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Abstract: The ability to identify hazardous traffic events is already considered as one of the most
effective solutions for reducing the occurrence of crashes. Only certain particular hazardous traffic
events have been studied in previous studies, which were mainly based on dedicated video stream
data and GPS data. The objective of this study is twofold: (1) the Markov blanket (MB) algorithm
is employed to extract the main factors associated with hazardous traffic events; (2) a model is
developed to identify hazardous traffic event using driving characteristics, vehicle trajectory, and
vehicle position data. Twenty-two licensed drivers were recruited to carry out a natural driving
experiment in Wuhan, China, and multi-sensor information data were collected for different types
of traffic events. The results indicated that a vehicle’s speed, the standard deviation of speed, the
standard deviation of skin conductance, the standard deviation of brake pressure, turn signal, the
acceleration of steering, the standard deviation of acceleration, and the acceleration in Z (G) have
significant influences on hazardous traffic events. The sequential minimal optimization (SMO)
algorithm was adopted to build the identification model, and the accuracy of prediction was higher
than 86%. Moreover, compared with other detection algorithms, the MB-SMO algorithm was ranked
best in terms of the prediction accuracy. The conclusions can provide reference evidence for the
development of dangerous situation warning products and the design of intelligent vehicles.

Keywords: hazardous traffic event; Markov blanket; sequential minimal optimization; naturalistic
driving; traffic safety

1. Introduction

Road traffic crashes have become the key cause of death of the population in the current years.
In China, although crashes have decreased in recent years (about approximately 60% reduction from
2000 to 2012) and roadway fatalities have decreased from 93,853 to 62,387 during these years [1],
the total number of crashes and fatalities are still at high levels [2]. A survey by the U.S. National
Highway Traffic Safety Administration (NHTASA) showed that 60% of crashes could be avoided if
drivers could receive notice 0.5 s in advance [3]. However, the traffic system is one of the most complex
and important components in modern society. The risk factors from humans, vehicles, roads and the
environment all contribute to the occurrence of hazardous traffic events. Meanwhile, during driving
and due to a lack of experience or other reasons, drivers can easily become nervous or make mistakes
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during vehicle operation, which can lead to crashes. These crashes could be avoided if a warning
system or automatic driving system could identify dangerous situations and warn or replace drivers
to finish the driving task when hazardous traffic events appeared [4,5]. Thus, a methodology that
could reduce the crash rate is necessary. The objective of this study is to extract the risk factors which
significantly influenced the occurrence of hazardous traffic events, and we also tried to establish a
detection model for identifying different types of traffic events.

Hazardous traffic events are not only difficult to define, but also uncontrollable and uncertain.
Dingus et al. [6] defined three types of traffic events as follows:

‚ Crash: situations in which there is physical contact between the subject vehicle and another
vehicle, fixed object, pedestrian, cyclist or animal.

‚ Near-Crash: situations requiring a rapid, severe, evasive maneuver to avoid a crash.
‚ Incident: situations requiring an evasive maneuver of less magnitude than for a near-crash.

Considering the safety of an on-road experiment and the difficulty of crash data collection in
China, crash and near-crash events (events which appear in China’s transportation industry standard
JTT 916-2014 [7]) are defined as hazardous events, and the most common hazardous events consist
of pedestrians crossing the road, formal vehicle emergency braking, and so on. Risky traffic events
could be defined as those in which the driver does not need to take emergency action, but only require
the driver’s attention to avoid crashes. Safe traffic event could be defined as situations which do not
influence driver’s normal driving behavior, and the occurrence of those traffic events does not make
the driver feel nervous or fearful [8].

To identify hazardous or risky traffic events during normal driving, it is critical to extract the
impact factors that have significant influences on risky driving and explore the characteristics of
different types of traffic events. The following paragraphs provide a brief review of related studies
regarding impact factors of hazardous traffic events, as well as related research on methods to
distinguish the different types of traffic events.

The appearance of traffic events could be affected by many factors, e.g., drivers, vehicles, the
road and the environment. Bauer et al. [9] found that road curvature has a strong correlation with
the traffic incidents and easily leads to the occurrence of crashes. Greibe et al. [10] studied the
relationship between road links (such as parings, crossings) and crashes. Kamijo et al. [11] suggested
that the number of traffic lanes, intersections and traffic lights could lead to more crashes and risky
driving. Deoña et al. [12] tried to use the factors of speed limits, safety distance, overtaking rules
and drivers’ distractions to identify the crash risk during the driving. Estimation of hazardous traffic
events based on a driver’s personality traits and other relevant variables has also been standard
practice in actuarial research; previous studies have also found that crash risk was impacted by a
driver’s experience. An inexperienced driver is less likely to scan the roadway than experienced
drivers are [13,14]. Efforts have been carried out to deeply analyze the vehicles’ state factors, such as
speed, brake, and acceleration, which affect crashes and hazardous traffic events [15]. Moreover, the
environment, which includes the weather, traffic flow, and visibility, also has a great influence on the
occurrence of crashes [16].

All in all, due to the complexities of the traffic environment, there are many factors that could
influence the occurrence of crashes. It is necessary to explore an effective method for extracting key
features to classify the different types of traffic events. Many feature selection methods have been used
in the area of traffic safety. Montella et al. [17] focused on the crashes of pedestrians and powered
two-wheel vehicles. The decision tree (DT) and association rule model were used to identify the
significant impact factors of crashes. For pedestrians, the results showed that the road type, lighting
conditions, vehicle type, and pedestrian age are the main factors associated with crashes. For powered
two-wheel vehicles, they concluded that rainy weather, run-off-the-road, the cure of the road, and
the capacity of the vehicle is the key factors that influence the fatal severity. Bing et al. [18] used the
principal components analysis (PCA) method to detect hazardous traffic incidents, and three main
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components were extracted based on the eleven initial factors. Many other feature selection methods
such as feature ranking [19], linear forward selection [20], and subset size forward selection [21] have
been used to extract key features.

With the development of computer science and sensor technology, the methodology of hazardous
traffic event detection has multiplied [22]. Currently, the traffic event detection methods are divided
into the three main types (including data analysis, observation method, and expert experiences).

Data analysis is a popular and mainstream method for detecting different types of crashes.
Vehicle-based signals, such as a vehicle’s speed, the depth of the brake pedal, the acceleration, the
steering wheel movement, current position, and lane position has been used to identify dangerous
scenes [23]. For example, Hu et al. [24] investigated traffic accident scenario hotspots based on GPS
data. As another example, Florez et al. [25] used a video stream to classify dangerous scenes based on
the characteristics of a vehicle’s trajectory. Similarly, behavioral and environment characteristics, such
as a driver’s experience, sex, physiological state, eye closure rate, and weather, have been collected
and analyzed to identify dangerous traffic events. A previous study [26] found that the sudden
movement of a driver’s torso may indicate the occurrence of a traffic incident. Donmez et al. [27]
reported that a driver’s off-road glances behavior may easily cause the occurrence of dangerous
traffic event. Moreover, the observation method and expert experiences have been widely used to
evaluate the risk level of traffic incidents. The key steps of the field observation method are that
many observers are employed to add to the record of critical-incident events; these methods always
result in a waste of human resources and economic resources. As a simple and easy operating method
to identify traffic events, expert analysis only focuses on a video or image of a traffic event, and
through the experts’ experience, the risk level of selected traffic scenes is ensured. However, because
of inconsistencies resulting from using different experts, it is always difficult to distinguish hazardous
traffic events accurately when the traffic environment is complex [28]; moreover, it is not suitable to
predict hazardous traffic events in real-time using this method.

In recent years, intelligent computing technology has developed rapidly, and as a typical data
analysis method, machine learning algorithms have been used to address multi-sensor information to
predict the driving risk. For example, Hassan et al. [29] applied artificial neural network models to
predict the crash risk at a signalized intersection. The results showed that the multilayer perceptron
(MLP) neural network model has a better generalization performance when predicting the risk at the
intersection. Jiao et al. [30] used fault tree analysis (FTA) to develop a dangerous situation prediction
system. Further, Wakita et al. [31] proposed a nonparametric method via driving behavior signals to
identify driving risk. The results showed that an identification rate of 73% could be reached. Moreover,
many existing studies have used classification models to deeply analyze or identify the occurrence of
crashes. Sohn and Shin [32] used the accuracy measure to evaluate the accuracy of a neural network,
logistic regression, and decision table. The results showed that the three models exhibited a similar
level of identification. Other classification algorithms, such as the decision tree (ID3), Classification
and Regression Tree (CART), Radial basis function network (RBFNETWORK), and Naïve Bayes (NB),
have also been used to identify risky traffic incidents or crashes [33].

Thus far, little research has been found regarding the study of the identification of hazardous
traffic events during the real-world driving process, especially in the context of China. The relationship
between influence factors from driver-vehicle-road-environment and traffic hazards has already been
explored in a previous study. However, little research has focused on the feature selection method of
hazardous traffic events. In addition, the hazardous traffic event detection algorithm is an important
aspect that still requires improvement. Thus, we conducted a series of on-road experiment to collect
the data of multi-sensors while the hazardous traffic event occurred, and the relationship between
the impact factors and different types of traffic events was also analyzed. In addition, one of the key
objectives of this study is to explore an effective method for evaluating the safety of traffic incidents in
the mixed traffic of a Chinese metropolitan area-, i.e., Wuhan.
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The technical flowchart of this paper is shown in Figure 1. First, the experimental design and
the data collection, including the participants, tasks, instruments, types of data and the origin data
preprocessing method, are introduced. Then, a new feature selection algorithm called the Markov
Blanket (MB) is introduced to find the key factors that have strong correlation with the different types
of traffic incidents. Third, the sequential minimal optimization (SMO) algorithm is selected to establish
a hazardous traffic event identification model. Finally, the accuracy of the classification model is
evaluated by using a receiver operating characteristic curve (ROC) and many other statistical indexes.
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2. Methods

2.1. Markov Blanket for Evaluating Risk Factors

In this study, we introduce the Markov blanket theory into the area of feature selection with
respect to hazardous traffic events. Several researchers have suggested, intuitively, that the Markov
blanket of a dependent variable (or target) T should be classified as a key concept in solving the
variable selection problem. In the context of traffic safety, the Markov blanket of the target T, i.e.,
risk or the concepts related to safety, is the best group of key factors that have a significant influence
on T [20,34–36].

The Markov blanket of the dependent variable T, denoted as MB(T), is a minimal set of variables
(or factors, features; hereafter, we use these terms interchangeably) conditioned on which all other
variables are probabilistically independent of T (Definition 1). Thus, knowing the values of MB(T) is
sufficient to determine the probability distribution of T, and the values of all other attributes become
superfluous [35,36]. Obviously, we can only use attributes in MB(T) instead of all the attributes for
optimal prediction. Moreover, under certain conditions (faithfulness to a Bayesian network), MB(T) is
the subset that contains the parents, the children and the parents of the children of the target T in the
Bayesian network [37].

Definition 1 (Markov blanket) [37]. The Markov blanket of a target attribute T P V, denoted as MB(T), is a
minimal subset of attributes for which:

pTKV ´MBpTq ´ T|MBpTqq and T R MBpTq

where V is the set of all attributes in the domain. Symbol ‘K’ denotes independence. ‘-’ denotes set minus, and
‘|’ means ‘conditioning on’.

Given the faithfulness assumption, the probability distribution of T is completely determined by
the values of variables in MB(T). Thus, the Markov blanket is widely applied for the feature selection
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problem, and a basic algorithm, which called the Incremental Association Markov Blanket (IAMB)
algorithm [36], is selected to discover the Markov blanket. The algorithm is described in Figure 2.

As shown in Figure 2, the IAMB algorithm contains two phases, growing phase (lines 2–9) and
shrinking phase (lines 10–14). The growing phase of IAMB guarantees finding a Markov boundary of
the target T, i.e., all of the other factors will be redundant to T given such a boundary. The shrinking
phase of IAMB tries to further eliminate the redundancy in the Markov boundary discovered in the
prior phase. Note that the conditional independence test in IAMB is controlled by the preselected
threshold ε, which will be nominally set to 0.01, as suggested in [37]. Note that Ip¨|¨q in the IAMB
algorithm represents the conditional mutual information, where the size of the conditioning set in Ip¨|¨q
will change at each iteration. In this paper, the conditional mutual information will be implemented
according to [20].
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2.2. The Sequential Minimal Optimization for Detecting Hazardous Traffic Events

After ensuring the factors that contribute to hazardous traffic events based on the Markov blanket
algorithm, a detection model was developed to classify the different types of traffic events based on the
sequential minimal optimization (SMO) algorithm; the SMO as an improved SVM algorithm, which is
used to solve a large-scale Quadratic Programming (QP) problem, was put forward by Platt, in this
case, the QP problem could be described as Equations (1) and (2), and the mathematical expression for
this algorithm in this study is similar with the article published by Platt in 1998 [38]. The core of SMO
algorithm is to decompose the overall QP problem into numerical routine for several sub-problems.
The QP problem is solved only if the point in Equations (1) and (2) fulfilled the Karush-Kuhn-Tucker
(KKT) conditions shown in Equation (3) and Qij “ yiyjk

`

Xi, Xj
˘

is positive semi-definite:

Maximize : R pαiq “

l
ÿ

i“1

αi ´

l
ÿ

i“1

l
ÿ

j“1

αiαjyiyjk
`

Xi, Xj
˘

(1)

Subject to :
l
ÿ

i“1

αiyi “ 0; 0 ď αi ď c, i “ 1, . . . , l (2)
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KKT conditions:
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αi “ 0 “ą yi f pXiq ě 1
0 ă αiă c “ ąyi f pXiq “ 1

αi “ c “ą yi f pXiq ď 1
(3)

where k
`

Xi, Xj
˘

is the kernel function; αi is the Lagrange multiplier to be optimized; c is the
regularization constant predetermined by users. The KKT conditions can give an evaluation to
the examples in a short time, and is conducive to the construction of the SMO algorithm.

The advantage of this algorithm is that it is able to fill the missing value attributes of samples
automatically; meanwhile, multiple classification problems are solved by using pairs’ classification in
this model [39]. The entire inner iteration is avoided as two Lagrange multipliers can be used if the
numerical QP problems exist. In addition, the training speed is improved and does not require extra
matrix storage by SMO algorithm compared with SVM. The modeling progress of SMO algorithm is
shown in Figure 3.
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The 10-fold cross validation and grid method is employed to optimize both the parameters and
the kernel function, which is suitable for developing this classification model, and the training result
shows that the model presented has highest accuracy when the value of c (the punishment factor) is 1
and the value of γ (the tolerance parameter) is 0.001; the PLOY (polynomial kernel function) is selected
as the kernel function of SMO and is described as follows:

kpx, xiq “ ppx ˚ xiq ` 1qd (4)

where x is the expected type of traffic event; xi is the sample of the training set; d is the kernel function
parameter; the value of d is 1.0 in this study.
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2.3. Evaluation Criteria for Detection Model

After filtering most of the features using the MB-SMO algorithm, it is necessary to select a suitable
method to evaluate the accuracy of the identification. For this purpose, a wrapper method based on
the area under the ROC curve (AUC) is employed in this study. The ROC curve is the integrated
index that reflects the sensitivity and specificity of continuous variables. By setting out a number of
different thresholds of continuous variables, the ROC calculates a series of sensitivity and specificity,
using sensitivity as the true positive rate (TPR), false positive rate (FPR), Recall (R), and F-measure
(see Equations (5)–(9)) described as follows. A higher AUC implies that the classification algorithm
can achieve a better performance [40]:

TPR “
TP

TP` FN
(5)

where TP represents the number of events correctly classified as belonging to class A, and FN represents
the number of events incorrectly classified as not belonging to class A. TPR could represent the
percentage of members of class A correctly classified as belonging to class A:

FPR “
FP

FP` TN
(6)

where FP represents the number of events incorrectly classified as belonging to class A, and TN
represents the number of events correctly classified as not belonging to class A. FPR could represent
the percentage of members of class A incorrectly classified as belonging to class A:

P “
TP

FP` TP
(7)

R “
TP

FP` TN
(8)

F´measure “
2 ˚ PR
P` R

(9)

where P represents the precision of the true positive event; R is called Recall and indicates the precision
of the result in classifying all the events.

3. Experiment Study and Results

3.1. Equipment and Experiment Process

3.1.1. Participants

Twenty-two participants, including 18 males and four females, were recruited to complete the
tests. As a rule, related studies reported that males are involved in more crashes and easily receive
more traffic violations than females [41]. Thus, more male drivers were employed in this study. The
ages of participants were between 20 and 60 (with the mean = 42.27 years, SDV = 9.07); all of the
participants were licensed drivers with at least three years of experience (with mean = 13.5, SDV = 6.06)
and frequent drivers (i.e., they drove at least three or more days a week). Drivers were paid $50 per
experiment, which lasted approximately 2 h.

3.1.2. Experiment Instrument

To investigate the drivers’ characteristics and vehicle’s motion features in different traffic scenarios,
a data collection system was developed and installed on a subject vehicle, as shown in Figure 4. It
was equipped with many instruments and sensors, including cameras, industrial computers, an
inertial navigation system, EEG recording equipment, Biography Infiniti System, and a cellphone (for
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acquiring the acceleration of vehicle). The data collection system could collect three types of signals,
and the sample rate of each variable is shown in Table 1, including the signals related to the driver, the
signals related to the vehicle, and the signals related to the road and environment. The signals related
to the driver included blood volume plus (BVP), skin conductance (SC), respiration rate (RR), and
PERCLOS, which was used to evaluate a driver’s physiological state during the field experiments. The
evaluation of the vehicle’s states always relied on the signals related to the vehicle, which included
speed, brake pressure, steering wheel angle and so on. Moreover, the information data (collected by
the Mobileye and cellphone) was used to identify the relationship between the external environment
and the subject vehicle.Sensors 2016, 16, 1084 8 of 19 
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Table 1. The characteristics of the collected data.

Variable Equipment Sampling Rate Tag

Related to driver
BVP Biography Infiniti system 256 Hz BVP
STD of BVP SBVP
SC Biography Infiniti system 256 Hz SC
STD of SC SSC
RR Biography Infiniti system 256 Hz RR
STD of RR SRR
PERCLOS EEG recording equipment 1000 Hz POS
Related to vehicle
Speed CAN in Vehicle 25 Hz SP
STD of speed SSP
Brake CAN in Vehicle 25 Hz BR
STD of brake SBR
Turn signal CAN in Vehicle 25 Hz TS
Course angle CAN in Vehicle 25 Hz CS
Pitching angle CAN in Vehicle PA
Steering wheel angle Steering angle sensor 30 Hz SWA
STD of steering SSWA
Steering acceleration Steering angle sensors 30 Hz SWAA
STD of steering acceleration
Acceleration Inertial Navigation system 100 Hz AC
STD of acceleration SAC
Related to road and environment
The spacing to left lane line MobileyeC2-270 15 Hz SLL
The spacing to right lane line MobileyeC2-270 15 Hz SRL
Time headway MobileyeC2-270 15 Hz TH
Lane departure MobileyeC2-270 15 Hz LD
Acceleration X(G) Cellphone 256 Hz AX(G)
Acceleration Y(G) Cellphone 256 Hz AY(G)
Acceleration Z(G) Cellphone 256 Hz AZ(G)
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3.1.3. Driving Protocol

A 53 km long ring road (shown in Figure 5) in Wuhan, China was selected as the test route to
conduct the experiment. It includes 45 traffic lights, three large-scale business districts (A1, A2, and A3
in Figure 5), two bridges (B1 and B2 in Figure 5), many other normal traffic facilities, and the speed
limit is 60 km/h. The traffic flow was busy, thus, long traffic delays easily occur and the possibility
of hazardous traffic events occurring is increased. Moreover, considering the driver's safety in the
field experiment, the weather conditions were pretty good with good visibility, and the road was dry
enough with a high friction coefficient. The drivers were asked to fill out a survey which includes the
drivers’ individual characteristics information (such as the participants’ age, sex, driving experience
and so on). Then, they started the driving test and self-reported the risk levels when encountering
traffic events. Each driver was asked to finish the driving test twice. The drivers were instructed
to drive as normally as possible. To avoid traffic violations and collect the experimental data, two
other assistants were recruited to stay on-board during the whole test. One of the assistants was an
experienced driver (i.e., the assistant was a taxi driver or a driving coach), who was asked to record
the participants’ self-reporting, assess the risk level of the current level, and observe potential safety
hazards. Another assistant operated the equipment expertly and copied the experiment data after
each test.
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3.2. Statistical Data Analysis

3.2.1. Data Preprocessing

Raw data (collected by different instruments) was processed in MATLAB and stored as a .mat file.
It contained 27 features (including 20 raw features and seven statistical features, as shown in Table 1).
Because of the instability and complexity of the data collection system, the emergence of outlying
data points was inevitable. To ensure the accuracy and reliability of data, a method of cubic spline
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interpolation, which had already been proven as a suitable way to restore the invalid data, time-related
errors, speed mutation data of driving in previous study [42], was employed. Using the vehicle’s
speed as an example, as shown in Figure 6, the blue points represent the original speed data which
were selected from the raw data (the collection time is 5 min long, the data points from 77 to 82 s and
from 179 to 183 s are abnormal or display errors). The red points are the speed data, which were fitted
by using the cubic spline interpolation algorithm. From Figure 6, we can see that this interpolation
method restores the reduction of data points successfully.
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3.2.2. The Level of Traffic Events

The record of traffic events which were assessed by the driver, the assistant, and the expert is
shown in Table 2. The traffic events were divided into three types (hazardous traffic events, risky
traffic events, and safe traffic events) as defined in the introduction. During the field test, the driver
and assistant were asked to give an evaluation when traffic events occurred. If the self-report from the
driver was similar to that of the assistant, the traffic event would be considered as the type which they
reported. Otherwise, the expert (from the transportation management department) would be asked to
make a further judgment based on the recorded video. Finally, 407 samples of traffic events (shown in
Figure 7) were selected after the judgment.

Table 2. A sample of the traffic event record.

Time
Traffic Event

Self-Report Assistant Report Expert Record

14 October 2014; 9:00; 12 0 0 0
14 October 2014; 9:08; 11 2 2 2
14 October 2014; 9:25; 15 1 0 1
14 October 2014; 9:28; 16 0 1 1

Note: a score of 0 indicates a safe traffic event; a score of 1 indicates a risky traffic event; a score 2 indicates a
hazardous traffic event.
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3.3. The Result of Feature Selection

In order to analyze the relationship between the impact factors and different types of traffic
events, the unsupervised discretization method called the Numeric to Nominal method (which could
be conducted directly by using the Weka software) was employed to discretize continuous features
before feature selection. Then, the algorithm of MB was used to select the key factors, which are shown
in Figure 8, the grey features are the objective features which related to a traffic event; eight features
(including SP, SSC, SSP, SBR, TS, SWAA, SAC, AZ (G)) were selected to predict the risk level of a
traffic event. The relationship between the selected features and other variables is also presented in
this figure.
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In order to examine the correlations between the selected features and different types of traffic
events, the Pearson correlation coefficient test was adopted. As shown in Figure 9, the Pearson
correlation coefficient test presents that vehicle’s speed (correlation coefficient = 0.089, p = 0.046 < 0.05),
standard deviation of the vehicle’s speed (correlation coefficient = 0.105, p = 0.000 < 0.05),
standard deviation of brake pressure (correlation coefficient = 0.537, p = 0.000 < 0.05), turn signal
(correlation coefficient = ´0.05, p = 0.049 < 0.05), steering acceleration (correlation coefficient = 0.236,
p = 0.000 < 0.05), standard deviation of acceleration (correlation coefficient = 0.0368, p = 0.000 < 0.05),
standard deviation of skin conductance (correlation coefficient = ´0.053, p = 0.047 < 0.05), and
acceleration Z(G) (correlation coefficient = ´0.149, p = 0.000 < 0.05) are significant correlated to
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the different traffic events, using the significance level of alpha = 0.05 respectively. Moreover, the
correlation test also indicates that the relationship between SP, SSP, SWAA, SBR, SAC and traffic
event is significant positive correlation. A negative correlation is existed between TS, SSC, AZ(G) and
different types of traffic events.

The partial correlation test was employed to analyze the correlations among eight selected features
while assumed the traffic event as the control variable. The results in Table 3 shows that turn signal,
standard deviation of skin conductance, acceleration Z(G) are no significant correlated to other features,
with the correlation is significant at the level of alpha = 0.01. Although the relationship among other
four variables (SP, SSP, SBR, and SAC) is correlated, it is reasonable that all of these four features
influence traffic safety directly.
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Table 3. The results of partial correlation test while control the variable of traffic event.

Control Variables SP SSP SBR TS SWAA SAC SSC AZ(G)

Traffic
event

SP
Correlation 1.000 0.391 ´0.179 0.030 0.027 0.246 ´0.014 ´0.069

Sig. 0.000 0.00 0.040 0.540 0.593 0.002 0.772 0.163

SSP
Correlation 1.000 0.169 0.015 0.105 0.007 ´0.025 ´0.147

Sig. 0.000 0.002 0.340 0.034 0.892 0.013 0.617

SBR
Correlation 1.00 ´0.18 0.01 ´0.037 0.058 0.054

Sig. 0.000 0.721 0.845 0.461 00.242 0.276

TS
Correlation 1.00 ´0.114 0.056 0.000 ´0.016

Sig. 0.000 0.021 0.263 0.0993 0.742

SWAA
Correlation 1.00 ´0.002 ´0.009 0.034

Sig. 0.000 0.975 0.852 0.493

SAC
Correlation 1.00 0.015 0.031

Sig. 0.000 0.764 0.529

SSC
Correlation 1.00 ´0.014

Sig. 0.000 0.777

AZ(G) Correlation 1.000
Sig. 0.000

Notes: Sig. is significance (2-tailed), and correlation is significant at the 0.01 level.
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3.4. The Traffic Event Detection Model

In this section, we empirically evaluate the performance of the SMO algorithm with the polynomial
kernel function (PLOY) by comparing it with other commonly used kernel functions, such as the
normalized polynomial kernel function (NOR), precomputed kernel function (PUK), and radial
basis function (RBF). In order to evaluate the effectiveness of the proposed method of MB, the most
representative selection methods (PCA and DT) are considered as comparisons. Finally, to evaluate
the performance of the identification model, the algorithms of ID3, NB, FTA, and RBFNETWORK
(which were introduced in the Introduction) are used to compare with the proposed SMO algorithm.
All of the algorithms are implemented in Java and applied in the Weka platform, and the data analysis
experiment is conducted using a 64-bit Windows computer with 2.4 GHz CPU, 8 GB RAM.

3.4.1. Results of Different Kernel Functions

A comparison between SMO with the polynomial kernel function and three other kernel functions
with respect to the ROC curve and accuracy is shown in Figure 10. The 10-fold cross validation method
was employed to evaluate the accuracy of different algorithms. The results shown in this figure clearly
present that SMO with PLOY is superior to SMO with NOR, PUK, and RBF with respect to AUC and
precision (see Figure 10d). Moreover, the ROC curve shows that SMO with the polynomial kernel
function is the most effective one (the AUC reached 88.88% and the accuracy was 87.46%) when
identifying the different types of traffic events (see Figure 10a–c).
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3.4.2. Results of Different Feature Selection Algorithms

To evaluate the performance of the Markov Blanket, the SMO algorithm using the polynomial
kernel function was employed to classify the different types of traffic events. The results in Table 4
show the performance of the SMO classifier using three feature selection algorithms over the 10-fold
cross validation and grid method. The result indicates that the number of selected features of MB is
the smallest compared with the other algorithms. Moreover, from Table 4, we can also see that the
accuracy of classification of SMO-MB (which reached 87.5%) is the highest in four different types of
feature selection method with SMO. The results of the average of TPR, FPR, and AUC also indicate
that the SMO-MB selected fewer features to obtain a better classification.

Table 4. Results of different feature selection algorithms using SMO.

Algorithms Features Avg. TPR Avg. FPR AUC Accuracy

SMO-unselected 27 0.826 0.184 0.85 0.825
SMO-PCA 11 0.757 0.365 0.718 0.757
SMO-DT 9 0.595 0.57 0.51 0.595
SMO-MB 8 0.875 0.153 0.888 0.875

Avg. means Average.

3.4.3. Results of Different Classifiers

The results presented in Table 5 show the performances of six different classifiers using the
Markov Blanket feature selection algorithm; the 10-fold cross validations method was employed to
verify the accuracy of six classification algorithms. As shown in Table 5, the MB-SMO achieved better
accuracies compared with the other five algorithms with respect to the average true positive rate
(0.875), false positive rate (0.153), and accuracy (0.875), which verifies that the MB-SMO is superior to
the other five classifiers. In addition, although the area under the ROC curve in MB-SMO is not the
biggest among the six algorithms, it did reach 0.888, which indicates that the MB-SMO algorithm was
effective enough to be used to identify the different types of traffic events.

Table 5. Results of different classifiers with MB feature selection.

Algorithms Avg. TPR Avg. FPR AUC Accuracy

MB-ID3 0.842 0.156 0.81 0.744
MB-NB 0.833 0.227 0.912 0.833
MB-BN 0.838 0.214 0.915 0.838
MB-FTA 0.855 0.154 0.893 0.855

MB-RBFNETWORK 0.806 0.244 0.893 0.806
MB-SMO 0.875 0.153 0.888 0.875

Four indexes (including F-measure, Recall, Kappa statistic, and Root mean squared error) were
chosen to evaluate the performance and effectiveness of the classification. As shown in Figure 11,
F-measure and Recall in this experiment show that MB-SMO (0.874 and 0.875, respectively) outperforms
the other methods. The kappa statistic of six algorithms (MB-SMO > MB-FTA > MB-ID3 > MB-BN
> MB-NB > MB-RBFNEWORK) indicates that the consistency between the prediction value and the
actual value is the strongest when using MB-SMO compared with the other five algorithms. The root
mean squared error has no significant difference among the six algorithms.
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4. Discussions and Conclusions

A real-life driving data were collected through a field driving experiment. The data continuously
collected from the driver, vehicle, environment, and road provided the opportunity to evaluate not
only the traffic accident risk, but also hazardous traffic events, which easily result in a crash. This
study tried to obtain the risk factors associated with the occurrence of hazardous traffic events using
real vehicle experiment data; these experiments were conducted in the mixed traffic of a Chinese
metropolitan area, i.e., Wuhan, and the subject vehicle was developed by the ITS center of Wuhan
University of Technology (WUT).

The statistical analysis of the original data indicated that hazardous traffic events rarely occurred
in the environment of urban road driving; they were only reported 52 times in 44 groups of driving
experiments; representing only 12.7% of the total selected traffic events. However, they had a
substantial impact on traffic safety. Many studies have presented that drivers, especially inexperienced
drivers, always tend to become nervous and commit operating errors in hazardous scenarios [43].
Thus, it is necessary to find a way to identify hazardous events effectively so warning can be given to
drivers or the operational power can be automatically taken from the driver by an intelligent vehicle.

In the field of driving safety assistance, considering the reasons of economics and technology,
most of the previous studies focused only on one particular type of hazardous or risky traffic events.
However, the common characteristics of hazardous traffic events have not been analyzed. Dangerous
scenes are always tracked by using visual sensors data or vehicle motion data. In this study, we try to
extract a set of common features with respect of humans, vehicles, and other features related to the
environment. The human factors, such as a driver’s blood volume plus, skin conductance, respiration
rate, and PERCLOS, are collected by using the biological sensors and EEG recording equipment. The
other two types of data are collected by using a vehicle’s CAN and many dedicated devices.

To extract the main factors that have significant impacts on hazardous or risky traffic event during
the driving process, a feature selection algorithm called Markov Blanket was used. Eight factors
(including speed, the standard deviation of speed, the standard deviation of SC, the standard deviation
of brake pressure, turn signal, the acceleration of steering, the standard deviation of acceleration, and
acceleration in Z (G)) were selected from all 27 features by MB. The results of Pearson correlation
coefficient test indicate that these eight selected factors are significant correlated to the traffic events.
It is well known that the indexes of speed, the standard deviation of speed, the standard deviation of
brake pressure, and the standard deviation of acceleration are contribute to the longitudinal control of
a vehicle. The acceleration in Z (G) could express the road alignment where the vehicle located, as
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an example, the position where vehicle located in is an uphill road while the value of acceleration in
Z (G)) is positive. The SSC could express a driver’s physiological state during the driving process.
Moreover, the indexes of turn signal and the acceleration of steering could indicate a driver’s lane
change intention or behavior. All in all, these eight factors present a driver’s behavior with respect to
lateral control, longitudinal control, and current physiological state. Thus, it is reasonable to select
these factors to evaluate the hazardous scenarios.

A comprehensive evaluation of different algorithms to identify the traffic event styles is shown in
Figure 12, which plots the average recognition accuracy of the different classification algorithms. Eighty
new samples (the data was collected by others five on-road experiments and the participants were
recruited from the 22 volunteers who had already attended the experiment before) were chosen to verify
whether the MB-SMO is the most appropriate algorithm for evaluating the traffic event styles. The
result in Figure 12 showed that the MB-SMO is ranked best when compared with other classification
algorithms. Meanwhile, all the classification algorithms presented significant improvement after using
the Markov Blanket feature selection method with respect to the accuracy of prediction. However, two
feature selection algorithms could not achieve similar effectiveness. In addition, the radar map (see
Figure 13) presented the precision of three traffic event styles when using the different classification
algorithms. There were significant differences among the three traffic event styles tested. MB-SMO
receives the highest scores for all three traffic event styles. Meanwhile, the identification accuracy
was significantly increased by using MB-SMO compared to using Unselected-SMO. All 96 groups of
risky traffic events are identified correctly and the prediction accuracy of hazardous traffic event and
safe traffic event reached 90% and 81.1% respectively, by the algorithm of SMO-MB. However, the
prediction accuracy of each type of traffic event in algorithms of ID3, NB, BN, FTA, and RBF using
the features selection method of MB couldn’t present significant increasing compared to using the
full features. All in all, the results in Figures 12 and 13 indicate that the use of the Markov blanket
can help us filter out the useless or irrelevant features so that it can improve the prediction accuracy.
Meanwhile, the SMO algorithm has proved that it is a suitable method employed to identify different
types of traffic events.
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The overall conclusion is that the MB-SMO is the most appropriate one, compared to the other
identification algorithms with different feature selection methods. Although the sample size of this
study is limited, a significant relationship between traffic event styles and risk factors, such as the
characteristics of lateral control, longitudinal control, and physiological state, was observed. More
importantly, a traffic event styles classification model was built and the results demonstrate that the
classification model is effective and reliable when evaluating the hazardous traffic events.
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Nevertheless, due to the relatively small, voluntary sample size (consisting of only  
22 participants), this study ignored the relationship between driver’s personality and the occurrence 
of traffic events. However, many scholars have put forward that a driver’s sex, experience and age 
also have impact on the occurrence of the hazardous traffic events [43]. It is suggested that a larger 
group of experiment should be carried out in the future to enrich the types of factors. Note that, this 
experiment was only conducted using a set of special routes of an urban road in Wuhan, China (one 
of the cities in which traffic is always congested and complex); a similar conclusion should be proven 
under other traffic conditions, such as a freeway, another city, and so on. In addition, the 
relationship between road conditions, environment (such as weather condition) and hazardous 
traffic event also should be considering about in the future study. Finally, our database does not 
include crashes due to the safety of the driving experiment, the response variable for traffic events 
was only summarized for three types (hazardous traffic events, risky traffic events, and safe traffic 
events), and the risk factors related to hazardous traffic events may be different from eight factors 
we selected; our model was not able to consider them because these data were not included in  
our database. 
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Nevertheless, due to the relatively small, voluntary sample size (consisting of only 22 participants),
this study ignored the relationship between driver’s personality and the occurrence of traffic events.
However, many scholars have put forward that a driver’s sex, experience and age also have impact on
the occurrence of the hazardous traffic events [43]. It is suggested that a larger group of experiment
should be carried out in the future to enrich the types of factors. Note that, this experiment was
only conducted using a set of special routes of an urban road in Wuhan, China (one of the cities in
which traffic is always congested and complex); a similar conclusion should be proven under other
traffic conditions, such as a freeway, another city, and so on. In addition, the relationship between
road conditions, environment (such as weather condition) and hazardous traffic event also should be
considering about in the future study. Finally, our database does not include crashes due to the safety
of the driving experiment, the response variable for traffic events was only summarized for three types
(hazardous traffic events, risky traffic events, and safe traffic events), and the risk factors related to
hazardous traffic events may be different from eight factors we selected; our model was not able to
consider them because these data were not included in our database.
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