2 are the wavelengths corresponding to the maximum intensities of two adjacent bright
fringes and ∆λ is the free spectral range. The longitudinal strain on the sensor is expressed as the ratio
of the change in cavity length to the gauge length of the sensor.

3.3.2. FBG Strain and Temperature Sensor

The FBG sensors were monitored using a Bragg interrogation unit (Fiberpro Ltd., Dae-Jeon, Korea)
equipped with an inbuilt wavelength sweep laser and a detector. The influence of strain (ε) and
temperature (T) on a fibre Bragg grating can be expressed as [47]:
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where λB (=2Λneff) is the Bragg resonance wavelength; αfibre is the coefficient of thermal expansion
of the fibre; neff is the effective index of the core and Λ is the grating period; pe is the photo-elastic
constant of the fibre; and η is the thermo-optic coefficient of the core. The response of the temperature
sensing FBGs can be expressed as:

∆T “
∆λB

λBpα f ibre ` ηq
(3)

The FBGs used in this work were produced using the same phase mask and laser irradiation
conditions. The temperature sensor was produced by encapsulating a FBG inside a fused capillary in a
strain-free condition whilst an unprotected FBG was used to monitor the strain and temperature. The
axial strain on the unprotected FBG was calculated by decoupling the wavelength shifts obtained from
the FBG temperature sensor.

3.4. Preparation of Pre-Stressed Composites

16-plys of unidirectional prepregs were laminated using conventional procedures. In order to
apply a pre-stress to the laminated prepregs, it was necessary to attach end-tabs. This was carried out
by co-curing aluminum end-tabs onto the designated areas in the preform. A schematic illustration
of the sequence of operations associated with the preparation of the end-tabbed preform is shown in
Figure 10.
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Figure 10. Schematic illustration depicting the sequence of operations that were carried out to co-cure
the aluminium end-tabs on to the prepregs (within the end-tab region).

It was necessary to cool the section of the preform in the immediate vicinity of the end-tab during
the co-curing process; this was done to ensure that the curing only occurred within the end-tabbed
regions. Schematic illustrations of this jig to cool the preform outside the end-tabbed region are shown
in Figure 11a,b. Water from a mains-tap was circulated through the rig and the output was directed to
a sink.
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Figure 11. (a) Plan-view of the cartridge-based heating of the end-tabbed region and the water-based
cooling of the preform in the vicinity of the heated region; (b) Side-view of the heating/cooling systems
used in the production of the end-tabbed preform.

Aluminium alloy (5251-H2, Metalfast Ltd., Swindon, UK) end-tabs were cut to size (30 (l) mm ˆ

200 (w) mm ˆ 1.5 (t) mm) and abraded on both sides. They were then degreased with acetone and
dried. The end-tabs were aligned with the ends of the preform and cured in a hot-press at 120 ˝C for
1 h. After the end-tabs were co-cured on the ends of the preform, 10 mm diameter holes were drilled at
regular intervals to enable it to be clamped to the pre-stressing rig. Subsequent to drilling, the holes
were cleaned using a de-burring tool to avoid puncturing the vacuum bag. Prior to clamping the
end-tabbed preform to the pre-stressing rig, the rig was degreased and a coating of a silicone release
agent (Rocol, PR, RS Components Ltd., Bristol, UK) was applied. The prepregs that were previously
co-cured with the aluminium end-tabs were placed between the serrated clamp plates and bolted to
the pre-stressing rig using M12 bolts. A torque of 20 Nm was applied to each of the bolts using a
torque wrench.

The desired mechanical pre-stress was applied to the end-tabbed prepregs by means of the
load-screw and the applied load was monitored via the load-cell. Once the required pre-stress was
applied, the locking bolts were tightened to 20 Nm; this clamped the moving block to the base plate.
The prepreg assembly was then vacuum bagged using conventional procedures and cured in the
autoclave as outlined in Section 3.5.

During curing, the strain development in the prepregs/composite was monitored in-situ using the
EFPI and FBG sensors. After curing and cooling to room temperature, the vacuum bag was removed.
ERSG sensors were bonded on the surface of the composite in such a manner that that they were
above the embedded optical fibres. A schematic illustration of the relative position of the ERSG is
shown in Figure 12. The ERSG were bonded using cyanoacrylate adhesive (TML Ltd., Doncaster,
UK). The previously induced fabrication strain in the cured composite was released by slackening the
load-screw, locking bolts and the clamp bolts on the pre-stressing rig. The magnitude of the strain
released upon unclamping the cured composite from the pre-stressing rig was recorded using the
surface-mounted electrical and the embedded optical sensors.



Sensors 2016, 16, 777 11 of 24Sensors 2016, 16, 777 11 of 24 

 

Figure 12. Side and plan-views of the relative locations of the surface-mounted electrical resistance 
strain gauges and the embedded optical fibre sensors. 

3.5. Autoclave Processing of the Laminated Prepregs and the Pre-Stressing Rig Assembly 

A schematic illustration of the vacuum bagging assembly that was used for the production of 
the conventional composites is presented in Figure 13. A similar assembly was used for processing 
the pre-stressed prepregs in the pre-stressing rig. 

 
Figure 13. Schematic illustration of the key components of the materials contained within the 
vacuum bag in the autoclave (the pre-stressing rig is not shown). 

The autoclave used in this study was custom-modified (Aeroform Ltd., Poole, UK) to include 
vacuum and pressure-rated input and output ports for the optical fibres to enable real-time strain 
and temperature monitoring. Prior to vacuum bagging the preform and the pre-stressing rig assembly, 
pre-shaped silicone blocks were packed around the rig to prevent puncturing of the vacuum bag 
when the vacuum was applied. The vacuum-bagged preform and the pre-stressing rig assembly 
were placed inside the autoclave and a vacuum (−0.084 MPa (−850 millibars)) was applied. The 
manufacturer’s recommended cure cycle for the E-glass/913 epoxy prepreg system was 1 h at 120 °C. 
The autoclave was programmed to heat up the vacuum bagged assembly at 2 K·min−1, with a 
pressure of 0.69 MPa (101 psi). 
  

Figure 12. Side and plan-views of the relative locations of the surface-mounted electrical resistance
strain gauges and the embedded optical fibre sensors.

3.5. Autoclave Processing of the Laminated Prepregs and the Pre-Stressing Rig Assembly

A schematic illustration of the vacuum bagging assembly that was used for the production of the
conventional composites is presented in Figure 13. A similar assembly was used for processing the
pre-stressed prepregs in the pre-stressing rig.
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Figure 13. Schematic illustration of the key components of the materials contained within the vacuum
bag in the autoclave (the pre-stressing rig is not shown).

The autoclave used in this study was custom-modified (Aeroform Ltd., Poole, UK) to include
vacuum and pressure-rated input and output ports for the optical fibres to enable real-time strain and
temperature monitoring. Prior to vacuum bagging the preform and the pre-stressing rig assembly,
pre-shaped silicone blocks were packed around the rig to prevent puncturing of the vacuum bag when
the vacuum was applied. The vacuum-bagged preform and the pre-stressing rig assembly were placed
inside the autoclave and a vacuum (´0.084 MPa (´850 millibars)) was applied. The manufacturer’s
recommended cure cycle for the E-glass/913 epoxy prepreg system was 1 h at 120 ˝C. The autoclave
was programmed to heat up the vacuum bagged assembly at 2 K¨min´1, with a pressure of 0.69 MPa
(101 psi).
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3.6. Characterising the Response of the Embedded Optical Fibre Sensors

A 16-ply UD E-glass/epoxy composite with embedded optical fibre sensors was used to assess
the response of the embedded sensors in the autoclave to temperature, vacuum, pressure and the
cure cycle. These tests were conducted using a laminate of dimensions 290 mm ˆ 200 mm ˆ 2 mm.
The EFPI and FBG sensors were embedded between the 8th and 9th ply. After the laminated prepreg
was processed, reference (unbonded) EFPI and FBG sensors were also located on the top-surface of the
composite. The movement of the sensors was restricted by attaching the optical fibres (away from the
sensing regions) to the surface of the composite using a high-temperature polyimide adhesive tape.
A K-type thermocouple was also surface-mounted on the laminate/composite. The prepregs with the
embedded optical fibre sensors were processed as described previously.

3.7. In-Situ Residual Strain Monitoring in Composites

The process-induced residual strain in unidirectional [0]16 E-glass epoxy composites, with and
without pre-stress, was monitored in-situ using embedded EFPI and FBG sensors.

3.8. Coding of the Composites

In order to identify the composites with different levels of pre-stress, the following coding system
was used:

(i) URX where U = unidirectional, R = reference (without pre-stress), X = panel number.

For example, UR6 represents unidirectional reference panel number 6.

(ii) UPTX where P = pre-stressed and T= pre-stressing rig, thermal expansion-induced pre-stress.
(iii) UPX_FkN where P = pre-stressed, FkN = pre-load in kN.

For example, UP6_14kN represents unidirectional pre-stressed panel number 6 with a
14 kN pre-load.

4. Results and Discussion

4.1. Calibration of the Load-Cell

With reference to Figure 14a, it is seen that the load recorded by the load-cell on the pre-stressing
rig is in good agreement with that measured from the pre-calibrated mechanical test machine.
Figure 14b shows that the response from the load-cell is linear during the static tests conducted
at 27, 70, 99 and 121 ˝C.
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Figure 14. (a) Comparison of the load recorded by the load-cell (used on the pre-stressing rig) and 
the output from the pre-calibrated mechanical test machine; (b) Comparison of the load measured by 
the load-cell and the applied load via the mechanical test machine at specified temperatures. 
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seen that the strains measured at different positions on the steel plate, for an applied load, are in 
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4.3. Effect of the Autoclave Processing Parameters on the Sensors 

The effect of the applied vacuum (826 mbar (−0.084 MPa)), via the vacuum bag, on an FBG that 
was embedded in a unidirectional laminate is shown in Figure 16a. A compressive strain of 80 µε 
was recorded for this applied vacuum. The interesting point to note is that the strain recorded by the 
FBG, when the vacuum bag was returned to atmospheric conditions, was approximately −35 µε. 

Figure 14. (a) Comparison of the load recorded by the load-cell (used on the pre-stressing rig) and the
output from the pre-calibrated mechanical test machine; (b) Comparison of the load measured by the
load-cell and the applied load via the mechanical test machine at specified temperatures.

4.2. Evaluation of the Pre-Stressing Rig

The loading efficiency of the pre-stressing rig was evaluated by clamping a steel plate and
applying the required static tensile load. The resultant strain in the steel plate was measured using
surface-bonded electrical resistance strain gauges (ESRGs). With reference to Figure 15, it can be seen
that the strains measured at different positions on the steel plate, for an applied load, are in good
agreement. This demonstrates that the clamping and loading mechanisms on the pre-stressing rig
were capable of applying a uniform load to the steel plate.
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4.3. Effect of the Autoclave Processing Parameters on the Sensors

The effect of the applied vacuum (826 mbar (´0.084 MPa)), via the vacuum bag, on an FBG that
was embedded in a unidirectional laminate is shown in Figure 16a. A compressive strain of 80 µε was
recorded for this applied vacuum. The interesting point to note is that the strain recorded by the FBG,
when the vacuum bag was returned to atmospheric conditions, was approximately ´35 µε.
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Figure 16. (a) The effect of the applied autoclave vacuum, via the vacuum bag, on an embedded FBG 
strain sensor; (b) Typical outputs from the surface-located reference EFPI and FBG sensors and the cure 
cycle parameters in the autoclave. The step in the FBG optical fibre sensor traces after approximately 4-h 
coincides with the time when the door of the autoclave was opened and the vacuum bag was 
detached.; (c) A comparison of the outputs from the embedded and surface-located EFPI and FBG 
sensors, including the data from the thermocouple, as a function of the cure schedule for a 16-ply 
unidirectional E-glass composite. The arrows indicate the relevant y-axis for each dataset. 
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Figure 16. (a) The effect of the applied autoclave vacuum, via the vacuum bag, on an embedded FBG
strain sensor; (b) Typical outputs from the surface-located reference EFPI and FBG sensors and the cure
cycle parameters in the autoclave. The step in the FBG optical fibre sensor traces after approximately
4-h coincides with the time when the door of the autoclave was opened and the vacuum bag was
detached.; (c) A comparison of the outputs from the embedded and surface-located EFPI and FBG
sensors, including the data from the thermocouple, as a function of the cure schedule for a 16-ply
unidirectional E-glass composite. The arrows indicate the relevant y-axis for each dataset.
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The implication of the data presented in Figure 16a is that due care and attention needs to be paid
to maintaining the relative orientation of the embedded optical fibre sensor in specified substrates
(resin, prepreg, fabric, concrete, etc.). In the current paper, the alignment of the FBG and EFPI was
controlled and assured because sections of the optical fibres, within the end-tabs, were pre-aligned
and bonded to the matrix. The act of tensioning the end-tabbed preform, to apply the required
pre-tension, ensured the alignment and the retention of the orientation of the optical fibre sensors
during processing.

The issues associated with the retention of the relative orientation of embedded sensors was
highlighted previously [48]. The feasibility of measuring the residual strain using optical EFPI sensors
was first demonstrated by Liu et al. [48] using a cross-ply carbon/epoxy composite. They embedded
two temperature-compensated EFPI strain sensors between plies numbers 2 and 3 (sensor 1), and
8 and 9 (sensor 2) in a cross-ply (0, 902, 02, 90, 0, 90)S carbon/epoxy laminate. They measured the
cavity length of EFPI sensors before and after processing and reported the residual strain to be 90 µm
and 550 µm in sensors 1 and 2 respectively. The authors proposed that the observed discrepancy may
have been due to the relative orientations of the two sensors.

The effect of autoclave processing parameters on the output of the FBG and EFPI sensors (placed
on the surface of the composite and embedded) was investigated using a pre-cured composite panel of
dimensions 290 mm ˆ 200 mm ˆ 2 mm. The composite with the sensors was vacuum-bagged and
subjected to a typical autoclave cure schedule. Figure 16b shows the observed relationship between
the cure cycle parameters on the output from the reference EFPI and FBG sensors (located on the
surface of the cured composite panel but within the vacuum bag). The FBG sensor was influenced by
temperature, pressure and the force exerted by the vacuum bag. The initial fluctuations in the FBG
signal, reaching a maximum compressive strain of approximately 40 µε, is likely to have been caused
by the lateral compression caused by the application of the vacuum in the vacuum bag and the applied
external pressure. At around 50 ˝C, the strain recorded by the FBG decreases from approximately
+50 µε to a minimum of ´50 µε. However, the signal is noisy since the mode of operation of the
autoclave pressure is cyclic once the target value has been reached. It is difficult to account for the
change in magnitude of the FBG signal from +50 to ´50 µm. However, it is possible that some form of
relaxation occurring in the lateral forces experienced by the fibre along its length. A possible reason for
this observation is the glass transition temperature of the acrylate coating on the optical fibre being
approached and/or being exceeded. In the current experiment, the acrylate coating was retained on
the optical fibre apart from the sensing regions in the EFPI and FBG sensors. The compressive strain
is reversed at approximately 80 ˝C and the FBG signal is seen to oscillate with the applied autoclave
pressure to around +20 and ´20 µε. After 2-h of processing, the heater controller was turned off and
the strain recorded by the FBG is seen to decay in tandem with the temperature.

The EFPI sensor is relatively insensitive to temperature because the coefficients of thermal
expansion for the optical fibre and the capillary are similar [45,46]. However, the action of the
vacuum bag will impress the EFPI sensor on to the surface of the pre-cured composite as the vacuum
and pressure is applied. This may account for the initial rise in the measured strain (~15 µε) after
approximately 15 min and it could be attributed to the bending induced by the vacuum bag acting
on the ends of the capillary and the optical fibre. A decrease is observed in the recorded strain from
approximately 15 µε to 25 µε at 85 ˝C. This coincides with the autoclave pressure reaching its set value.
Since this small but detectable decrease in the stain was observed for the FBG and EFPI sensors, it is
speculated that this may be attributed to the glass transition temperature of the acrylate coatings being
exceeded on the two types of optical fibres. After the autoclave door was opened, a small increase in
the strain was observed from the reference EFPI sensor. This may be attributed to the relaxation of the
materials within the vacuum bagging materials. However, this ceases after approximately seven hours
as the autoclave was permitted to cool naturally.

The thermal expansion of a pre-cured unidirectional composite was measured using the embedded
optic fibre sensors. The cured composite with the surface-located and embedded sensors were subjected
to a typical autoclave cure cycle. The composite was heated from ambient to 120 ˝C at 2 K¨min´1 with
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a dwell of one hour. The pressure was ramped from atmospheric to 0.69 MPa at 0.015 MPa per minute
and held at this pressure for one hour.

The thermal expansion of a unidirectional composite (αc), in the fibre direction is given by:

αc “
αm νm Em ` α f ν f E f

Em νm ` E f ν f
(4)

where α, ν and E are the thermal expansion coefficient, volume fraction and modulus respectively.
The subscript m and f denote the matrix and fibre respectively.

Figure 16c shows the output from the embedded, surface-located EFPI and FBG sensors and the
thermocouple data as a function of the processing time and the autoclave temperature. In this instance,
the strains recorded by the embedded EFPI and FBG sensors show a similar trend and magnitude
during the heating and isothermal periods. During the cooling phase, a small divergence is seen
between the EFPI and the FBG sensors.

Excellent correlation is seen in Figure 16c between the embedded FBG temperature sensor and
the output from the thermocouple. The outputs from the reference EFPI and FBG sensors that were
located on the surface of the composite were discussed previously. A good correlation is observed
between the outputs from the embedded EFPI and FBG sensors and that predicted using Equation (4).
A summary of the relevant properties that were used for computing the thermal expansion of the
unidirectional 16-ply composite is presented in Table 1. The measured and the predicted values for the
thermal expansions are presented in Table 2.

Table 1. A summary of relevant properties that were used for computing the thermal expansion of the
unidirectional 16-ply E-glass/epoxy resin composite.

Properties E-Glass Epoxy Resin

Young‘s Modulus (Mpa) 72,500 4000
Poisson‘s ratio 0.22 0.4

Thermal expansion coefficient (˝C´1) 5.00 ˆ 10´6 60.0 ˆ 10´6

Volume fraction 0.6 0.4

Table 2. A summary of the measured and predicted thermal expansions for the unidirectional 16-ply
E-glass/epoxy resin composite.

Method Thermal expansion (ˆ10´6 K´1)

Theoretical prediction (Equation (4)) 6.38
Experimental measurement (EFPI and FBG) 6.45

4.4. Residual Strain Monitoring in Composites without Pre-Stress

Figure 17 shows the output from an embedded EFPI sensor in a 16-ply UD E-glass/epoxy reference
composite (manufactured without any pre-stress) during autoclave processing. A summary of the
residual strains measured at specified stages of the cure cycle is presented in Table 3. The general
trends observed in Figure 17 can be grouped into the following regions: (a) after embedding the
EFPI sensor but before curing the laminated prepregs; (b) during the temperature ramp-up period;
(c) during the isothermal dwell; and (d) cooling phase.

Table 3. A summary of the strain data measured by the embedded EFPI sensors at different stages of
processing for three reference composite panels where no pre-stress was applied.

Reference
Composite Panels

Strain Before
Embedding (µε)

After
Embedding (µε)

At 120 ˝C
(µε)

Final Residual Strain at
Room Temperature (µε)

UR1 0 ´71 40 ´587
UR8 0 ´63 42 ´640
UR9 0 ´101 24 ´586
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Region a: Subsequent to embedding the EFPI sensor, a compressive strain of approximately 50 µε
was recorded. The origin of this compressive strain may be attributed to the manual procedures that
were used to laminate and consolidate the prepregs with the aid of a roller. This action of consolidating
the plies, layer-by-layer, is likely to have resulted in the EFPI with a capillary diameter of 300 µm,
being impressed into the prepregs thus resulting in the observed compressive strain.

Region b: During the heating cycle, no significant changes were observed in the output of the
EFPI sensor until approximately 60 ˝C when a positive strain was recorded. This increase may be
attributed to a combination of the relaxation of the previously induced compressive strain due to the
lamination process and thermal expansion of the various materials. During the heating phase, the
viscosity of the resin initially decreases. Hence, it is reasonable to assume that any constraint or bending
introduced on the optical fibre and sensor during lamination will relax from its constrained position.
The viscosity/temperature profile for the Fiberdux 913 resin system reported by the manufacturer
indicated that the minimum viscosity is reached between 120–130 ˝C. After this period, the viscosity
of the resin increases as the cross-linking reactions become prominent. This cross-linking process is
accompanied by shrinkage of the resin. However, as the temperature in the autoclave is increasing in
region-b, and therefore, the constitutive materials in the composite and the pre-stressing rig undergo
thermal expansion.

Region c: The observed excursion of approximately 7 ˝C at the end of the temperature ramp
is possibly due to two factors. Firstly, it could be a consequence of the exothermic ring-opening
cross-linking reaction between the epoxy resin and amine hardener. Secondly, it could be due to the
temperature-controller in the autoclave overshooting the set isothermal value. On inspecting region-c
in Figure 17, it is apparent that preforms were above the set isothermal temperature for approximately
20 min from the end of the thermal ramp. This exothermic excursion was observed for all the prepregs
processed in this study.

Region d: Here the heating was turned off and the composite was permitted to cool naturally.
With reference to Table 3, the average residual strain measured from three UD reference

composites, at ambient temperature, was –604 µε.
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without any pre-stress) during autoclave processing. The coded regions (a–d) represent the follows:
(a) before curing; (b) heating cycle; (c) dwell period; and (d) cooling cycle.

4.5. Residual Strain Development in a UD Pre-Stressed Composite

This section reports on the use of embedded EFPI sensors in unidirectional [0]16 E-glass epoxy
composites where the preform was pre-stressed. The EFPI sensors were used to monitor the strain
during and after processing. A limited number of experiments were also undertaken using embedded
FBG sensors. In addition, electrical resistance strain gauges were surface-bonded on the composite
after processing but before they were unclamped from the pre-stressing rig. The magnitude of the
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strain released, when the composite was unclamped from the pre-stressing rig, was recorded using the
embedded optical fibre sensors and the surface-bonded ERSGs.

Figure 18 shows the outputs from the various sensors when the composite, with a previously
applied pre-stress of 150 MPa, was unclamped from the pre-stressing rig. It can be seen that the applied
pre-load was maintained throughout the curing process to within 1 kN. During the heating cycle,
the load-cell did not record the pre-stress induced in the preform due to thermal expansion of the
rig. This is because in the current set-up, there is no frame of reference for the load-cell to record the
thermally-induced pre-stress experienced by the preform. During the heating phase, the pre-stressing
rig assembly expands and this will induce a pre-stress on the preform. However, the load applied to
the preform due to thermal expansion of the rig will not be recorded by the load-cell.
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Figure 18. Strain development throughout the processing of a 16-ply UD prepreg system that was
subjected to a pre-stress of 150 MPa.

On inspecting the output from the EPPI sensor in Figure 18, it is seen that a compressive strain of
approximately 60 µε is induced in the preform prior to the application of the pre-load. As expected, the
application of a pre-stress 150 MPa resulted in an increase in the strain recorded by the EFPI sensor. The
residual strain and the magnitude of the strain that was released when the composite was unloaded
from the pre-stressing rig, for four pre-stress levels, are summarised in Tables 4 and 5 respectively.

Table 4. EFPI and FBG-based strain data from unidirectional composites that were pre-stressed via
thermal expansion of the rig, and applied pre-load values on the preforms corresponding to 7, 14 and
24 kN. The strain data were acquired at room temperature.

Composite Panel Code

Residual Strain (µε)

Sensor Type and Position on the Panel

EFPI (Middle) FBG (Middle) EFPI (40 mm from the Edge)

UPT8 ´566 - -
UPT11 ´581 - -

UP1_7kN ´586 - -
UP2_7kN ´574 - -
UP2_14kN ´564 - ´643
UP3_14kN ´503 - ´653
UP4_14kN ´573 - -
UP5_14kN ´553 - -
UP6_14kN ´520 - -
UP7_14kN ´605 - -
UP9_14kN ´529 ´742 -
UP12_14kN - ´714 -
UP1_24 kN ´592 - -
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Table 5. Strain recorded from the EFPI, FBG and surface-mounted ERSG sensors when the pre-stress
was released by unclamping the composite from the pre-stressing rig. The strain data were acquired at
room temperature.

Composite
Panel Code

Pre-Stress
Released (MPa)

Strain Released Upon Unloading the Composite from the Pre-Stressing Rig (µε)

Sensor Type and Position on the Panel

EFPI
(Middle)

FBG
(Middle)

EFPI (40 mm
from the Edge)

ERSG
(Middle)

ERSG (40 mm
from the Edge)

UPT8 51.21 * - - - ´109 ´160
UPT11 51.21 * ´108 - - ´194 ´221

UP1_7kN 79.95 ´184 - - - -
UP2_7kN 80.36 ´190 - - ´223 -
UP2_14kN 108.50 - - ´630 ´656 ´696
UP3_14kN 107.22 ´637 - ´685 ´602 ´763
UP4_14kN 108.62 ´579 - - ´628 -
UP5_14kN 108.41 ´537 - - ´548 -
UP6_14kN 112.89 ´552 - - ´613 -
UP7_14kN 108.45 ´600 - - ´639 -
UP9_14kN 113.57 ´551 ´684 - ´677 -
UP12_14kN 107.61 - ´608 - ´600 -
UP1_24 kN 150.07 ´944 - - ´958 ´1113

*: The thermal expansion-induced pre-stress calculated using classical mechanics.

With reference to Table 5, the EFPI strain data from the repeat experiments, at pre-loads
corresponding to 14 kN, were in the range ´537 to ´637. A reasonable agreement is observed
between the datasets for the EFPIs and the ERSGs when they were embedded and surface-mounted
respectively, at the centre of the composite. The ERSGs, when located 40 mm from the edge of the
composite, recorded a higher value when compared to those located at the centre; this is presumably
due to edge effects. Reasons for the variation in the FBGs were discussed previously.

Figure 19 shows the strains recorded by the EFPI, FBG and ERSG sensors when a composite (Panel
code UP9_14kN), with a previously applied pre-stress of 108 MPa, was unloaded from the pre-stressing
rig in a stepwise manner. The data recorded by the FBG sensor did not follow the stepwise pre-load
release as observed with the EFPI and ERSG sensors. This is because the rate of data acquisition for
FBG sensors was two measurements per minute, whereas that for the EFPI and ERSG sensors was
1 measurement per second. Initially, the strains measured from the EFPI, FBG and ERSG sensors are in
agreement. However, as the composite was unloaded further, the EFPI sensor records a slightly lower
compressive strain when compared to the FBG and ERSG sensors. On the other hand, the FBG and
ERSG sensors are in good agreement.
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Table 6 shows the average strain-release measured via the EFPI, FBG and ERSG sensors when the
preform that was previously subjected to a pre-stress 108 MPa, was cured and then unloaded from the
pre-stressing rig. The average strain-release measured with the FBG sensor is slightly higher than that
obtained from the EFPI sensor. However, by considering the standard deviations and the number of
samples that were evaluated, it can be concluded that the strain recorded from the optical fibre (EFPI
and FBG) and ERSG sensors show a reasonable agreement. After releasing the pre-stress, the final
residual strain in the composite, εfinal, can be expressed as:

ε f inal “ εr ´ εp (5)

where εr is the residual strain measured before releasing the composite from the pre-stressing rig
(this represents cure and thermally-induced residual stresses) and εp is the strain measured when the
pre-load is released.

Table 6. The average strain released when the composites were un-loaded from the pre-stressing ring.
The preforms were previously subjected to a pre-stress of 108 MPa.

Sensor Type Number of Samples Average Strain Released
Upon Unloading (µε)

Standard Deviation
(µε)

EFPI 6 ´592.8 56
FBG 2 ´646.0 54

ERSG 7 ´616.2 35

Figure 20 shows the final residual strain measured for all the pre-stressed composites
manufactured in this study. The compressive residual strain in the composites reduces as the previously
applied pre-stress on the preforms increases. However, the application of a pre-stress to the preform
of approximately 108 MPa results in the production of composites with a near-zero residual strain.
Above an applied pre-stress of 108 MPa, the final residual strain is tensile. This demonstrates that the
pre-stressing method reported here can be used to control the final residual strain in composites.
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In Figure 20, it is apparent that the strain gradient across the panel (middle and 40 mm from
edge) increases with an increase in pre-stress. This variation in strain reaches a maximum of 14% at a
150 MPa pre-stress. It is proposed that this difference in the measured strain-release may be due to an
edge effect caused by the variation in Poisson’s contraction at the unconstrained edge.
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5. General Discussion

This study had demonstrated conclusively that the application of a pre-stress to the preform,
and maintain this stress during autoclave-based processing, is a viable method for counteracting
the fabrication-induced residual strain in unidirectional composites. In addition to the parameters
discussed in the introduction that can give rise to residual fabrication strain in composites, attention
also needs to be paid to non-uniform temperature and cure gradients during the processing of
preforms [49,50]. With reference to strain metrology using optical fibres, due consideration needs
to be given to the nature of the interface between the surface of the optical fibre/sensor and the
matrix [1,51,52]. Appropriate packaging and sensor protection systems are also important if the
longevity of the sensor system is to be ensured [53,54].

Although the optical fibre sensors were effective in quantifying the magnitude of the residual
strains in pre-stressed composites, for the first time, the reasons for the variations in the strain data
need to be appreciated. Optical fibres can be embedded with significant ease in prepregs, however,
due attention needs to be paid to the orientation of the sensor in relation to the reinforcing fibres [1].
Any bending of the optical fibres, in the vertical or horizontal planes to the reinforcing fibres, will
give rise to induced strain in the sensor. In general, in-plane movement of the sensor is possible
when there is significant movement of the resin during processing. This in-plane movement can be
induced by excessive resin-flow during processing or if excessive pressure is applied. This movement
of the sensor can be restricted by securing the input and output ends of the optical fibres under a
pre-defined tension.

The thermal expansion of the substrate that the optical fibres are attached to could also have an
influence on the measured strain via the sensors. Out-of-plane movement of the optical fibre sensor has
been observed for unidirectional composites [1]. However, a detailed study needs to be undertaken to
assess the effect of processing conditions on the relative movement of the optical fibre sensors; due
attention also needs to be paid to the effect of the optical fibres on the orientation of the reinforcing
fibres. The issue here is that the localised strain measured by the optical fibre sensor may not give an
accurate description of the strain. Instrumental drift can be a problem especially if the laboratory or
environment housing the interrogation equipment experiences a significant change in temperature.

The effect of the autoclave processing parameters (pressure, vacuum) needs to be quantified for a
specific prepreg system. The FBG is more sensitive to lateral loading than the EFPI sensor. This current
study has shown that more reliable data can be obtained from the FBG sensor when reflection spectra
are recorded as opposed to analyses where only the peak-reflection is monitored. The latter can give
rise to erroneous conclusions especially where the sensing region experiences off-axis loading.

6. Conclusions

This study has demonstrated the feasibility of manufacturing unidirectional composites where
the magnitude of the residual stress can be managed by applying a pre-stress to the preform prior to
processing. This was achieved using a custom-designed pre-stressing rig that was based on a two-part
flat-bed design. This rig permitted the pre-stressed prepregs to be processed in an autoclave using
conventional procedures. The feasibility of using conventional EFPI and FBG sensors for monitoring the
development of residual strain was also demonstrated. The evaluation of the pre-stressing technique
was carried out in four stages. Firstly, the load-cell was calibrated at specified applied loads and
temperatures. Subsequent to this, the clamping/loading efficiency was demonstrated by loading a
steel plate in the rig. The resultant strain was logged at specified positions using surface-bonded
ERSGs. Secondly, an end-tab rig was designed to enable aluminium end-tabs to be co-cured to the
ends of the prepregs but without curing the regions away from the end-tabs; this was achieved by
using a water-cooling system. Thirdly, the effect of the autoclave processing parameters on the outputs
from the sensors used in this investigation was studied. Finally, composites were manufactured
with predefined levels of pre-load and the effect of pre-stress on the residual stress in composites
was determined.
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The residual strain in unidirectional E-glass glass fibre/epoxy composite panels was measured
using embedded EFPI and FBG sensors. This study has shown conclusively that the magnitude of
the residual stress in a composite can be managed by the application of pre-stress during processing.
For example, it was demonstrated that applying a pre-stress of 108 MPa to a unidirectional E-glass
epoxy preform, resulted in a composite panel with a negligible residual strain.
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Abbreviations

The following abbreviations are used in this manuscript:

AFRCs Advanced Fibre Reinforced Composites
CCD Charged coupling device
EFPI Extrinsic Fibre Fabry-Perot interferometer
ERSG Electrical resistance strain gauges
FBG Fibre Bragg grating
ILSS Interlaminar shear strength
SLD Super-luminescence diode
SMA Shape memory alloy
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