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Abstract: The difficulty of real-time muscle force or joint torque estimation during neuromuscular
electrical stimulation (NMES) in physical therapy and exercise science has motivated recent research
interest in torque estimation from other muscle characteristics. This study investigated the accuracy
of a computational intelligence technique for estimating NMES-evoked knee extension torque based
on the Mechanomyographic signals (MMG) of contracting muscles that were recorded from eight
healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR)
due to its good generalization ability in related fields. Inputs to the proposed model were MMG
amplitude characteristics, the level of electrical stimulation or contraction intensity, and knee angle.
Gaussian kernel function, as well as its optimal parameters were identified with the best performance
measure and were applied as the SVR kernel function to build an effective knee torque estimation
model. To train and test the model, the data were partitioned into training (70%) and testing (30%)
subsets, respectively. The SVR estimation accuracy, based on the coefficient of determination (R2)
between the actual and the estimated torque values was up to 94% and 89% during the training and
testing cases, with root mean square errors (RMSE) of 9.48 and 12.95, respectively. The knee torque
estimations obtained using SVR modelling agreed well with the experimental data from an isokinetic
dynamometer. These findings support the realization of a closed-loop NMES system for functional
tasks using MMG as the feedback signal source and an SVR algorithm for joint torque estimation.

Keywords: support vector regression; gaussian kernel function; muscle force; mechanomyography;
neuromuscular electrical stimulation; knee extension torque; regression model

1. Introduction

The magnitude of the muscle force or joint torque generated during neuromuscular electrical
stimulation-evoked contractions has been used as a marker of physical performance in healthy
individuals [1,2], as well as a benchmark of functional recovery in individuals with neurological
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conditions [3,4]. To optimize neuromuscular electrical stimulation (NMES) technology in therapeutic
and functional applications, real-time information about the generated muscle force or joint torque,
of the controlled limb, is vital [3,5]. Such information is required; (i) to automate the neuromuscular
stimulation characteristics based on the muscle state during the onset of fatigue; and (ii) to modulate
muscle forces based on the requirements of the task (therapeutic or functional) to be performed,
for example during sit-to-stand and sustained standing perturbations. However, joint torque is often
impractical or impossible to quantify directly during real-time application of NMES [5]. Estimation of
joint torque from readily available muscle characteristics (e.g., biopotentials of nerve and/or muscle
activation), particularly, from physical sensors has recently become both viable and attractive [5].

One such neuromuscular biopotential is the Mechanomyographic signal (MMG), which quantifies
the mechanical equivalent of an electromyographic output generated during muscle contractions [6,7].
The signal originates from the skeletal muscle contractions due principally to the shortening of
the muscle fiber length and increase in its diameter [7,8]. The activation of muscle fibres and their
dimensional changes during muscle contraction creates pressure waves that can be detected on the skin
surface and translated into an acceleration obtained by physical sensors, such as an accelerometer [9].
The signal can represent a proxy for neuromuscular contractions [10] and has gained recent popularity
due to its close relationship with muscle force [11]. Specifically, the signal is directly related to the two
main force-generating mechanisms of human skeletal muscle—magnitude and pattern of motor unit
recruitment and their firing rates/frequency [12,13].

Moreover, due to the convenience of MMG signal collection, its insusceptibility to skin
impedance [14], flexibility of its sensing technology [15,16], and immunity from electrical stimulation
artifacts associated with NMES [17], the signal has been successfully used to classify muscle activity
for specific application in controlling prostheses [18], and as a control signal for muscle machine
interfaces [16,19]. In addition, during NMES-evoked muscle contractions, MMG has been used to
track muscle fatigue in healthy volunteers [20]. Thus, the signal may be used to estimate joint torque
during voluntary and/or NMES-evoked muscle contractions [7]. However, relating MMG signals
as a direct proxy for NMES-evoked muscle effort/force can be practically challenging due to the
complexity and diversity of the recruitment of muscle’s motor units (MUs) [6,18]. Accordingly,
the application of computational intelligence techniques for quantification of joint torque from
MMG signals has been proposed through statistical predictive modelling, and then validated during
voluntary contractions [13,21].

The use of machine-learning techniques has recently shown promise, subverting the dual
problems of non-linearity and non-stationarity in estimation, prediction and classification tasks.
For example, Youn and Kim [13,22] used an artificial neural network model to estimate elbow flexion
force from MMG during voluntary isometric contractions. The investigators obtained an estimation
accuracy of up to 0.892 [13] and 0.883 [22] in terms of cross-correlation coefficient, and concluded
that their model is subject dependent, while suggesting the future application of other machine
learning techniques including Support Vector Regression (SVR) to improve the estimation accuracy
of the model [22]. However, due to the advancement in the field of signal processing, several other
computational intelligence statistical regression techniques have been proposed with SVR yielding
a good predictive and estimation accuracy, with often low Root Mean Square Errors (RMSE) [23]
and outstanding performance [21]. Being a category of support vector machine learning technique,
SVR is based on the principles of computational intelligence that is built on the kernel method
(that maps data into higher dimensional space where the training sample may be linearly separable to
facilitate linear regression analysis) [24]. SVR algorithms take into account the error approximation to
a dataset with the ability to adapt and improve the estimation capability of a model [23], particularly
when the model is used to evaluate an additional dataset for the purpose of generalization [25,26].
Moreover, SVR is robust in handling multivariate processes and offsets the limitation of traditional
regression methods [27]—which cannot solve problems with high dimensional input dataset [24].
Additionally, the SVR modelling only involves a solution to a “convex optimization problems”,
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and unlike ANN model, it is not influenced by the “local minimal problem” [28]. Thus, the SVR
algorithms could be used to build a generalized model and well suited for regression tasks [24].
Based on this strength, the technique has been successfully deployed in several fields of applications
including physical therapy and exercise science during voluntary muscle activation [21], medical
diagnosis [29], and a host of other related fields. However, to our knowledge, SVR modelling has not
been previously used to construct a joint torque estimation model, particularly, during electrically
stimulated contraction.

The purpose of this study was, therefore, to use SVR modelling to predict knee extensor joint
torques from MMG signal characteristics during NMES-evoked incremental muscle contraction
intensities. Since it has been suggested [13] that a combination of muscle contraction signals and
related characteristics could compliment the estimation accuracy of joint torques, three input parameters
(related to muscle contractions) to the SVR model were chosen (MMG signals, level of electrical stimulation
or contraction intensity, and knee angle) to estimate knee torque accurately. This information is particularly
applicable to research areas where a real-time proxy of muscle force is sought.

2. Materials and Methods

2.1. Experimental Protocol

To validate the performance of the proposed SVR model, a calibrated commercial dynamometer
(System 4; Biodex Medical System, Shirley, NY, USA) was used to record isometric knee torques
produced by NMES-evoked contractions of the knee extensors (Figure 1). Eight healthy male volunteers
aged 23.4 (1.3) year (mean (SD)), body mass 70.4 (5.9) kg and height (1.72 (0.05)) m participated in this
experiment. All were in good physical condition and were duly informed about the study protocol
prior to giving their written informed consent. The study was approved by the University of Malaya
Medical Ethics Committee (Approval No: 1003.14 (1)). As portrayed in Figure 1, the participants were
set-up, as has been previously described by Brown and Weir [30] for voluntary isometric knee torque
measurements. The dynamometer seat was adjusted so that each participant's lateral femoral condyle was
aligned with the axle of the dynamometer [31]. To ensure consistency of body position and dynamometer
lever arm, for subsequent trials, notes were taken of each participant’s relevant anatomical positions.
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electrodes (A) cathode, (B) anode Neuromuscular Electrical Stimulation (NMES) electrodes,
and (C) Mechanomyographic signal (MMG) sensor in a representative participant.
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2.1.1. NMES-Evoked Muscle Contractions and Knee Torque Measurements

A familiarization session (mimicking the actual test) preceded data collection to familiarize the
participants to the study protocol and to habituate them to NMES-evoked knee extensors muscle
contractions of maximally tolerable intensity. Thereafter, neuromuscular stimulation of square-wave
pulses at 30 Hz frequency and 400 µs pulse duration, and incremental current amplitude from 20 mA to
80 mA (in 10 mA increments; i.e., seven different intensities of NMES or trial levels) was administered
to elicit isometric torque of the knee extensors lasting 4 s [32]. Stimulation pulses were delivered
through a commercially available computer-controlled neurostimulator (RehaStimTM, Hasomed
GmbH, Magdeburg, Germany) using 9 ˆ 15 cm2 self-adhesive electrodes (Hasomed GmbH, D 39114,
Magdeburg, Germany) on the dominant leg [33]. To preclude voluntary effort, the participants were
carefully instructed not to assist or resist NMES-evoked muscle contractions. A similar stimulation
protocol has been used for strength training with tolerable discomfort [34] and without eliciting rapid
muscle fatigue [35]. During each trial, the NMES-evoked torque at maximum stimulation intensity
(80 mA) was taken as the NMES-evoked peak torque (PT). The PT value was used to normalize the
submaximal contraction levels across participants’ data. The adopted stimulation electrode position
has been recommended by Levin and colleagues [36]—the anode electrode placed at “~5 cm proximal
position to the patella and the cathode electrode at ~8 cm distal to the inguinal area over the rectus
femoris (RF) muscle belly near the expected location of the motor points” (Figure 1). In order to
accommodate the effect of joint angle on joint torque [34,37], the experiment was conducted at three
different randomized knee angles: 30˝, 60˝, and 90˝ (where 0˝ represented full knee extension).
A duration of 48 h was allowed between each angle position, and there was a 10 min recovery between
each trial to minimize potential muscle fatigue.

2.1.2. MMG Acquisition and Processing

Simultaneous with the NMES-evoked muscle contraction, MMG signals were collected using an
accelerometer-based sensor (Sonostics BPS-II VMG transducer, sensitivity 30 V/g). The sensor was
attached directly on the muscle belly (i.e., at the midpoint between the inguinal crease and the superior
border of the patella [38] (Figures 1 and 2) by means of double-sided adhesive tapes (3M Center St. Paul,
MN, USA). The MMG signals were collected from the RF muscle as a simple representation of the knee
extensors and a major contributor to the NMES-evoked knee torque production [39]. The signals were
collected at 2 kHz sampling frequency and were digitally band-pass filtered at 20–200 Hz, amplified
and stored by AcqKnowledge data acquisition and analysis software (MP150, BIOPAC Systems Inc.,
Santa Barbara, CA, USA) for offline analysis in the LabVIEW software environment (version 12.0,
National Instruments, Austin, TX, USA) using custom written programs.

The peak torque values, MMG-root mean square (RMS) and peak to peak (PTP) amplitudes were
obtained during NMES-evoked isometric contractions from 2 s epoch of the 4 s MMG and torque
recordings [40] at each contraction level across the three joint angles. The selected 2 s epoch of the
signals coincided with the middle position at which there was probable maximum muscle recruitment,
without on-transients or off-transients of force rise at the beginning and the end of muscle contractions,
respectively [40].

Thereafter, the MMG signals at each contraction level were normalized (by the equivalent value
of the MMG signal at the highest stimulation intensity/contraction level (80 mA)) and fed into the
proposed SVR model for training. Previous investigations [6,12] have validated the legitimacy of these
MMG features for muscle force assessment, and, therefore, they were equally used as joint torque
predictors in this study. The equations used to compute the MMG-RMS and MMG-PTP features [15]
are as follows:

MMG´RMS “

c

1
N

ÿN

i“1
x2

i where
ÿN

i“1
x2

i “ x2
1 ` x2

2 ` x2
3 ` . . .` x2

Nq (1)

MMG´ PTP “ 2
?

2 RMS (2)
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here, xi is the ith sample of the MMG signals and N represents the number of samples in the
epoch considered.
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2.2. Support Vector Regression Modelling Approach

SVR algorithm was proposed in this study because of its optimal predictive performance even
with small dataset [41] and the ability to learn both linear and non-linear relationships between
predictors and outcome (actual) variables [42]. Such relationships have been used in establishing
a pattern whereby unknown outcomes could be predicted accurately [21,24]. Theoretically, SVR is
derived from the statistical learning theory [43,44] and employs ε-insensitive loss function [24] which
measures the flatness of the generated pattern as well as maximum allowable deviations of the targets
from the predicted values for all given training datasets px1, y1q, . . . . . . . . . ., pxk, ykqwith k number of
samples [45]. However, a function used for the SVR analysis should not only approximate the training
data adequately but also predicts accurately the value of y for the future data x [25]. Such a function,
with xw, xy dot product in the space of R1, is represented in linear form by Equation (3) for a set of
training samples.

f px, αq “ xw, xy ` b (3)

where w P R1 and b P R
For the purpose of establishing the goal of SVR in ensuring the flatness of the Equation (3),

small value of w is desired through minimization of the Euclidean norm ||w||2 [42] which makes the
optimization problem of the regression to be represented by Equation (4):

minimize 1
2 ||w||

2

subject to

#

yi ´ xw, xiy ´ b ď ε

xw, xiy ` b´ yi ď ε

+

(4)

Equation (4) holds on the assumption [46] that there exists a function that is capable of providing
error which is less than ε for all training pairs of the dataset. The slack variables pξi and ξ˚iq,
which represent the upper and lower constraints on the system output, are often introduced in
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order to permit some errors that are associated with real life problems [44,46]. Therefore, Equation (4)
is modified and presented as Equation (5).

minimize 1
2 ||w||

2
` C

k
ř

i“1
pξi ` ξ˚iq

subject to

$

’

’

&

’

’

%

yi ´ xw, xiy ´ b ď ε` ξi

xw, xiy ` b´ yi ď ε` ξ˚i

ξi, ξ˚i ě 0 for all i “ 1, 2, . . . . . ., k

,

/

/

.

/

/

-

(5)

The optimization problem in Equation (5) is better solved, through the ε-insensitive loss
function, by using Lagrangian multipliers (ηi, η˚i , λi and λ˚i ) to transform the problem into dual
space representation. Therefore, the Lagrangian for the Equation (5) is presented in Equation (6).

L “ 1
2 ||w||

2
` C

k
ř

i“1
pξi ` ξ˚i q ´

k
ř

i“1
λi pε` ξi ´ yi ` xw, xiy ` bq

´
k
ř

i“1
λ˚i

`

ε` ξ˚i ` yi ´ xw, xiy ´ b
˘

´
k
ř

i“1

`

ηiξi ` η˚i ξ˚i
˘

(6)

It is easier to locate the saddle point of the Lagrangian function defined in Equation (6) by equating
the partial derivatives of the Lagrangian

`

with respect to w, b, ξi and ξ˚i
˘

to zero in order to obtain the
expressions presented in Equations (7)–(9):

w “
k
ÿ

i“1

pλ˚i ´ λiq.xi (7)

ηi “ C´ λi (8)

η˚i “ C´ λ˚i (9)

The optimization equation is maximized by substituting Equations (7)–(9) in Equation (6) to arrive
at Equation (10):

maximize 1
2

k
ř

i“1

k
ř

j“1

`

λ˚i ´ λi
˘

´

λ˚j ´ λj

¯

`

xj.xi
˘

´ ε
k
ř

i“1

`

λ˚i ` λi
˘

`
k
ř

i“1
yi
`

λ˚i ´ λi
˘

subject to
k
ř

i“1

`

λ˚i ´ λi
˘

“ 0, 0 ď λ˚i and λi ď C

(10)

The solutions (λ˚i and λi) obtained from Equation (10) are substituted in Equation (3) and
presented in Equation (11):

f px, αq “
k
ÿ

i“1

pλ˚i ´ λiq xxi, xy ` b (11)

However, since the concept of kernel function through ‘’kernel tricks” allows SVR to solve
non-linear problems by mapping the original non-linear data into higher dimensional feature
space where a linear model could be constructed [47], a proper selection of kernel function allows
optimization of SVR performance [47]. The regression function in feature space, after inserting the
kernel function K xxi, xy, could be written as presented in Equation (12).

f px, αq “
k
ÿ

i“1

pλ˚i ´ λiqK xxi, xy ` b (12)

Kernel functions help in transforming datasets into hyperplane [47]. The variables of the kernel
function determine the structure of high dimensional feature space which controls the complexity of
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the final solution. As applied in this study, Equations (13)–(16) describe several kernel functions that
are obtainable in the literature [48] which include Polynomial, Linear, Gaussian (radial basis function
(RBF)) and Sigmoid.

Kp
Ñ
xi ,
Ñ
xjq “ p

Ñ
xi ¨

Ñ
xj ` 1q

d
(13)

Kpxi, xjq “ xi
T .xj (14)

Kp
Ñ
xi ,
Ñ
xjq “ exp

ˆ

´γ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ
xi ´

Ñ
xj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d
˙

(15)

Kpxi, xjq “ tanhpγxi
Txj ` rq (16)

where γ, r, and d are kernel parameters and,
Ñ
xi and

Ñ
xj represent vectors in the input space—vectors of

features computed from training or test subset [23].

2.2.1. Model Development

MATLAB software environment (Version 12, The MathWorks, Inc., Natick, MA, USA) using SVR
coding was used for the computational aspect of this research work. Prior to the use of the dataset,
the dataset was partitioned into two components to adhere to the SVR modelling approach [23,49]—a
machine-learning “training” subset and a “testing” subset in a ratio of 7:3, via stratified sampling to
ensure effective random partitioning [50]. Specifically, 70% of the dataset was used for training and the
remaining 30% was used for testing the SVR model via test-set cross-validation method. This allowed
a regression analysis to be performed on the training dataset while estimating the future generalization
accuracy, of the model, on the remaining testing subset. For further detail on the working principle of
the proposed SVR model, readers are referred to Vapnik et al. (1997) [24], Lin S-W et al. (2008) [47],
Shamshirband et al. (2014) [23], and Akande et al. (2015) [49].

2.2.2. Optimal Parameters Search Approach

The accuracy of a SVR model is dependent on the model parameters’ selection [23]. However,
due to the possibility of many different combinations of SVR parameters, it is often difficult to
obtain optimal SVR parameters [51]. To solve this problem systematically, and in order to obtain
possible optimized parameters of SVR for an accurate estimation, a hybrid optimization search
technique, which has been recommended [52], was adopted and a test-set cross-validation technique
was deployed [53]. The approach is as follows: for every partitioned training and testing subsets,
the performance measures were noted for the SVR parameters values including the regularization
factor C (bound on the Lagrangian multiplier), λ (conditioning parameter for quadratic programming
(QP) methods), ε (epsilon) and η (kernel option) as well as the related kernel functions [49]. Thereafter,
this computational step was repeated for every available SVR kernel function with an incremental step
of the parameters’ values. The parameters’ optimal values and the kernel function associated with
the best performance measure were identified. The search procedures are presented summarily in
Figure 3.

A mathematical implementation [49] of the test-set cross-validation technique is as described in
Algorithm 1 as follows: Ki pjq was defined where K contains all the available kernel functions (and i, j
and k are the indexes for the kernel functions) while iy, jy and ky represent the indexes for optimal
kernel function. The total number of the available kernel function is represented by ni. The maximum
values of C and η were assumed to be nj and nk, respectively. The recorded performance measures
were stored in p f .
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Table 1. Optimal parameters for the proposed Support Vector Regression model.

C 879

Hyper-parameter (Lambda) 2´15

Epsilon (ε) 0.1205
Kernel option 54

Kernel Gaussian (RBF)

Algorithm 1. Optimal parameter search algorithm

Initialization; iy “ 0, jy “ 0, ky “ 0, qx “ 0
f or i “ 1 : ni
f or j “ 1 : nj p f “ f pKi pjqq
f or k “ 1 : nk
p f “ f pKi pjqq {Performance measure for the present parameters combination}
i f p f is better than qx then qx “ p f
iy “ i, jy “ j, ky “ k tstoring the index o f the best parameteru
end
end
end
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2.2.3. Model Statistical Performance Criteria

To evaluate the performance of the proposed model, common measures of association, between
the actual and the estimated values, were employed, including correlation coefficient (r) and coefficient
of determination (R2) to quantify the “goodness of fit”, and Root Mean Square Error (RMSE) to quantify
the error of estimate. For further details on their mathematical formulae, readers are referred to Youn
and Kim (2011) [22] and Olatunji et al. (2014) [54].

3. Results and Discussion

Table 2 describes the actual experimental dataset used in this study. The results of the statistical
analysis of the dataset are presented in Table 3. The suitability and applicability of the chosen dataset
are revealed from the mean, maximum value, median, standard deviation, and minimum value.
The MMG-RMS, MMG-PTP, level of electrical stimulation or contraction intensity, and knee angle
obtained experimentally were the input to the SVR model to estimate the knee torque. Results of
performance measures obtained from the training subset and testing subset are as shown in Table 4.

To our knowledge, this is the first attempt to use a SVR modelling technique for NMES-evoked
knee torque estimation from MMG signal. The outcomes of the developed SVR model (Table 4)
indicated high correlation as well as low RMSE, and the model could, therefore, be adjudged as
accurate. Moreover, high accuracy of the trained system as evident by the coefficient of determination
(R2 = 94%), in predicting knee torque confirmed a reliable pattern between the predictors and the
outcome which might be otherwise difficult to learn using linear regression.

During the training period of the model, the estimated torques were positively correlated with
the actual values drawn from the experimental data (actual vs. predicted values) for both the training
(Figure 4A) and testing (Figure 4B) subsets.
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Table 2. Summary of the datasets: Mechanomyographic signal (MMG) characteristics at seven Neuromuscular Electrical Stimulation (NMES) intensities, at three knee
angles and their respective peak torque values.

Stimulation
Intensity (mA)

Knee Angle

30˝ 60˝ 90˝

PT RMS PTP PT RMS PTP PT RMS PTP

20 13.9 (3.7) 14.7 (9.9) 23.6 (16.4) 4.1 (0.7) 17.4 (18.4) 21.7 (23.0) 4.3 (5.7) 20.4 (20.0) 22.0 (26.9)
30 23.3 (19.7) 51.9 (22.4) 55.8 (24.7) 9.7 (8.5) 37.4 (21.2) 38.7 (19.5) 11.0 (10.2) 51.3 (30.0) 50.8 (30.6)
40 58.2 (23.6) 75.3 (29.5) 73.54 (19.1) 27.6 (24.2) 77.7 (36.6) 65.88 (19.2) 21.4 (15.0) 93.4 (45.4) 84.0 (34.1)
50 76.6 (19.3) 84.2 (15.2) 85.04 (14.9) 51.5 (26.2) 82.6 (27.3) 72.7 (14.9) 40.7 (18.5) 115.7 (39.6) 101.0 (33.8)
60 86.1 (20.2) 104.9 (22.5) 94.86 (18.2) 74.7 (19.2) 94.9 (30.4) 85.27 (14.7) 62.1 (12.3) 104.3 (29.0) 101.1 (28.5)
70 91.1 (21.5) 100.2 (6.2) 98.34 (5.7) 91.0 (8.2) 88.1 (9.7) 90.57 (14.4) 84.2 (12.3) 118.5 (22.0) 113.2 (10.7)
80 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0)

Abbreviations: Stimulation Intensity—level of electrical stimulation or contraction intensity, PT—Peak torque, RMS—Normalized MMG-RMS%, PTP—Normalized MMG-PTP%.
Values are reported in mean (standard deviation) for N = 8.
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Table 3. Statistical parameters of the datasets.

Input Parameters Mean Max Median Stdev Min

Participants
Weight (kg) 70.1 80 69 5.9 63
Age (years) 23.4 25 23.5 1.3 21

Stimulation intensity (mA) 50 80 50 20 20
Knee angle (˝) 60 90 60 24.5 30

Normalized MMG-RMS% 77.8 188.1 86.9 40.0 4
Normalized MMG-PTP% 75.2 163.5 81.6 34.8 4.6

Peak torque 53.9 108.4 57.2 38 0

Table 4. Performance measures that determined the accuracy of the developed model.

Performance Measures Training Testing

r 0.97 0.94
R2 94% 89%

RMSE 9.48 12.95

In addition, the cross-plots of the “training” subsets (actual vs. predicted values) as shown
in Figure 5 also confirmed the high accuracy of the “training” subsets. However, since the actual
performance of any model is better accessed by the testing outcome [55], the accuracy of the developed
SVR model was tested using 30% of the available data samples (i.e., the reserved 30% that was not
used in model development). It was interesting to note that, the model also performed satisfactorily
during testing phase (R2 = 89%).Sensors 2016, 16, 1115 12 of 16 
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Figure 5. Cross plots of training sets—actual vs. predicted values: The plots show the performance of
SVR with Gaussian kernel for torque prediction on the training set.

This high correlation indicated that the estimated knee torque by the SVR model was very close
to the actual experimentally recorded joint torque (from an isokinetic dynamometer) for each data
sample. For better visualization and understanding of the outcome of this study, the cross-plot of
testing sets (actual vs. predicted values) has been portrayed in Figure 6. The level of accuracy in
the testing phase (R2 = 94%) of the model development indicates that the model is stable, efficient
and not over-fitted. This was based on the suggestion of Tay and Cao [56] that an overfitted model
could perform excellently on the training set (r > 0.90) but will perform poorly on testing set [56].
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Therefore, the developed SVR model in this study achieved a good performance for both training
and testing sets. These results are comparable to that of Youn and Kim [22], where an artificial neural
network model has been successfully used to estimate elbow force during voluntary contractions.
Meanwhile, the potential of the SVR model for NMES-evoked joint torque estimation which has not
been previously documented has also been demonstrated in our study.
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Figure 6. Cross plots of testing set sets—actual vs. predicted values: The plots show the performance
of SVR with Gaussian kernel for torque prediction on the testing set.

Moreover, Figures 5 and 6 portrayed the closeness of the predicted torque by the proposed
SVR model to the actual experimental values. It could be noted that almost all the predicted points
fit exactly on the experimental point or at least fits very closely to the target experimental point.
Taken together, it could be inferred that the real-time knee torque information which is vital for
the closed-loop implementation of NMES [3,5] in physical therapy and exercise science might be
reliably estimated by our proposed method. Nevertheless, we acknowledge the following limitation
in our study design: The performance of the developed model is limited to torque estimation during
NMES-evoked isometric knee extension in healthy volunteers. In the future studies, we will verify
the performance of the model using MMG signal and torque data from participants with neurological
conditions. This will allow us to examine and improve the performance of the model, and to derive
clinically relevant characteristics about the muscle force recruitment in clinical populations.

4. Conclusions

Based on its previous estimation accuracy in relevant fields, SVR modelling was used in this study
through the integration of relevant variables to predict NMES-evoked knee torque. The model was
developed through training and testing via test-set cross-validation technique with available dataset
partitioned into training and testing subsets. Using the SVR methodology, the predicted knee torque
was positively correlated with the actual values drawn from the experimental data for the training
subset. Thereafter, to check the predictive ability of the model, the trained model was tested using
the reserved testing subset that was not used in model development. The model performance was
measured based on the correlation coefficient and RMSE. The outcomes from the developed SVR model
showed an accurate prediction of the knee torque, characterized by high correlation coefficient—up
to 0.97 and 0.94; and coefficient of determination—up to 94% and 89%, and low RMSE of 9.48 and
12.95, for the training and testing cases, respectively. These results, which have not been previously
reported, indicated a close similarity between the estimated joint torque by the SVR model and the
actual experimental data obtained from the laboratory experiment. Additionally, the present study



Sensors 2016, 16, 1115 13 of 16

has uniquely shown that a SVR model could estimate NMES-evoked knee torque, generated by a
synchronous modulation of muscle fibres’ motor units [57], from MMG signal. Therefore, the good
performance achieved in this study will motivate further studies in a similar direction to facilitate
accurate estimations of joint torque using datasets from clinical populations—in which the NMES
technology is more relevant, particularly among those with spinal cord injury. Moreover, since SVR
models can be adapted for classification tasks [43], in the future, the developed model will be used to
classify fresh and fatiguing muscle contractions of knee extensors, from MMG signals, during standing
and ambulation tasks. Such models might offset the need to contend with the stimulation artifact [3,5]
often encountered with the application of surface electromyographic signal as NMES feedback source.
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