Maximum Data Collection Rate Routing Protocol Based on Topology Control for Rechargeable Wireless Sensor Networks
Abstract
:1. Introduction
2. Related Work
3. System Model
3.1. Network Model
3.2. Energy Expenditure Model
3.3. Energy Replenish Model
3.4. Data Aggregation Model
3.5. Data Transmission Model
3.6. Topology Control Model
4. Design and Method
4.1. Description of the Data Aggregation Problem
4.2. Description of the mAximum Data Collection Rate
4.3. Distribute Algorithm for Maximizing Data Collection Rate
4.4. Lagrangian Dual Problem
4.5. Subgradient Algorithm
5. Results and Discussion
5.1. System Implement
5.2. System Performance Comparison
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gupta, R.; Sultania, K.; Singh, P.; Gupta, A. Security for wireless sensor networks in military operations. In Proceedings of the 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013.
- Gao, D.; Liu, Y.; Zhang, F.; Song, J. Anycast Routing Protocol for Forest Monitoring in Rechargeable Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2013, 2013, 1–14. [Google Scholar] [CrossRef]
- Hackmann, G.; Guo, W.; Yan, G.; Sun, Z.; Lu, C.; Dyke, S. Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 63–72. [Google Scholar] [CrossRef]
- Wang, J.C.; Lin, C.H.; Siahaan, E.; Chen, B.-W.; Chuang, H.-L. Mixed sound event verification on wireless sensor network for home automation. IEEE Trans. Ind. Inform. 2014, 10, 803–812. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Appl. Mech. Mater. 2013, 300–301, 490–493. [Google Scholar] [CrossRef]
- Hodge, V.J.; O’Keefe, S.; Weeks, M.; Moulds, A. Wireless Sensor Networks for Condition Monitoring in the Railway Industry: A Survey. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1088–1106. [Google Scholar] [CrossRef]
- Din, W.I.S.W.; Yahya, S.; Taib, M.N.; Yassin, A.I.M.; Razali, R. MAP: The new clustering algorithm based on multitier network topology to prolong the lifetime of wireless sensor network. In Proceedings of the 2014 IEEE 10th International Colloquium on Signal Processing & its Applications (CSPA), Kuala Lumpur, Malaysia, 7–9 March 2014; pp. 173–177.
- Xu, X.; Qian, H.Y.; Gu, Y.L.; Jie, D. A k-Anycast Routing Protocol Based on Broadcast Scheme for Wireless Sensor Network. Sens. Lett. 2011, 9, 1566–1570. [Google Scholar] [CrossRef]
- Saghar, K.; Kendall, D.; Bouridane, A. Application of formal modeling to detect black hole attacks in wireless sensor network routing protocols. In Proceedings of the 2014 11th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 14–18 January 2014; pp. 191–194.
- Shao, X.; Wang, C.; Xiang, H.; Huang, J. Network coding based Energy Efficient Multicast Routing for wireless sensor network. In Proceedings of the 2013 IEEE 4th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 15–17 November 2013; pp. 293–296.
- Guo, S.; He, L.; Gu, Y.; Jiang, B.; He, T. Opportunistic Flooding in Low-Duty-Cycle Wireless Sensor Networks with Unreliable Links. IEEE Trans. Comput. 2014, 63, 2787–2802. [Google Scholar]
- Faheem, Y.; Boudjit, S. Duty-cycle SN-multi-point relay algorithm for mobile sink wireless sensor networks. IET Wirel. Sens. Syst. 2015, 5, 219–227. [Google Scholar] [CrossRef]
- Oller, J.; Demirkol, I.; Casademont, J.; Josep, P.; Gerd, U.G.; Leonhard, R. Wake-up radio as an energy-efficient alternative to conventional wireless sensor networks MAC protocols. In Proceedings of the ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Barcelona, Spain, 3–8 November 2013; pp. 173–180.
- Ahmed, M.M.; Bari, S.M.S.; Habaebi, M.H.; Khan, S.; Anwar, F. Traffic Aware Wireless Sensor Networks MAC Protocol for Smart Grid Applications Using Spiral Backoff Mechanism. In Proceedings of the IEEE International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 23–25 September 2014; pp. 1177–1197.
- Gao, D.; Wu, G.; Liu, Y.; Zhang, F. Bounded end-to-end delay with Transmission Power Control techniques for rechargeable wireless sensor networks. AEU-Int. J. Electron. Commun. 2014, 68, 395–405. [Google Scholar] [CrossRef]
- Sudevalayam, S.; Kulkarni, P. Energy harvesting sensor nodes: Survey and implications. IEEE Commun. Surv. Tutor. 2011, 13, 443–461. [Google Scholar] [CrossRef]
- Starner, T. Human-powered Wearable Computing. IBM Syst. J. 1996, 35, 618–629. [Google Scholar] [CrossRef]
- Xie, L.; Cai, M. An In-shoe Harvester with Motion Magnification for Scavenging Energy from Human Foot Strike. IEEE/ASME Trans. Mechatron. 2015, 20, 3264–3268. [Google Scholar] [CrossRef]
- Gummeson, J.; Priyantha, B.; Liu, J. An energy harvesting wearable ring platform for gestureinput on surfaces. In Proceedings of the MobiSys’14, Bretton Woods, NH, USA, 16–19 June 2014.
- González, A.; Aquino, R.; Mata, W.; Ochoa, A.; Saldaña, P.; Edwards, A. Open-wise: A solar powered wireless sensor network platform. Sensors 2012, 12, 8204–8217. [Google Scholar] [CrossRef] [PubMed]
- Eu, Z.A.; Tan, H.P.; Seah, W.K.G. Opportunistic routing in wireless sensor networks powered by ambient energy harvesting. Comput. Netw. 2010, 54, 2943–2966. [Google Scholar] [CrossRef]
- Kansal, A.; Hsu, J.; Zahedi, S.; Srivastava, M.B. Power Management in Energy Harvesting Sensor Networks. ACM Trans. Embed. Comput. Syst. 2007, 6, 32. [Google Scholar] [CrossRef]
- Wan, Z.G.; Tan, Y.K.; Yuen, C. Review on energy harvesting and energy management for sustainable wireless sensor networks. In Proceedings of the 2011 IEEE 13th International Conference on Communication Technology (ICCT), Ji’nan, China, 25–28 September 2011; pp. 362–367.
- Seah, W.K.G.; Tan, Y.K.; Chan, A.T.S. Research in eNergy Harvesting Wireless Sensor Networks and the Challenges Ahead; Springer Berlin Heidelberg: Berlin, Germany, 2013. [Google Scholar]
- Giuppi, F.; Niotaki, K.; Collado, A.; Georgiadis, A. Challenges in energy harvesting techniques for autonomous self-powered wireless sensors. In Proceedings of the IEEE 2013 European Microwave Conference (EuMC), Nuremberg, Germany, 6–10 October 2013; pp. 854–857.
- Olds, J.P.; Seah, W.K.G. Power Considerations for Very Low duty Cycle Wireless Sensor Networks Powered by Energy Harvesting; Victoria University of Wellington: Wellington, New Zealand, 2011. [Google Scholar]
- Koutsopoulos, I.; Halkidi, M. Measurement Aggregation and Routing Techniques for Energy-Efficient Estimation in Wireless Sensor Networks. In Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt 2010), Avignon, France, 31 May–4 June 2010.
- Guha, A.; Psota, E.T.; Perez, L.C. Non-binary joint network-channel decoding of correlated sensor data in wireless sensor networks. In Proceedings of the 2011 IEEE Wireless Communications and Networking Conference (WCNC), Detroit, MI, USA, 24–28 July 2011; pp. 950–955.
- Pandey, V. A review on data aggregation techniques in wireless sensor network. J. Electron. Electr. Eng. 2010, 1, 1–8. [Google Scholar]
- Jongsoo, J.; Jaeseok, K.; Woosuk, C.; Kim, H.; Kim, S.; Mah, P. A QoS-Aware Data Aggregation in Wireless Sensor Networks. In Proceedings of the 12th International Conference on Advanced Communication Technology: ICT for Green Growth and Sustainable Development (ICACT), Phoenix Park, UK, 7–10 Feburay 2010; pp. 156–161.
- Maraiya, K.; Kant, K.; Gupta, N. Wireless sensor network: A review on data aggregation. Int. J. Sci. Eng. Res. 2011, 2, 1–6. [Google Scholar]
- Ozdemir, S.; Cam, H. Integration of False Data Detection With Data Aggregation and Confidential Transmission in Wireless Sensor Networks. IEEE/ACM Trans. Netw. 2010, 7, 736–749. [Google Scholar] [CrossRef]
- Qureshi, H.K.; Iqbal, A.; Asif, W. Topology Control for Harvesting Enabled Wireless Sensor Networks: A Design Approach. Wirel. Pers. Commun. 2015, 82, 81–101. [Google Scholar] [CrossRef]
- Chu, X.; Sethu, H. Cooperative Topology Control with Adaptation for improved lifetime in wireless sensor networks. Ad Hoc Netw. 2015, 30, 99–114. [Google Scholar] [CrossRef]
- Torkestani, J.A. An Energy-Efficient Topology Control Mechanism for Wireless Sensor Networks Based on Transmit Power Adjustment. Wirel. Pers. Commun. 2015, 82, 2537–2556. [Google Scholar]
- Fereydooni, M.; Sabaei, M.; Babazadeh Eslamlu, G. Energy Efficient Topology Control in Wireless Sensor Networks with Considering Interference and Traffic Load. Adhoc Sens. Wirel. Netw. 2015, 25, 289–308. [Google Scholar]
- Guo, S.; Wang, C.; Yang, Y. Joint Mobile Data Gathering and Energy Provisioning in Wireless Rechargeable Sensor Networks. IEEE Trans. Mob. Comput. 2014, 13, 2836–2852. [Google Scholar] [CrossRef]
- Mao, S.; Man, H.C.; Wong, V.W.S. Joint Energy Allocation for Sensing and Transmission in Rechargeable Wireless Sensor Networks. IEEE Trans. Veh. Technol. 2014, 63, 2862–2875. [Google Scholar] [CrossRef]
- Zou, T.; Lin, S.; Feng, Q.; Chen, Y. Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks. Sensors 2016, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, H.; Zhao, F.; Li, X. A range-based sleep scheduling algorithm for desired area coverage in solar-powered wireless sensor networks. In Proceedings of the 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP), Hefei, China, 23–25 October 2014.
- Patel, R.; Pariyani, S.; Ukani, V. Energy and throughput analysis of hierarchical routing protocol (LEACH) for wireless sensor network. Int. J. Comput. Appl. 2011, 20. [Google Scholar] [CrossRef]
- Walsh, M.; Hayes, M. A robust throughput rate control mechanism for an 802.15. 4 wireless sensor network-an anti-windup approach. In Proceedings of the IEEE American Control Conference (ACC’07), New York, NY, USA, 9–13 July 2007; pp. 3071–3076.
- Boubiche, S.; Boubiche, D.E.; Bilami, A.; Toral-Cruz, H. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks. Sensors 2016, 16, 525. [Google Scholar] [CrossRef] [PubMed]
- Incel, O.D.; Krishnamachari, B. Enhancing the data collection rate of tree-based aggregation in wireless sensor networks. In Proceedings of the 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON’08), San Francisco, CA, USA, 16–20 June 2008; pp. 569–577.
- Incel, O.D.; Ghosh, A.; Krishnamachari, B.; Chintalapudi, K. Fast data collection in tree-based wireless sensor networks. IEEE Trans. Mob. Comput. 2012, 11, 86–99. [Google Scholar] [CrossRef]
- Chen, S.; Fang, Y.; Xia, Y. Lexicographic maxmin fairness for data collection in wireless sensor networks. IEEE Trans. Mob. Comput. 2007, 6, 762–776. [Google Scholar] [CrossRef]
- Su, L.; Gao, Y.; Yang, Y.; Cao, G. Towards optimal rate allocation for data aggregation in wireless sensor networks. In Proceedings of the Twelfth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Paris, France, 16–20 May 2011.
- Hakoura, B.; Rabbat, M.G. Data aggregation in wireless sensor networks: A comparison of collection tree protocols and gossip algorithms. In Proceedings of the 2012 25th IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Montreal, QC, Canada, 29 April–2 May 2012; pp. 1–4.
- Li, X.Y.; Wang, Y.; Wang, Y. Complexity of data collection, aggregation, and selection for wireless sensor networks. IEEE Trans. Comput. 2011, 60, 386–399. [Google Scholar]
- Zeng, Y.; Zhang, X.D.; Dong, Y.H. Effects of Energy Harvesting Rate on Lifetime and Throughput Capacity in Wireless Sensor Networks. Adv. Mater. Res. 2014, 981, 482–485. [Google Scholar] [CrossRef]
- Roseveare, N.; Natarajan, B. An Alternative Perspective on Utility Maximization in Energy Harvesting Wireless Sensor Networks. IEEE Trans. Veh. Technol. 2013, 63, 344–356. [Google Scholar] [CrossRef]
- Liu, R.S.; Fan, K.W.; Zheng, Z.; Sinha, P. Perpetual and fair data collection for environmental energy harvesting sensor networks. IEEE/ACM Trans. Netw. 2011, 19, 947–960. [Google Scholar] [CrossRef]
- Sadlapur, A.; Pushpa, P.V. Computing optimal data collection rate for energy harvesting sensor networks. In Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Mysore, India, 22–25 August 2013; pp. 1468–1472.
- Peng, S.; Low, C.P. Throughput optimal energy neutral management for energy harvesting wireless sensor networks. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 1–4 April 2012; pp. 2347–2351.
- Prabhakar, T.V.; Iyer, M.; Prakruthi, K.; Prasad, R.V.; Niemegeers, I.; Sathyanarayanan, S.P. Throughput schemes for energy harvesting sensor networks. In Proceedings of the 2012 Fourth International Conference on Communication Systems and Networks (COMSNETS), Bangalore, India, 3–7 January 2012; pp. 1–7.
- Kumar, T.P.; Reddy, K.N. A competent approach of data aggregation in tree based wireless sensor networks. Int. J. Comput. Electron. Res. 2013, 2, 80–82. [Google Scholar]
- Solis, I.; Obraczka, K. In-network aggregation trade-offs for data collection in wireless sensor networks. Int. J. Sens. Netw. 2006, 1, 200–212. [Google Scholar] [CrossRef]
- Demin, G.; Lin, H.; Liu, Y.; Wu, G. Maximum data collection rate in rechargeable wireless sensor networks with multiple sinks. China Commun. 2016, 13, 95–108. [Google Scholar] [CrossRef]
- Izadi, D.; Abawajy, J.H.; Ghanavati, S.; Herawan, T. A data fusion method in wireless sensor networks. Sensors 2015, 15, 2964–2979. [Google Scholar] [CrossRef] [PubMed]
- Meseguer, R.; Molina, C.; Ochoa, S.F.; Santos, R. Energy-aware topology control strategy for human-centric wireless sensor networks. Sensors 2014, 14, 2619–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Huang, L.; Liu, W.; Wang, G.; Wang, Y. Topology control for delay-constraint data collection in wireless sensor networks. Comput. Commun. 2009, 32, 1820–1828. [Google Scholar] [CrossRef]
- Bagchi, A.; Madanm, A.; Premi, A.; Sankhla, S. Hierarchical neighbor graphs: A topology control mechanism for data collection in heterogeneous wireless sensor networks. Ad Hoc Sens.Wirel. Netw. 2015, 26, 171–191. [Google Scholar]
- Pan, J.; Hou, Y.T.; Cai, L.; Shi, Y.; Shen, S.X. Topology control for wireless sensor networks. In Proceedings of the International Conference on Mobile Computing and Networking (MOBICOM 2003), San Diego, CA, USA, 14–19 September 2003; pp. 263–274.
- Yin, Y.; Liu, F.; Zhou, X.; Li, Q. An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks. Sensors 2015, 15, 19443–19465. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.L.; Yang, Y.; Lei, W. An Adaptive Data Gathering Scheme for Multi-Hop Wireless Sensor Networks Based on Compressed Sensing and Network Coding. Sensors 2016, 16. [Google Scholar] [CrossRef]
- Cristescu, R.; Beferull-Lozano, B.; Vetterli, M. On network correlated data gathering. In Proceedings of the Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies (INFOCOM 2004), Hong Kong, China, 7–11 March 2004.
- Kuhn, F.; Wattenhofer, R.; Zollinger, A. Asymptotically optimal geometric mobile ad-hoc routing. In Proceedings of the 6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIALM ’02), Atlanta, GA, USA, 28 September 2002; pp. 24–33.
- Javaid, N.; Ilyas, N.; Ahmad, A.; Alrajeh, N.; Qasim, U.; Khan, Z.A.; Liaqat, T.; Khan, M.I. An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks. Sensors 2015, 15, 29149–29181. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Johansson, M.; Boyd, S. Simultaneous routing and resource allocation via dual decomposition. IEEE Trans. Commun. 2004, 52, 1136–1144. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Xia, F.; Kim, C.S.; Kim, J.U. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks. Sensors 2014, 14, 15163–15181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shen, X.; Tang, S.; Dai, G. Energy efficient joint data aggregation and link scheduling in solar sensor networks. Comput. Commun. 2011, 34, 2217–2226. [Google Scholar] [CrossRef]
- Ishitani, N.; Kobayashi, K.; Okada, H.; Katayama, M. Cooperative repeaters to improve data collection in low power generation for solar-powered wireless sensor networks. In Proceedings of the 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015; pp. 361–366.
Weather Condition (at 12:00 noon) | The Power Density |
---|---|
cloudy day inside | 4000–7000 lux |
cloudy day outside | 8000–12,000 lux |
sunny day inside | 30,000–50,000 lux |
sunny day outside | >100,000 lux |
Parameter | Value |
---|---|
area | 500 m × 500 m to 1000 m × 1000 m |
packet | 512 byte |
sinks number | 3–8 |
sensors number | 200–400 |
50 nJ | |
100 pJ/bit/m | |
the size of panel | 20 cm |
energy conversion efficiency γ | 30% |
transmission range R | 80 m |
0, 10 MJ |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Bai, D.; Gao, D.; Liu, Y. Maximum Data Collection Rate Routing Protocol Based on Topology Control for Rechargeable Wireless Sensor Networks. Sensors 2016, 16, 1201. https://doi.org/10.3390/s16081201
Lin H, Bai D, Gao D, Liu Y. Maximum Data Collection Rate Routing Protocol Based on Topology Control for Rechargeable Wireless Sensor Networks. Sensors. 2016; 16(8):1201. https://doi.org/10.3390/s16081201
Chicago/Turabian StyleLin, Haifeng, Di Bai, Demin Gao, and Yunfei Liu. 2016. "Maximum Data Collection Rate Routing Protocol Based on Topology Control for Rechargeable Wireless Sensor Networks" Sensors 16, no. 8: 1201. https://doi.org/10.3390/s16081201
APA StyleLin, H., Bai, D., Gao, D., & Liu, Y. (2016). Maximum Data Collection Rate Routing Protocol Based on Topology Control for Rechargeable Wireless Sensor Networks. Sensors, 16(8), 1201. https://doi.org/10.3390/s16081201