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Abstract: This paper presents a novel force-sensing silicone retractor that can be attached to
a surgical suction pipe to improve the usability of the suction and retraction functions during
neurosurgery. The retractor enables simultaneous utilization of three functions: suction, retraction,
and retraction-force sensing. The retractor also reduces the number of tool changes and ensures safe
retraction through visualization of the magnitude of the retraction force. The proposed force-sensing
system is based on a force visualization mechanism through which the force is displayed in the
form of motion of a colored pole. This enables surgeons to estimate the retraction force. When a
fiberscope or camera is present, the retractor enables measurement of the retraction force with
a resolution of 0.05 N. The retractor has advantages of being disposable, inexpensive, and easy
to sterilize or disinfect. Finite element analysis and experiments demonstrate the validity of the
proposed force-sensing system.
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1. Introduction

A large number of medical devices are used in surgical operations. Examples of medical devices
used for neurosurgery include the electric scalpel, forceps, retractor, bipolar forceps, endoscope, and
suction pipe. Surgeons switch between these devices often, which leads to increased complexity of
surgical procedures and longer operation time. However, these consequences are disadvantageous for
patients. Thus, devices that are more functional are required; one way to achieve this is to combine
multiple functions in a single device.

This study focuses on suction pipes and retractors, which are the most frequently used devices in
neurosurgery. Retractors are used to enhance the visibility of surgical spaces through pulling back of
some part of the tissue. Suction pipes are used to remove blood and resection soft tissues. Given their
fundamental functions, surgeons frequently switch between these devices and sometimes attempt
to use the suction pipe as a retractor, although this is not always achieved successfully. To achieve
better consistency, the neurosurgeons in the authors’ group developed a silicone retractor that can be
attached to the tip of a suction pipe (see Figure 1). By extending the area to be retracted to the suction
tip, surgeons can simultaneously retract and suction out tissues. The remaining issue is then used
to measure the retraction force. The brain is the most critical human organ and, so, damage to brain
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tissues must be minimized. In addition, brain tissues are extremely soft and fragile. A force-sensing
system is naturally expected to reduce the risk of damage to this organ. With this background, in
this study, a force-sensing function was embedded in a silicone retractor attached to suction pipes.
The main features of the resulting hybrid device are as follows:

Force visualization: The device employs a force visualization mechanism in order to aid surgeons
in estimating the magnitude of the load applied on tissues. If a camera or endoscope is used, the force
can be quantified at resolutions of up to 0.05 N over a range of 0–0.3 N.

Easy setup: Only silicone is used to construct the sensing part, and no electric components are
present in the device. The sensing part is easily attachable to a suction pipe, and it has advantages of
being disposable, inexpensive, and easy to sterilize or disinfect.

Multiple functions: The device enables simultaneous utilization of the suction, retraction, and
retraction-force-sensing functions.

The present study is an extension of a previous study [1], containing additional results of an
evaluation of the effectiveness of the proposed system when the target objects are curved elastic
surfaces, similar to those encountered in real life. It should be noted that the curved elastic surfaces are
rough and they are, therefore, the most difficult types of targets for the developed retractor. In our
previous study [1], the system was evaluated only for target objects with solid and flat surfaces.
The remainder of this paper is organized as follows. After a description of some related work in
Section 2, the proposed force-sensing system is described in Section 3. The results of experimental
evaluations are then presented in Section 4, and finally, the outcomes of the study are summarized in
the concluding Section 5.
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2. Related Work

A number of force and tactile sensors are available, some of which have been designed for use in
medical surgery [2–8]. These sensing systems are targeted at providing haptic feedback to surgeons so
that they can palpate and identify tumors in medical robotic systems. Strain gauges are commonly
used in force-sensing systems [9–11], and electrical components are important for transferring the
force information. However, medical devices require frequent disinfection or sterilization, which is
difficult to do when they include electrical components. Additionally, components such as amplifiers
are needed, making the overall system relatively large and expensive. Another problem is the noise
in the wiring used for signal transfer. Other sensing approaches include the use of magnets in
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medical devices [12,13], but this results in the same issues of wiring noise and system size. The use
of magnets also introduces the issue of MR compatibility. Consequently, force-sensing systems
without electrical or magnetic components have been developed by several groups. For example,
Takaki et al. [14] utilized moiré fringe patterns to embed a force-sensing function into forceps.
Tadano and Kawashima [15] used a pneumatic servo system for the development of a force sensation
feedback system, and Kawahara et al. [16] developed an organ stiffness measurement system by using
an air jet and visual information from an endoscope. Peirs et al. [17] detected the deformation of
flexible optical fibers embedded in forceps and estimated the force of the deformation. Tada et al. [18]
constructed a force sensor based on the illumination change of a light source attached to an elastic
frame. Puangmali et al. [19] presented a three-axis force sensor based on an optical sensing scheme.
Polygerinos et al. [20–23] developed several types of force sensors for catheterization, which are also
based on an optical sensing scheme. Liu et al. [24] proposed a wheeled probe for the identification
of tissue abnormality. Ahmadi et al. [25] presented an MRI-compatible optical fiber tactile sensor
that includes only a single moving part. Xie et al. [26] developed an optical tactile array probe head
for tissue palpation. Tan et al. [27] developed an MRI-compatible three-degree-of-freedom (3-DOF)
force sensor based on intensity modulation of optical fibers. Su and Fischer [28] developed an
optical-fiber-based force/torque sensor for prostate needle placement. Su et al. [29,30] also developed
an optical-fiber-based force sensor for needle insertion. Turkseven and Ueda [31] developed an optical
fiber sensor for haptic feedback in robotic surgeries. Liu et al. [32] utilized low-coherence Fabry-Perot
interferometry for developing an optical-fiber-based force sensor. Watanabe et al. [33,34] utilized
a highly elastic fabric to visualize force information. They also developed a stiffness sensor based
on visualization of force information [35]. However, none of these developed systems is capable of
providing simultaneous retraction, suction, and force-sensing functions.

With regard to force-visualization-based sensors in other fields, Ohka et al. [36] detected a
three-axis force from the poses of conical feelers, and Kamiyama et al. [37] estimated the force
distribution from the poses of two-layer spherical distributed markers. Winstone et al. [38] developed
TACTIP, a biologically-inspired vision-based tactile sensor. However, the required ranges of the sizes
and forces of these developed systems are different from those of force-sensing systems used for
neurosurgery. In particular, miniaturization is an important consideration for these force-sensing
systems [6,7].

3. Force-Sensing System

3.1. Target Situation

This study focuses on suction and retraction in neurosurgery. Figure 2 shows an example of a
situation in which the developed silicone retractor is used. The retractor, which is embedded with a
force-sensing function, is attached to the tip of the suction pipe. The suction pipe can be used to suck
out blood, saline, and soft tumors to clear the visible space. The silicone retractor extends the visible
area by retracting tissue. Using the force visualization function embedded in the silicone retractor,
surgeons can estimate the magnitude of the retraction force and avoid fracture or breaking of normal
tissues caused by application of an extremely large load.

In the situation shown in Figure 2, the visualized force information is slightly affected by the
surgeon’s viewing angle. When accurate and quantitative force information is required, a fiberscope
or endoscope is used, as shown in Figure 3. A camera on the fiberscope or endoscope captures the
visualized force information and enables estimation of the force values. In this case, surgeons are
provided with quantitative values of the retraction force.
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3.2. Design Requirements

The design requirements for the proposed silicone retractor are as follows:

1. The retraction force can be visualized.
2. The retraction force can be measured while retraction is being performed.
3. The device can be attached to suction pipes.
4. The device does not include any electric components.
5. The device dimensions should be as follows: a width of less than 30 mm, length of less than

20 mm, and thickness of less than 15 mm.
6. The force can be measured over a range of 0–0.3 N, with a resolution of 0.05 N.
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To deal with both the situations described above, a force-visualization-based mechanism is utilized.
The main objective is to enhance usability by enabling simultaneous performance of suction, retraction,
and retraction-force sensing. The suction function is provided by the suction system, whereas the
retraction function is provided by a silicone retractor attached to the suction pipe. Through addition
of a retraction-force sensing function to the silicone retractor, the three functions can be provided
simultaneously. For ease of setup and usage, a disposable, low-cost silicone retractor is preferred.
A disposable retractor simplifies the disinfection and sterilization processes. It is then preferable that
the silicone retractor does not include any electrical components. The nominal dimensions of the
original silicone retractor are 23 mm (width) ˆ 18 mm (length) ˆ 2 mm (thickness). As a preliminary
step, the target size was set to be less than 30 mm (width) ˆ 20 mm (length) ˆ 15 mm (thickness).
The required force range and force resolution were established according to experimental results
of conventional studies [39–41]. Gan et al. [39] reported that more than 70% of neurosurgical tasks
were conducted with a force of less than 0.3 N. The force range was then set to 0–0.3 N. A noticeable
difference in force (10%) was reported [42]. In the target situations, surgeons need to pay attention
to not only the changes in force but also other tasks, such as suction. The force information acquired
by the silicone retractor is not used for control purposes; rather, it is used for being displayed to the
surgeon. The most important point to be considered is to refrain from applying a very large load,
because this can cause damage to tissues. With these objectives in mind, a resolution of 0.05 N was
considered in this study.

3.3. Principle of Force Sensing

Figure 4 shows a schematic view of the force-sensing system, which is based on a force
visualization mechanism. The X- and Y-axes are defined as shown in Figure 4. Here, F (N) denotes the
force in the Y-direction and corresponds to the magnitude of the retraction force, and x (mm) denotes
the distance moved by the tips of the poles (markers) in the X-direction from the initial position.
The silicone retractor consists of a base, a deformation part, poles, and a contact part. The base is
the reference for deformation and is made of a relatively hard material. The silicone retractor can
be attached to the tip of the suction pipe through a hole at the center of the base. The contact part
was added to the retractor to enable retraction of a wider area, and it is also made of a relatively
hard material. The retraction force is detected at the center of the contact part, thereby permitting
derivation of the force on rough or curved surfaces. It should be noted that we are not concerned
with force measurement when the tissue is not in contact with the center of the contact part. This is
because retraction requires contact with the center of the contact part. The stair-like structure in the
deformation part enlarges the deformation due to the retraction force. This stair-like structure deforms
with the retraction of tissues. The joint for each stair is thin, and stress concentrations occur at these
points. Large deformations are expected owing to these stress concentrations. The pole attached to the
stair is a marker that displays the enlarged deformation as force information to the operator. The pole
attached to the (second) stair was selected so that the pole can enlarge and display the deformation
while tilting and moving without any contact with other areas/walls. The maximum movement
occurs at the tip of the pole, which corresponds to the movement distance x (mm). The movement
distance depends on the magnitude of the retraction force. Thus, in the calibration of the relationship
between the distance moved by the pole tip, x (mm), and the retraction force F (N), the magnitude of
the retraction force can be derived from x (mm). Therefore, the distance moved by the pole tip can
be used to visualize the force information. It should be noted that during contact with tissue at large
inclinations, the movement distances x (mm) could be different at the left and right poles. In this case,
the mean of distances moved by the left and right poles is used to derive the retraction force F (N).



Sensors 2016, 16, 1133 6 of 17
Sensors 2016, 16, 1133 6 of 16 

 

 
Figure 4. Principle of force sensing. 

3.4. Structure of Silicone Retractor with Embedded Force-Sensing System 

Figure 5 shows a schematic of the structure of the silicone retractor with an embedded force-
sensing function. The retractor consists of a base, a deformation part, a contact part, and poles. All 
parts are made of silicone, thereby making the retractor disposable, inexpensive, and easy to sterilize 
or disinfect. The deformation part and poles are made of soft silicone, whereas the base and the 
contact part are made of hard silicone. The soft silicone and hard silicone were constructed from base 
materials (KE-1308, Shin-Etsu Chemical Co., Ltd. Tokyo, Japan) and hardeners (CAT1300, Shin-Etsu 
Chemical Co., Ltd. Tokyo, Japan) procured from Shin-Etsu Silicone Division. The weight ratio of the 
base material to the hardener was 1:0.06 for the soft silicone and 1:0.1 for the hard silicone. The base 
was made transparent to enable observation of the movement of the pole from the top. The pole was 
colored with K-COLOR-BL-70 (Shin-Etsu Chemical Co., Ltd. Tokyo, Japan). Colored lines were 
drawn on the base so that the operator could see the force limits. The lines were drawn in ink that is 
harmless to human tissue. If the tip of the pole goes beyond the line of the force limit, the retraction 
force becomes greater than the allowable maximum (in this case, 0.3 N). By checking whether the 
pole tip is beyond the line, the operator can keep the retraction force below the allowable maximum 
and prevent damage to brain tissues. It should be noted that when the distances moved by the left 
and right poles are significantly different (for example, owing to a large inclination of the silicone 
retractor), the mean distance ought to be measured. The top view is intended for observation by 
surgeons, whereas the side view should be captured with a camera. The dimensions of the silicone 
retractor are 20 mm (length) × 28 mm (width) × 15 mm (thickness). The dimensions of the poles are  
3 mm (length) × 2 mm (width) × 3 mm (thickness). 

Figure 6 shows an overview of the manufacturing and assembly processes. First, the poles are 
manufactured using a mold. After the poles have been placed into the holes in the mold for the 
deformation part, liquid silicone is poured into the molds, and the deformation part is manufactured. 
The base is manufactured using a mold with a bar. The contact part is also manufactured using a 
mold. At the time of manufacture of the base, the base and the deformation part can be joined. 
Similarly, the contact part can be joined to other parts during its manufacture. To simplify the 
manufacture of the prototype, bonds were used for jointing. The manufactured retractor is shown in 
Figure 7. 

 
Figure 5. Schematic top and side views of structure of silicone retractor including a force-sensing 
function. 

28 mm

15
 m

m

20
 m

m

The force limitation line

Pole

Base part

Deformation part

Contact part

Hole
ForceForce limit line
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3.4. Structure of Silicone Retractor with Embedded Force-Sensing System

Figure 5 shows a schematic of the structure of the silicone retractor with an embedded
force-sensing function. The retractor consists of a base, a deformation part, a contact part, and
poles. All parts are made of silicone, thereby making the retractor disposable, inexpensive, and easy to
sterilize or disinfect. The deformation part and poles are made of soft silicone, whereas the base and the
contact part are made of hard silicone. The soft silicone and hard silicone were constructed from base
materials (KE-1308, Shin-Etsu Chemical Co., Ltd. Tokyo, Japan) and hardeners (CAT1300, Shin-Etsu
Chemical Co., Ltd. Tokyo, Japan) procured from Shin-Etsu Silicone Division. The weight ratio of the
base material to the hardener was 1:0.06 for the soft silicone and 1:0.1 for the hard silicone. The base
was made transparent to enable observation of the movement of the pole from the top. The pole
was colored with K-COLOR-BL-70 (Shin-Etsu Chemical Co., Ltd. Tokyo, Japan). Colored lines were
drawn on the base so that the operator could see the force limits. The lines were drawn in ink that is
harmless to human tissue. If the tip of the pole goes beyond the line of the force limit, the retraction
force becomes greater than the allowable maximum (in this case, 0.3 N). By checking whether the
pole tip is beyond the line, the operator can keep the retraction force below the allowable maximum
and prevent damage to brain tissues. It should be noted that when the distances moved by the left
and right poles are significantly different (for example, owing to a large inclination of the silicone
retractor), the mean distance ought to be measured. The top view is intended for observation by
surgeons, whereas the side view should be captured with a camera. The dimensions of the silicone
retractor are 20 mm (length) ˆ 28 mm (width) ˆ 15 mm (thickness). The dimensions of the poles are
3 mm (length) ˆ 2 mm (width) ˆ 3 mm (thickness).

Figure 6 shows an overview of the manufacturing and assembly processes. First, the poles are
manufactured using a mold. After the poles have been placed into the holes in the mold for the
deformation part, liquid silicone is poured into the molds, and the deformation part is manufactured.
The base is manufactured using a mold with a bar. The contact part is also manufactured using a mold.
At the time of manufacture of the base, the base and the deformation part can be joined. Similarly, the
contact part can be joined to other parts during its manufacture. To simplify the manufacture of the
prototype, bonds were used for jointing. The manufactured retractor is shown in Figure 7.
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3.5. FEM Analysis of Relationship between Retraction Force and Distance Moved by Pole Tip

Finite element method (FEM) analysis was conducted to validate whether the stair-like
deformation part can visualize the force, as well as to determine the relationship between the retraction
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force F (N) and the distance x (mm) moved by the pole tip in the X-direction (see the coordinates in
Figure 4). SolidWorks Simulation (SolidWorks) was used for the FEM analysis. The undersurface of
the contact part was fixed, and a load was applied at the hole in the base in the negative Y-direction.
The load was changed from 0 N to 0.3 N in increments of 0.05 N. Table 1 lists the material properties
of each part. The material properties were set according to the stress—strain diagram derived from
experimental results. A linear elastic isotropic model was used for the simulation, and a tetrahedron
was selected as the element by taking into account the material properties of the used silicones.
(It should be noted here that the viscosities of the used silicones were negligible.) The materials for the
base and the contact part were different from that for the deformation part, and accordingly, different
values of material properties were used (see Table 1).

Table 1. Material properties in FEM analysis.

Part Young’s Modulus MPa Poisson’s Ratio

Base 0.5 0.3
Deformation part 0.2 0.3

Contact part 0.5 0.3

Figure 8 shows the FEM analysis results for an applied load of 0.1 N. The largest movement
distance was obtained at the top-left and top-right points of the right and left poles. Therefore, the
force information could be obtained by checking the distances moved by the pole tips. To estimate the
force value, the relationship between the load F(N) and the distance x (mm) moved by the pole tip
was calibrated. The distances moved by the pole tip, x (mm), for each F (N) are plotted in the figure at
Section 4.1.3. The exact relationship is derived in the next section.
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4. Experimental Evaluation

4.1. Case of Retracting a Flat and Solid Surface

Experiments were conducted to validate the performance of the proposed silicone retractor
embedded with a force-sensing function and to determine the relationship between the distance
moved by the pole tip (in the X-direction), x (mm), and the retraction force F (N). Figure 9 shows a
schematic of the experimental setup, and Figure 10 shows a photograph of the actual setup. A suction
pipe equipped with the developed silicone retractor was attached to an automatic positioning stage
(IMADA MX2-500N), which precisely controlled the magnitude of the load by moving the suction
pipe in the vertical direction. The silicone retractor was placed on the stage of an electronic weighing
instrument (SHIMADZU TW223N) to measure the load applied to the retractor. A digital camera
(CANON PSS120BK) was used to capture the movement of the poles in the silicone retractor. Table 2
presents the relevant specifications of the experimental devices.
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Table 2. Relevant specifications of experimental devices.

Device Camera Electronic Weighing Instrument Automatic Positioning Stage

Resolution 2816 ˆ 2112 pixels 0.001 g 0.01 mm

Speed - - 10 (mm/min)

4.1.1. Procedure

First, the automatic positioning stage was moved so that the silicone retractor was in contact
with the stage of the electronic weighing instrument and the instrument displayed “0.000 g” (0.00 N).
The automatic positioning stage was then controlled to increase the magnitude of the load by 0.05 N.
After this control, a photograph was taken with the camera to measure the distance moved by the
pole tip, x mm. This procedure was repeated for loads in the range of 0.00–0.30 N in increments of
0.05 N. The entire procedure was repeated five times. As a result, 35 photographs were obtained in
total. Figure 11 shows representative photographs obtained at loads of 0.00 and 0.2 N.
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Figure 11. Photographs of silicone retractor at loads of (a) 0.00 N and (b) 0.2 N.

4.1.2. Derivation of Distance Moved by Pole Tip in Silicone Retractor

The image processing toolbox of MATLAB (MathWorks) was used to derive the distance moved
by the pole tips. Imtool (MATLAB) was used to obtain the pole positions and information for unit
conversion. The motion of the right pole was examined by taking into account the symmetry of the
silicone retractor. In Figure 12, p p f q is the position of the top-left point of the right pole and F is the
applied load. Imtool was used to derive p p f q for every load F. For the unit conversion, a ruler was also
photographed using the camera, as shown in Figure 12. The pixel value corresponding to x of 10 mm
was derived, and the units were converted from pixels to millimeters. The distance moved by the pole
tip in the X-direction was derived as |px p f q ´ px p0.00q|, where px p f q denotes the X-coordinate of p p f q.
We focused on the movement of the X-coordinate because it was significant and easy to detect, as
shown in Figure 4. Note that image processing could have been applied to determine the movement,
but a manual derivation was instead used to acquire accurate results.
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4.1.3. Relationship between Retraction Force and Distance Moved by Pole Tip

Figure 13 shows the experimental results (blue diamonds) and the values obtained by FEM
analysis (red squares). Mean values with error bars expressing the standard deviation are given for the
experimental results. The regression curve for the experimental results is

F “ ´0.026x2 ` 0.19x` 0.0089 (1)

It should be noted that we did not consider forces greater than 0.3 N, because these forces are
beyond the range of use of the proposed device.
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Figure 13. Relationship between retraction force and distance moved by pole tip.

Table 3 presents the properties of the regression curve, i.e., the obtained coefficient of
determination and the root mean squared error (RMSE). The calculation was performed using the
curve fitting toolbox of MATLAB (MathWorks).

Table 3. Properties of regression curve.

Dimension of Polynomial Function Coefficient of Determination, R2 RMSE

2 0.98 0.014

4.1.4. Discussion

The results of the experiments and FEM analysis were found to differ slightly (RMSE of 0.022).
This difference may perhaps have been due to the difficulty in setting the material parameters in the
FEM analysis to be the same as those in the actual silicone retractors. The shapes of the manufactured
silicone retractors were also not identical to those used in the FEM analysis. However, the obtained
values were close to each other. Thus, the experimental results were validated by the FEM analysis.
The distance moved by the pole tips increased monotonically with the applied load. The regression
analysis results (Figure 13 and Table 3) show that a quadratic function can express the relationship
very well. Hence, the retraction force can be estimated from the distance moved by the pole tips.
The resolution of the force-sensing system was less than 0.05 N, and the force range achieved by the
sensor was 0–0.3 N.

The left-hand-side images in Figure 11a,b show the relation between the position of the
blue-colored pole and the line expressing the force limit. This relation allows for rough estimation of
the force. Even if there is no camera or fiberscope, the surgeon can estimate the retraction force by
using the developed silicone retractor with an embedded force-sensing function.

4.2. Case of Retraction of Curved and Soft Surfaces

In real situations, the target tissue may be soft and curved. To investigate the performance of the
developed force-sensing silicone retractor with such tissues, the relationship between the distance
moved by the pole tip (in the X-direction), x mm, and the retraction force f N was identified for the case
of curved and soft surfaces. The experimental setup shown in Figure 14 is the same as that employed
in the first experiment (Figure 9); however, different target objects were used in these experiments.
The target objects were semi-spherical gelatins. Three different sizes (small, medium, and large; see
Figure 15) of gelatins were prepared to examine the effects of different curvatures on the performance
of the retractor. As can be seen from Figure 15, the surfaces of the gelatins were not perfectly smooth;
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rather, they were somewhat rough because the gelatins were handmade. Therefore, this evaluation
can be regarded as being nearly the same as that for the case of rough surfaces. Figures 16–18 show
photographs of the gelatins under representative loads of 0.00 and 0.2 N.
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Figure 18. Photograph of case of retracting small-sized gelatin curved surface ((a) 0.00 N; (b) 0.2 N).

4.2.1. Procedure

The experimental procedure was essentially the same as that for the previous experiment.
The automatic positioning stage was moved so that the silicone retractor was in contact with the
curved surface on the electric weighing instrument while the latter displayed a reading of “0.000 g”
(0.00 N). The automatic positioning stage was then controlled to increase the magnitude of the load by
0.05 N. After this control, a photograph was taken with the camera to measure the distance moved
by the pole tip, x mm. Two retraction positions were examined: one was at the center of the curved
surfaces and the other was at a distance of 5 mm from the center. The entire procedure was repeated
five times for each case. As a result, 210 photographs were obtained in total. The distance moved by
the pole tip on the silicone retractor was derived by averaging the distances moved by the left and
right pole tips. The objective of this averaging was to reduce the effect of differences between the left
and right pole tips resulting from skewed retraction directions (see Figures 16–18).

4.2.2. Relationship between Retraction Force and Distance Moved by Pole Tip

Figures 19 and 20 show the relationship between the retraction force f N and the distance moved
by the pole tip, x mm, for the cases of retraction at the center of the curved surfaces and retraction
at a distance of 5 mm from the center of the curved surfaces, respectively. Both figures show the
measured results as well as the results shown in Figure 13 obtained using the regression curve given
in Equation (1). Table 4 presents the RMSE between the measured values and the values derived by
the regression curve.

Table 4. RMSE between measured values and those derived from regression curve (Equation (1)).

Retraction Position Large Medium Small

Center 0.013 N 0.017 N 0.012 N
At a distance of 5 mm from center 0.026 N 0.020 N 0.014 N
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Figure 19. Relationship between retraction force and distance moved by pole tip for the case of
retraction at center of curved surfaces; the results shown in Figure 13 are also included here for
comparison purposes.
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Figure 20. Relationship between retraction force and distance moved by pole tip for the case of
retraction at a 5 mm distance from center of curved surfaces, the results shown in Figure 13 are also
included here for comparison purposes.

4.2.3. Discussion

The experimental results shown in Figures 19 and 20 are very close to the regression curve, and
they reveal that the sensor resolution was less than 0.05 N in all cases. This is also confirmed from
the data in Table 2. These results indicate that the effects of curvature and retraction position on the
performance of the retractor are relatively weak. It can be seen from Figures 16–18 that the direction of
retraction in these cases deviated from that in the case depicted in Figure 20. Nonetheless, the effects
of the deviation of the retraction direction on the results are again weak. This could be because the
operation point was concentrated at the center of the contact part (see Figure 4) or because the sensor
has a measurement range of 0–0.3 N. The experimental results thus validated the performance of the
developed force-sensing system.

5. Conclusions

This paper has described a silicone retractor with an embedded force-sensing function that can
be attached to a suction pipe. Suction pipes and retractors are the most frequently-used medical
devices in neurosurgery. Recently, we developed a device that provides a combination of the
suction and retraction functions [1]. However, the device was not equipped with a force-sensing
function. Estimation of the retraction force allows for safer and more precise operation. This paper
presented a device that can provide all three functions—suction, retraction, and retraction-force
sensing—simultaneously. This force-sensing system was embedded into the developed silicone
retractor, which is attached to the tip of a suction pipe. A force visualization mechanism was utilized
for force sensing. The embedded colored pole moves or tilts upon application of a retraction force.
The distance moved by the pole tip corresponds to the magnitude of the retraction force, and so,
the retraction force can be estimated from the distance moved by the pole tip. This aids surgeons
in estimating the retraction force. If a camera or fiberscope is used, the force can be measured with
a resolution of 0.05 N up to a maximum value of 0.3 N. The effects of the curvature and retraction
positions of targets are negligible, as the operation point of the device is concentrated in a small area.
Since the developed retractor is made of silicone, it is disposable, inexpensive, and easy to sterilize or
disinfect. The developed silicone retractor is expected to not only reduce the number of times tools
need to be switched, but also enable safer and more precise retraction.

We received positive feedback from surgeons about the usability of the force-sensing system.
Surgeons often check the retraction point at which the force-sensing system is embedded during
surgical operations. Therefore, the force value can be checked easily by using the force-sensing system.
Nevertheless, conducting feasibility studies (for example, investigation of how accurately surgeons
can check the retraction force during operations) in real situations will be one of our future endeavors.
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The limitations of the proposed force-sensing system are as follows. The retraction force cannot
be recorded in the absence of an endoscope. If retraction is performed by robots, higher resolution is
required for force control. The presently achieved resolution of sensing is not high enough for force
control by robots. Furthermore, when a surgeon is approaching a deep area where the retractor cannot
be seen directly, the retraction force cannot be measured owing to the occlusion of the force display
area. Additionally, in order to enable insertion of the retractor into a deep area, its thickness may need
to be made smaller than it is at present.

For practical applications, further miniaturization and evaluation of the proposed force-sensing
system in real situations are required. These issues will be considered in future studies.
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