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Abstract: To implement minimum power consumption of the link, cluster heads adopt the multi-hop
manner for inter-cluster communication so as to forward the aggregation data to the relay nodes.
This paper proposes a collaborative data aggregation in emerging sensor networks using a bio-level
Voronoi diagram, which is an energy-efficient data aggregation protocol that integrates topology
control, Multiple Access Control (MAC) and routing. The sensor nodes situated in the lower
level of the diagram are responsible for listening and gathering data, and should be organized
by optimal clustering node. In the inter-cluster communication stage, a particle swarm optimization
algorithm is addressed to seek optimal transmission path which could simultaneously achieve the
minimization of the maximum next hop distance between two nodes in the routing path and the
minimization of the maximum hop count, so the minimization of whole network energy consumption
is realized. The results of theoretical analysis and simulation results show that energy efficiency and
synchronization accuracy of the proposed algorithm can be much better than with traditional routing
protocols, and the energy consumption of nodes in the whole network can be more balanced.

Keywords: emerging sensor networks; collaborative data aggregation; Voronoi diagram; multi-hop
wireless network; time synchronization

1. Introduction

With the development of the Internet of Things (IoT) industry, the application scope and
complexity of emerging sensor networks (ESNs) have reached unprecedented heights. Against the
background of the IoT, ESNs are highly dependent on a huge and complex network, which brings
great reliability risks and presents many new problems and challenges to research on topology control
in wireless sensor networks [1]. By deploying massive numbers of sensor nodes in the monitoring
region, ESNs can collect the information of perceived objects effectively and deliver the fusion solution
to the end user through wireless communication. Most applications of ESNs are focused on the field of
military reconnaissance [2], environmental monitoring [3] and disaster relief [4], control and command
in autonomous vehicles and robots [5], etc. However, the static sensor nodes are usually equipped with
low processing and limited power capabilities, and often communicate over unreliable, short-range
radio links. Since the communication range of sensor nodes is limited, they often are arranged in
a self-organized manner and adopt hop-by-hop communication to exchange data. The prominent
characteristics in the target monitoring applications of ESNs includes: many-to-one communication,
the sensor nodes with greater density, and limited resources. Thus any communication protocol should
strive for the timeliness and reliability of data transmission [5]. Among the factors that affect the
performance of wireless sensor networks, topology control is one of the key problems [6]. If there is no
topology control in wireless sensor networks, there will be the following problems [7]:
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‚ Each node communicates with the maximum transmission power, and the limited node energy
will be consumed quickly, thus reducing the lifetime of network.

‚ Large communication radius can increase the signal interference between nodes, which will affect
the communication quality and reduce the network throughput.

‚ A lot of redundant edges exist in the generated network topology and result in network topology
information redundancy. Large and complex routing calculation will bring about a waste of
valuable computing resources.

‚ Non-uniform sparse link between nodes will impact on the network connectivity, reliability and
survivability, especially in military application, which will directly affect the network security.

How to optimize the network topology, enhance the adaptability and robustness of the network
topology, and provide a good topology support for the upper layer communication protocol is an
important issue in the research of topology control and optimization. The existing literature shows
that there are many constraints and challenges in the topology control of wireless sensor networks:

‚ Nodes’ dispersion [8]. In the face of different network applications, the nodes are distributed
in two ways: predetermined and random dispersion. For the former, the data transmission can
be carried out along a pre-designed path. For the latter, the distribution of nodes is not uniform
and it is necessary to carry out reasonable clustering to ensure the network connectivity and
energy efficiency.

‚ Energy consumption [9]. The lifetime of a network node depends on its battery life, and the
communication and computation of the energy reserve form is very important. Because a node
failure will change the topology, it may lead to the failure of the original algorithm.

‚ Heterogeneous nodes [10,11]. In many studies, it is usually assumed that the nodes are isomorphic,
but in the face of different applications, the roles and capabilities of nodes may be different, which
will lead to the emergence of many new problems in topology control.

‚ Tolerance [12]. The fault tolerance mechanism in the topology control is necessary, which can
ensure the function of the network at the time some nodes out of action; for instance, lack of
energy, physical damage or environmental interference.

‚ Scalability [13,14]. Large numbers of nodes are distributed in a sensing area, hence the design of a
topology control scheme must be adapted to large-scale wireless sensor networks.

‚ Connectivity [15]. The connectivity of the network is constrained by the topology changes, node
failure and random distribution of nodes.

‚ Coverage [16]. Due to the limitation of the communication radius of the sensor nodes, the area
coverage is an important problem in the topology control of wireless sensor networks, especially
for the mobile WSNs.

‚ Data fusion [17,18]. Considering the redundancy of the data collected by monitoring nodes, data
fusion can be used to reduce the energy consumption by means of decease the packets being
transmitted. Besides, it can also improve data accuracy. Thus the topology design should can
provides an essential support for data fusion.

‚ Quality of service [19,20]. In some applications, the perception of the data should be issued
within a certain time interval. Otherwise the data will be invalid. Especially for some important
information, the reliability of data transmission is also very important, and the topology control
algorithm should be designed to meet the requirement for different quality of service.

By using a reasonable topology control method, the system can work under a stable state for
a long time and to improve the efficiency of data fusion. Therefore, it is needed to design a data
aggregation protocol to integrate topology control, MAC and routing efficiently. Meanwhile, the
communication path between neighbor nodes should be optimized to prolong the lifetime of network.

On the basis of existing research, a collaborative data aggregation in emerging sensor networks
using a bio-level Voronoi diagram (CoDA) is proposed. The main idea is that all nodes in the network
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are distributed in the bio-level Voronoi diagram. The sensor nodes situated in the lower level of
the diagram are responsible for listening and gathering data, and should be organized by some
optimal clustering method. In each cluster, a cluster head is selected for gathering the data from its
members and sending to the sink. In the upper level of the diagram, the relay nodes are deployed and
constructed as the backbone network for forwarding data of all sensors to the sink node, in which the
region covered by these nodes is relatively large and cluster heads adopt the manner of multi-hop
for inter cluster communication so as to realize the integration of intra cluster data transmission
to the backbone node. In the stage of inter cluster communication, a particle swarm optimization
algorithm is addressed to seek optimal transmission path which could simultaneously reach the
minimization of the maximum next hop distance between two nodes in the routing path and the
minimization of the maximum hop count, so the minimization of whole network energy consumption
was realized. Considering the time synchronization problem in multi-hop transmission mode, this
paper proposes a multi-hop precision time synchronization model, which can achieve the balance
between the synchronization accuracy and energy consumption.

The specific contributions of this paper include:

‚ A literature survey about various existing energy saving protocols and topology control
approaches in ESNs, and analyze their advantages and disadvantages.

‚ An effective bio-level Voronoi diagram model based on Voronoi-cluster and relay nodes for ESNs
is proposed.

‚ A collaborative data aggregation in emerging sensor networks using bio-level Voronoi diagram is
proposed, which is an energy-efficient data aggregation protocol and integrates topology control,
MAC and routing.

‚ Performance analysis of the proposed algorithm and an evaluation of the algorithm with respect
to other traditional routing protocols.

The rest of this paper is outlined as follows. In Section 2 an overview of related works are
presented. In Section 3, a collaborative data aggregation model using a bio-level Voronoi diagram is
introduced with the presence of inhomogeneous time delays affecting the different hops. The multi-hop
transmission mechanism and a multi-hop precision time synchronization model are presented in
Section 4. In Section 5, the performance and features of the proposed algorithm are analyzed. Finally,
conclusions are presented in Section 6.

2. Related Works

The research on ESNs includes many aspects, such as system survival time, routing selection and
data fusion mechanism. Among them, how to reduce energy consumption is one of the key issues
in ESN design, which directly determines the working lifespan of the network. Research shows that
the communication between nodes is the main factor of the energy consumption in wireless sensor
networks (WSNs), and some experts have put forward routing protocols with low energy consumption.
The structure of self-organized sensor node clusters is proved to be a reasonable and effective mode to
meet the need for sensors’ distributed deployment, which can save energy and optimize the topology
of WSNs [21], however, the reasonable distribution of cluster heads can make the network energy
consumption more stable and the energy distribution more uniform. In the early clustering protocol
LEACH [22], it was proposed to select a node as cluster head in a rotation way for each node, so that
the nodes can be elected as cluster heads as much as possible. This way makes the sensor nodes can be
self-organized by an adaptive way. However, the problem is that the imbalance in energy consumption
of the network is inevitable, and residual energy of the nodes is not taken into consideration of the
cluster heads’ selection.

Subsequently, the cluster head selection algorithm is continuously optimized. In HEED [23],
cluster head rotation and topology reconstruction were carried out in the whole network for a preset
time period. In EDCR [24], Gamwarige et al. presented that the calculation of the energy threshold is
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adopted dynamically to trigger the cluster head rotation process. Although the rotation strategy can
balance the network energy consumption, excessive alternation will influence the stabilization of the
nodes’ organization and lead to heavy interruption of the transmission.

In [25], an improvement scheme was proposed based for traditional LEACH by using multiple
conditions to determine the cluster head’s selection, which can reduce the energy consumption during
the stage of cluster’s formation, and increase the efficiency of packet transmission. LEACH-V was
proposed for resolving the problem of energy imbalance between the nodes and low utilization rate of
the whole network [26]. The residual energy and the average energy of the network were considered
during the process of calculating the threshold for cluster head’s selection. Also, a Voronoi diagram
was used to restrict the situation of the cluster heads.

A two levels-weighted clustering algorithm (TL-WCA) was proposed for optimizing the routing
path [27]. The network is divided into several clusters based on the improved competition mechanism.
Then, the elected cluster head uses greedy algorithm to find the shortest path principle and then form
a chain. Next, the nodes with more than the average energy in the chain and close to the sink are
selected as the cluster head, and then execute the data fusion. In [28], the possible redundancy of
cluster heads was analyzed, and a clustering routing algorithm based on cluster head redundancy was
proposed to apply in industrial wireless sensor networks. When the energy of the cluster head was
insufficient, the redundant cluster heads can be switched to the work state. For the isolated nodes
that cannot communicate with any cluster head directly, the multi-hop routing mechanism based on a
probabilistic model was used for data forwarding.

In [29], an analytical model for cluster head rotation was designed, which built a contention
scheme for cluster head selection to remove the energy consumption in cluster head rotation. An EEHC
algorithm for multi level energy heterogeneous network was proposed in [30], where the nodes with
larger weights were more likely to become cluster heads. The main purpose of ESNs is that the sensors
monitor the environment constantly and transmit the monitoring data to the cluster head, then forward
the aggregation data to the sink through the cooperation of other nodes. From the point of view of
data forwarding between nodes, multi-hop routing usually demonstrate more energy efficient than
single hop routing, and it can avoid the energy-hole problem [31,32].

In [33], an equal cluster-based multi-hop routing (EMR) was proposed. The cluster head
candidates for EMR were selected by their communication range and energy reserves. In addition, the
communication between the cluster heads adopted a multi-hop manner and it is dominated by a weight
indicating the energy-reserves and the distance among them. In [34], an energy-efficient clustering
multi-hop routing (EECMHR) algorithm was proposed for resolving the problem of unbalanced energy
consumption in traditional clustering routing. An average residual energy factor was introduced,
i.e., the percentage of the cluster-head among other nodes was updated according to the ratio of each
node’s residual energy and average residual energy within the cluster at the end of last round.

Wang et al. proposed an energy cost optimization model for the nodes deployed in Poisson
distribution in wireless sensor networks [35]. Considering that multi-hop routing consumes less
energy than single-hop routing, the relationships among the nodes’ density of Poisson distribution,
optimal number of clusters and power consumption for multi-hop routing was examined. In [36],
a clustering hierarchy arithmetic based on time delay and a multi-hop routing mechanism (CHTD-M)
were presented. The algorithm makes the equally distributed cluster-heads of the network construct a
routing tree, and it reduces the number of cluster head nodes connected directly with the base station
in communication through the multi-hop transmission way.

3. System Model

Due to the diversity of the ESNs environment, topology control should be designed according to
the characteristics of particular applications and take into account the state of sensor nodes. Also, there
are some problems which affect the network performance, i.e., the network connectivity, coverage,
reliability, robustness and fault-tolerant, as follows:
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(1) The model is too ideal to consider many uncertain factors in practical application, which cannot
meet the requirements of dynamic sensors distribution.

(2) Lack of effective measurement of the dynamic and self-adaptive network topology.
(3) Topology control mechanism or method should be designed in aspects of tolerance, high

reliability and strong survivability.

This section will demonstrate a topology control model based on the Voronoi diagram, which can
optimize the cluster structure and deploy the relay nodes reasonably.

3.1. Definition and Properties of Voronoi Cells

Definition 1. Given a set of n points S “ tp1, p2, ¨ ¨ ¨ , pnu in the field, the Voronoi diagram can be constructed
by drawing the perpendicular bisector of line segment of each pair. Those bisector line segments form the
boundaries of Voronoi cells are called Voronoi edges, and it can be defined as:

Vppiq “ X
j‰i

 

p
ˇ

ˇdpp, piq ă dpp, pjq
(

, i “ 1, 2, ¨ ¨ ¨ , n (1)

where d(p,pi) denotes the Euclidean distance between points p and pi, and the area V(pi) is said to be the Voronoi
cell of pi. Obviously, the Euclidian distance from the point in the region of V(pi) will be shorter than the
points outside.

Voronoi graphs have many interesting and surprising mathematical properties [37,38], such as
influence region, lateral adjacency, liner behavior, largest empty circle, local dynamic characteristics,
etc. These characteristics all provide a powerful tool to solve problems in spatial analysis, geography
science, computer science and mathematics [39,40]. Among them, there are three main properties:

(1) Each Voronoi node is the intersection of the three Voronoi edges. If any node in the graph make
a circle, which goes through the Voronoi edges corresponding to all the vertices (three or more),
cannot incorporate any other vertex. The circle with the largest radius is called the maximum
empty circle.

(2) For Voronoi polygons, Euler’s Regulation demonstrates that no more than six adjacent space
targets can be influenced while a vertex is being deleted or added. This feature is consistent
with the practical characteristics of node deployment and network topology in wireless
sensor networks.

(3) For the points a, b P V, the edge ab is a Delaunay edge if there is a circle through a and b so
that all other points of V lie outside the circle. The collection of Delaunay edges defines a plane
geometric graph D(V) known as the Delaunay triangulation of V. In the non-degenerate case,
which excludes four or more points on a common circle, D(V) is indeed a triangulation. Even in
degenerate cases, the faces of D(V) are convex polygons, and these can be further subdivided
into triangles using additional edges.

3.2. The Model of Bio-Level Voronoi Diagram

In the whole wireless sensor network, all the nodes are managed in the form of clusters, and the
communication between the cluster head and its member nodes is carried out by single hop mode.
The Voronoi diagram of the lower layer is composed of all the cluster heads, which reflects the adjacent
distance and distribution of each cluster head. In addition, the upper Voronoi diagram is generated
by the relay nodes, which constitute the backbone of the network. For each relay node, it owes a
larger coverage range and can communication with various cluster heads, which attempt to transmit
packets in multi-hop wireless routing. Therefore, the path optimization strategy should be designed
for minimize the expense during the packets forwarding. Figure 1 show the bio-level Voronoi model
presented in this paper. Especially, the division of the relay nodes in the upper Voronoi diagram is not
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absolute, and the cluster heads on the edge of the upper Voronoi diagram has the equal opportunity to
select the appropriate relay node as the destination.Sensors 2016, 16, 1235 6 of 22 
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3.3. Structure of Voronoi-Cluster

From the point of view of the Voronoi structure corresponding to the computational geometry,
the plane is divided into N zones by the Voronoi diagram, which depends on the number of discrete
points N. The basic Voronoi diagram describes the areas that are nearest to a set of given points, and
these can be viewed as zones of control [41]. Therefore, dividing the space plane into several regions
and designating the sensor nodes into corresponding Voronoi-clusters, can ensure that all nodes in a
single cluster are evenly distributed and make the distance between the member nodes to its cluster
head as short as possible.

In ESNs, the selection of cluster heads plays a very important role in ensuring energy efficiency,
and the main objective of cluster head selection is to make the cluster distribution reasonable. On the
one hand, it is necessary to make the member nodes evenly distributed, so the communication overhead
can be maintained at a low level. On the other hand, considering the inter-cluster communication,
the distance between cluster head nodes should be within a reasonable range so as to keep the multi-hop
transmission losses small. Therefore, to reduce the transmission losses and ensure insignificant
difference between the member nodes in the aspect of cluster-in energy consumption, the topological
structure of the network should be optimized. Meanwhile, by reducing the energy consumption
in the multi-hop transmission as much as possible, ultimately it can achieve the balance of energy
consumption in the whole network, and improve the life cycle of the network.

Due to the vulnerability of nodes and the variability of network topology, once some sensors
with poor performance are selected as cluster heads it will seriously affect the quality of service of the
network. The reliability of cluster heads and the distribution of clusters become the keys to determine
whether the network can run efficiently.

In order to analyze the influence of the number of cluster heads on the overall energy consumption
of the network, the first order radio model can be used for measuring energy consumption between
sensor nodes. Equation (2) represents the amount of energy consumption in transmitting a packet with
l bits over d distance according to the first order radio model [42]:

ETxpl, dq “

#

lEelec ` lε f sd2, d ă d0

lEelec ` lεmpd4, d ě d0
(2)
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In which, Eelec is the electronics energy, εmpd4 is the amplifier energy of the next CH, and d0 is a
threshold. The energy consumption of b bits received by the receiver is ERX “ lEelec.

The optimal number of clusters can be solved by calculating the energy consumed per round. It is
assumed that the N sensor nodes are distributed evenly in the area of MˆM, and the k cluster heads
are generated by the election network. During the initial stage, the energy consumption depleted for
message exchange between cluster head and its members can be calculated as:

Einit “ kECH´broad ` pN ´ kqEmember´broad

“ kpl0Eelec ` l0εmpR4q ` pN ´ kql0Eelec
(3)

In order to ensure that all nodes in the network receive the broadcast message, the radius R should
be set as the maximum distance between any two nodes in the area. Under normal circumstances,
R ą d0 and power amplifier consumption uses multipath fading channel model.

During the stage of the cluster formation, the k cluster heads receive the JOIN message sent by
the respective member nodes and broadcasts the TDMA time slot table. Then, N ´ k member nodes
send JOIN messages and receive the TDMA slot table. Because the distance between the cluster heads
is relatively small, the power amplifier power consumption is free space channel model. The length of
the JOIN message and the TDMA time slot table are set as lJOIN and lTDMA respectively, the energy
consumption of the network can be calculated by:

E f orm “ kpECH´JOIN ` ECH´TDMAq ` pN ´ kqpEmember´JOIN ` Emember´TDMAq

“ krlJOIN Eelecp
N
k ´ 1qs ` lTDMAEelec ` lTDMAε f sd2

toCHs`

pN ´ kqrlJOIN Eelec ` lTDMAEelec ` lJOINε f sd2
toCHs

(4)

In the stable operation stage, k cluster heads receive the data collected by their member nodes
respectively, and then send the aggregation resolution to the relay nodes through multi-hop. The
transmission range in inter-cluster communication is often not more than, then the consumption of
energy can be represented as:

Ecluster´in “ krl0Eelec ` l0εmpp2 ˚ dtoCHq
2
s ` kl0Eelec (5)

For the solution of d2
toCH we can use the derivation in [43]:

Erd2
toCHs “

M2

πk
(6)

The total energy consumed in a round is:

Etotal “ Einit ` E f orm ` Ecluster´in (7)

Let the partial derivative of Etotal to k is equal to zero, then the optimal number of clusters can be
given as:

k “
N
?

2π
ˆ

d

p2lTDMA ` lJOINqε f s

pN ´ l0qεmp
(8)

Definition 2 (Voronoi-Cluster). It is assumed that each node knows its own geographical position, and the
network is divided into Voronoi cells. The sensor nodes situated in each Voronoi cell can be organized in a single
cluster, and they may determine the corresponding Voronoi cell by the geographical position information. The
structure of a Voronoi-cluster is shown as Figure 3.

Corollary 1. In the lower level of Voronoi diagram, the distance between the cluster heads in different
Voronoi-clusters has the same expected value.
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Proof. Suppose that the Euclidean distance between node u and v is dpu, vq and the area of network
is square of Mˆ M. In order to ensure the full coverage of the network, the coverage radius of the
cluster head can be defined as M?

kπ
ď r ď 2M?

kπ
.

The distribution function of the node in the region can be expressed as:

ζprq “ p tdpu, vq ď ru (9)

In Equation (9), the pairwise node of i and j is selected randomly, and the distance of other
pairwise nodes in the network follows the same distribution. For a single cluster, there are N{k nodes
in the wireless sensor network, and the number of pairwise nodes is N

k ˚ p
N
k ´ 1q{2. Denote the distance

of pair wise nodes is less than or equal to r as XpN
k , rq, then XpN

k , rq is random variables and the
expected value E tNpn, rqu can be expressed as:

E
"

Xp
N
k

, rq
*

“ ζprq ˚
N
k
p

N
k
´ 1q{2 (10)

The probability function of the distance between nodes u and v limited by r is defined as:

pppu, vq, rq “

#

1, dpu, vq ď r
0, dpu, bq ą r

(11)

Suppose Si
N is a sample of N nodes distributed in a wireless sensor network which are divided

by Voronoi cells. For one node in a Voronoi region and XpSi
N , rq denotes the number of nodes whose

distance to other nodes is less than or equal to r in Si
N , then:

XpSi
N , rq “

N
ÿ

i“1

N
ÿ

j“i`1

pppi, jq, rq (12)

Suppose that the probability for each candidate instance is ppSi
N), then the expectation value

E “ rX
`

Si
N , r

˘

s is:

ErXpSi
N , rqs “

K
ÿ

i“1

N
ÿ

j“i`1

pXpSi
N , rq ˚ ppSi

Nqq (13)

When K tends to infinity, if the total number of instances of the Voronoi cell in the wireless sensor
network is brought into the formula, the expected value of the candidate cluster head distribution
can be obtained. In the practical applications, it is very difficult to determine the value of p, which is
related to the scale of the network and the density of nodes. When the cluster head selection is carried
out in the Voronoi cell, the candidate cluster heads are subject to two-dimensional uniform distribution
in the rectangular area. Because the selection of cluster head is taken place in a local area, it can ensure
that the distribution of cluster heads is relatively uniform. ˝

Definition 3. Suppose G “ pV, Eq, and G being called as a simple undirected graph should satisfy the
following conditions:

(1) G is a connected undirected graph without a self-circle.
(2) There is at least one side between any two nodes in G.

Graph G should be guaranteed with k-coverage and k-connectivity, and the single hop
communication mode is adopted for cluster-in communication. In the existing clustering schemes,
the nodes in the cluster can choose multi-hop or single-hop mode to transmit their gathering data to
the cluster head. In order to balance the energy of the cluster head nodes often need to be replaced
regularly, and the members may also change. If using multi-hop communication, each rotation for
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cluster head selection need rebuild the routing tree, which will result in high overhead and hard to
maintain. Figure 2 shows the minimum communication radius for inter-cluster transmission.Sensors 2016, 16, 1235 10 of 22 
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To determine the minimum radius of inter-cluster transmission, the proposed Algorithm 1 is
designed as following:

Algorithm 1. Determination of the minimum transmission radius for inters cluster communication.

Input: G “ pV, Eq, Vertex set of VpSq
Output: minimum communication radius Rmax

1. Rmax “ 0;
2. Create the Voronoi diagram V (S) of the point set;
3. for each node i P S do
4. Calculate Convex Hull CHpSiq;
5. end for;
6. for each v P VpSq
7. if v is located inside the rectangle, then
8. Calculate the radius of circle with v as the center;
9. Rmax “ Rv;
10. end for;
11. for each edge e P CHpSq
12. Find the point x of perpendicular and rectangular of e;
13. Calculate the distance distpx, eq between x and the endpoints of e;
14. if distpx, eq ą Rmax then
15. Rmax “ distpx, eq;
16. end if;
17. end for;Sensors 2016, 16, 1235 8 of 22 
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Figure 3. Dividing the monitoring area into Voronoi-clusters.
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3.4. Formation of the Voronoi-Cluster

During the process of cluster formation, each cluster head records the information near the other
cluster heads, including the remaining energy and the distance between nodes. The specific steps are
described as follows:

Step 1: There are N sensor nodes and a sink node which are deployed on 2-D plane, and k cluster
heads are selected by sink according to the residual energy and geographical position;

Step 2: The monitoring area is divided into k Voronoi cells in terms of the cluster heads’ position;
Step 3: Cluster head CHi broadcasts the message, including its residual energy and ID, to adjacent

nodes. The other cluster heads which can receive the information will restore to the memory
and generate their own node list, including the residual energy of the source node, and the
distance between them.

Step 4: Next, find out the center node among all cluster heads in a single Voronoi cell. The center
node sends Center Declare Message (CDM) to other cluster heads, and adds the nodes to the
set by SendMessagepIDu, CDMq.

Step 5: After working for some time, if ResEnergypuq ă ResEnergypvq,v P nodelistu, node u will
give up the role of center node and notify all cluster heads of the set.

Step 6: Calculate the distance between all adjacent cluster heads. If min tdpu, vqu ă d0, combine the
Voronoi cells with adjacent cluster heads and constitute the links for all member nodes.

Step 7: All cluster heads send Active Dynamic Information (ADI) message to others periodically. Once
a cluster head failures, other cluster heads can perceive quickly and then output the backup
set. The partition of the link caused by cluster head failure can be fixed as far as possible, so
as to reduce the loss of data and ensure the reliability of transmission.

3.5. Deployment of Relay Nodes

The research shows that the use of the multi-hop communication manner between sensor nodes
can improve the energy efficiency and prolong the network lifetime, but it also brings some problems,
for example, more delay for packet forwarding, and the formation of energy holes owing to the
excessive overhead for the nodes close to the sink.

Therefore, the data aggregation mechanism proposed in this paper divides the nodes of the
whole network into three levels, consisting of the cluster head, the member node and the relay nodes.
The backbone network topology is formed by arranging a small amount of powerful relay nodes in the
network, which can achieve inter cluster communication efficiently and reduce the delay of the data
transmitted from the monitoring sensor to the sink effectively. Relay nodes usually are equipped with
strong energy supply, communication capacity and computing power. In contrast with cluster heads,
they possess much wider coverage and are responsible for data aggregation from adjacent clusters.
Obviously, the bio-level structure of the node is adaptive for nodes’ management. Meanwhile, it has a
good scalability.

For the lower level network, each cluster head can communicate with corresponding relay node
by using multi hop mode. In the upper level topology, relay nodes consist of the backbone network.
In order to reduce the communication cost, the number of relay nodes should be as less as possible
under the premise of connectivity.

Definition 4. If sj satisfies the condition: Ncpiq “
 

si
ˇ

ˇdpsi, sjq ď Rc, j ‰ i
(

, then sj is the neighbor node of si,
where Rc denotes the transmission radius and sj is the neighbor node of si.

Definition 5. If any point in a region is within the scope of coverage from any node in the set S, and satisfy that
the points in S are connected, then, S can be defined as a connected coverage set.
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Definition 6. If the minimal nodes can constitute a connected coverage set, then the set S “ ts1, s2, ¨ ¨ ¨ , snu

can be defined as a minimum connected coverage set.

To determine the minimum communication radius of inters cluster communication, the proposed
Algorithm 2 is designed as following:

Algorithm 2. Determination of the minimum communication radius of inters cluster communication.

Input: the sensor node set S “ ts1, s2, ¨ ¨ ¨ , sNu, the number of cluster head k.
Output: the set of relay nodes RS.
1. Suppose all nodes in the set S as generic point, generates the corresponding k order Voronoi
diagram VkpSq;
2. The set of polygon for Voronoi diagram is denoted as V “ tVkpPL1, Sq, VkpPL2, Sq,
¨ ¨ ¨ , VkpPLM, Squ, where VkpPL1, Sq is the i-th polygon for VkpSq;
3. RS “ ∅;
4. while V ‰ ∅ do
5. for each VkpPLi, Sq P V do
6. if sj is the generic point of polygon VkpPLi, Sq then
7. record the occurrence time of node sj;
8. end if;
9. end for;
10. Find out the smax which denotes the maximum number of occurrences of generic point;
11. The node smax can be added in the set of RS;
12. V “ V ´ tVkpPLi, Sq|smax P PLiu;
13. end while.

4. Multi-Hop Transmission and Synchronization

Since the energy consumption of data transmission increases exponentially with the distance
between nodes, it is necessary to form a backbone network among the nodes in the cluster head and the
hot spot area to realize the multi-hop communication so as to save energy consumption. In this paper,
a particle swarm optimization algorithm is designed, which makes use of a multi-objective adaptive
value function to find the optimal routing tree and satisfy the minimum energy consumption condition.

4.1. Fitness Function

In the case of the particle swarm optimization algorithm applied to the problem domain, the set of
fitness functions is directly determined by the selection and removal of the transmission path. In order
to minimize the energy consumption of the whole network, the design of the fitness function should
satisfy the following two conditions: (1) The distance between the nodes of any hop should be as small
as possible; (2) The maximum number of hops in the monitored area should be as small as possible.
Therefore, the fitness function can be constructed as:

#

f itness “ w1 ˚MaxDist`w2 ˚MaxHops`w3 ˚Direc
0 ď wi ď 1,

ř

wi “ 1
(14)

where w1, w2 and w3 are the distance factor, the hop factor and the direction factor, respectively.
MaxDist is the maximum communication distance between any adjacent two-hop nodes in the
monitoring area, MaxHops is the maximum number of hops in all transmission paths, and Direc
denotes the deviation angle between the source node and the relay node.
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4.2. Initialization of Particle Swarm Optimization

The particle is defined as the different paths of the data transmission, and each particle’s dimension
M is the same, which is corresponding to the number of cluster heads in a cell in the upper Voronoi
diagram. The position of particle i is initialized of Pospi, σq randomly, Pospi, σq P Randr0, 1s and
1 ď σ ď M. The method of selecting the next hop node Sd for node SS is as follows:

sd “ IndexpNextHoppssq, nq (15)

where IndexpNextHoppSSq, nq is the index function of returning the value of the nth cell in the set
NextHoppSSq. NextHoppSSq denotes the candidate nodes for the next-hop, and the value of n is
determined by the formula:

n “ rPospi, σqˆ|NextHoppssqs (16)

In the phase of data communication, the specific steps of using particle swarm optimization
algorithm to select the optimal path are as follows:

Step 1: Initialize the particle i per dimension with random velocity Pospi, σq;
Step 2: Mapping particle i routing tree;
Step 3: According to the routing tree can obtain MaxDist and MaxHops;
Step 4: Calculate the fitness value f itnesspPospi, σq of each particle;
Step 5: Finding the individual extreme value Pbest_i and the global extreme value Globalbest;
Step 6: Update the speed and position of the particles and make the corresponding adjustment;
Step 7: Repeat Steps 2 to 6 until the threshold number of iterations;
Step 8: According to the individual extreme value and the global extreme value in Step 5, the

optimal path from node i to the relay node can be determined.

4.3. Precision Time Synchronization Model

In distributed systems, different nodes have their own local clock. Due to the frequency of
different nodes of the crystal oscillator frequency deviation, as well as temperature changes and
electromagnetic interference and so on, their time clock will gradually deviats even if at a certain
moment all nodes can achieve time synchronization. In the multi-hop mode, time synchronization
issues need more attention in order to ensure that the data collected by different clusters can be
accurately reached by the relay nodes.

The precision clock synchronization protocol (PTP) is a high precision time synchronization
protocol which is applied in industrial measurement and control system. In the process of network
communication, its synchronization accuracy can still be controlled below the subtle level, which can
effectively meet the requirements of real-time performance in distributed systems. In this paper, the
basic mechanism of multi-hop time synchronization is designed based on the PTP protocol idea, and
the time stamp exchange of PTP protocol in multi-hop mode is shown in Figure 4.
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The horizontal axis represents the time interval, and demonstrates the process while the cluster
head nodes forward data packets to a relay node in single hop or multi-hop manner. For the time
synchronization in the first hop, CHk´1 is the slave node of CHk. However, the role of CHk´1 will
become the master node for CHk´2, and so on. Actually, there exists a clock offset between the master
and slave nodes, and time delay happens in the process of packet switching. If the slave nodes and the
master node can calculate the clock offset by exchanging time stamps, the time synchronization can
be achieved.

The basic principle is that the slave node can calculate the clock offset θ through the exchange
message from the master node, which contains the time stamp information, then estimate the actual
time of the master node and adjust the local clock. The time stamp exchange process of PTP protocol is
shown in Figure 4. As can be seen from the Figure 4, t1 and t2 are the time stamps of a master node
and slave node during an interaction for time synchronization respectively. t3 and t4 represent the
time stamps of a master node and slave node derived from the delay request message in the following
process. Considering the asymmetry of the transmission delay between the master and slave nodes,
a linear equation set is established for the PTP synchronous packet switching process:

#

t2 “ t1 ` θ ` dms

t4 “ t3 ´ θ ` dsm
(17)

Then:

θ “
pt2 ´ t1q ´ pt4 ´ t3q

2
`

dsm ´ dms

2
(18)

Similarly, time synchronization in multiple rounds can be derived from the above function. While
the time synchronization happens at the round t, the clock offset between the master node and slave
node can be expressed as:

θt “
1
t

t
ÿ

i“1

rtpiq2 ´ tpiq1 s ´ rt
piq
4 ´ tpiq3 s

2
` ∆d (19)

where ∆d “ dsm´dms
2 is a Gauss random variable with mean value of 0 and the variance of σ2

d{2.
In the process of synchronous packet transmission, the discrete clock model is adopted to resolve

the optimization problem in the case of the noise being doped [44,45]. Then, the time deviation of
Receiver-Only synchronization mode can be given as:

#

θptq “ θpCHk, ∆tq ´ θpCHk´1, ∆tq ` αrtsτrts ` vr∆ts

∆ptq “ trθpCHk, tq ´ θpCHk, t´ 1qs, rθpCHk´1, tq ´ θpCHk´1, t´ 1qsu
(20)

Once monitoring the SYNC message, the slave node begins to calculate the length of the
synchronization beacon, count the number of synchronized packets received and the measure the
transmission delay. Furthermore, it can track the unstable clock drift of the master node to maintain
the minimum offset state by Calman information gain. When the observation noise is σ2

v , the gain
formula is as follows:

GFpCHk, CHk´1q “

d

ř

SYNCpCHk, CHk´1q ˆ θptq
σ2

v `
ř

SYNCpCHk, CHk´1q ˆ θ2ptq
(21)

where SYNCpCHk, CHk´1q denotes the length of the synchronization beacon between CHk and CHk´1
in every time of synchronization.

When the synchronous data packet transmission is finished, the clock drift can be obtained by
the formula:

θ̂rts “ θ̂rt´ 1s ` GFpCHk, CHk´1q ˆ θr∆ts (22)
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Therefore, the clock offset of the node can be tracked in a timely manner, and the synchronization
error can be accurately calculated to obtain a relatively small clock offset.

5. Simulation Results

This study uses a simulation for performance evaluation of the proposed protocol, which uses the
network simulation software NS2 [46] to set up the model and environment needed by the experiment.
In the experiment, we assume that the sensor nodes are distributed in a square area, and the location
of each sensor node is randomly generated. In order to reduce the error, we repeat the experiment
100 times.

Figure 5 shows the placement of relay nodes and their coverage area in CoDA, HCDD [47], and
DDB [48], where there are 200 sensor nodes distributed in the field of four square sides with a length
of 400 m.
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Figure 5. The placement of relay nodes in different protocols.

By comparison, we can find that the number of relay nodes in CoDA is 14, which is a minimum
feasible topology for relay nodes. Also, HCDD and DDB can achieve the coverage of the whole network
by deploying more relay nodes, but the number of relay nodes is 16 and 17, respectively. Next, the
number of relay nodes required by each algorithm is analyzed under different experimental scenarios.
Two sets of experiments are carried out, where the communication radius of the sensor nodes is set
to 50 m, and the communication radius of the relay node is 100 m. The number of sensor nodes
deployed in the network increased from 200 to 800. The tests were repeated 10 times, respectively,
and the average number of required relay nodes was obtained. Figure 6a,b show the number of relay
nodes required for each algorithm with different node density, where the horizontal axis represents
the number of sensor nodes and the vertical axis represents the number of relay nodes. In the first
scenario of experiments, the density of the sensor is set to 0.25, and the density of the sensor is 0.5
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in the second scenario. It can be seen that the number of relay nodes for each algorithm has a linear
increasing trend under the condition that the distribution density of sensor nodes is constant.
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As it can be seen from the Figure 6, the number of relay nodes demonstrates a linear increasing
trend under the condition that the distribution density of sensor nodes being kept constantly. When
the number of sensor nodes is equal, the number of relay nodes in HCDD is of the most, and the
least number of relay nodes in CoDA can cover most of the area. According to the slope of the graph,
with the increase of the number of sensor nodes, the gap between the numbers of relay nodes being
arranged in the three algorithms is more and more large. By contrast between Figure 6a and 6b, we can
observer that the greater the distribution density is, the fewer the number of relay nodes need to be
arranged, which demonstrates the characteristic of geometric coverage for the relay node arrangement.
Next, the number of relay nodes generated by different protocols is analyzed under the condition
that the region size is fixed and the radius of the relay node is different. In two scenarios, the sensor
nodes are evenly distributed in the 800 m ˆ 800 m fixed area. The sensor node communication radius
r = 50 m, the communication radius of relay node is 100 m and 200 m. As shown in Figure 7a,b, with
the increase of the density of sensor nodes, the number of nodes generated is gradually increased, and
the rate of growth slows down gradually in the fixed area. It can be observed that the distribution
density is sensitive to the variation of R.Sensors 2016, 16, 1235 16 of 22 
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Figure 7. Comparison of number of relay nodes in different coverage radius.
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Coverage rate is usually regarded as an index for measuring the quality of service [49,50].
Here, We define it as a proportion of active nodes in the network at a certain time t, i.e.,
Covptq “ 1´ nbptq

N , where nbptq is the number of nodes out of range of arbitrary relay nodes. In this
test, the transmission radius of all relay nodes is fixed so as to analyze the relationship between the
coverage rate and the number of relay nodes in different protocols.

Figure 8a shows the variation of coverage rate. It can be seen that the stability of DBB and CoDA
is relatively better than HCDD, and they can maintain a high coverage rate. When the number of
nodes is small, the coverage rate of HCDD can be maintained at a stable level. However, with the
increase of the number of nodes, the coverage rate fluctuates greatly, which shows that the algorithm is
greatly affected by the node’s transmission radius. Figure 8b shows the corresponding number of relay
nodes. We can find that the deployment of relay nodes increases rapidly and thus achieves a higher
coverage rate in DDB while the node density increases. In other words, the coverage rate of DDB is
implemented by generating more relay nodes. It will cause too much redundancy of relay nodes and
may result in serious communication interference. The number of relay nodes in CoDA is relatively
stable at this point and indicates the reasonable deployment of relay nodes and topology control can
realize the high coverage.
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Figure 8. Comparison of relationship between the coverage rate and the number of relay nodes.

Further, we analyze the data collecting path length. Because those protocols are all applied
with multi-hop transmission, we do not constrain the communication radius of relay nodes in the
experiments. Then, the communication radius are adaptively adjusted in each protocol using the most
energy-efficient way, and average hop count is statistically evaluated. As shown in Figure 9, we can
see the increase of the number of nodes, the hop corresponding growth trends. While the node number
reaches 1000, the path hops of HCDD has increased more than 10. As a consequence, this inevitably
leads to high network latency and it can’t be better adaptive to the delay-sensitive applications with
HCDD protocol. On the other hand, the basic hops of CoDA protocol for data acquisition can always
keep within five hops. In conclusion, the cluster head can forward packets to the relay node via other
cluster heads and this reduces the number of forwarding steps, which may benefit from the relay
nodes of reasonable deployment, reasonable planning for the lower level Voronoi diagram, and the
application of particle swarm optimization.
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Figure 9. Comparison of average path length.

In order to analyze the equilibrium characteristics of the node average energy consumption, we
deploy 200 nodes with unique identification numbers and analyze the average energy consumption of
these nodes in 100 rounds [51,52]. The average energy consumption of nodes with different number
of sensors is shown in Figure 10. From the result, we can see that the node’s energy consumption of
CoDA is more balanced rather than the HCDD and DDB. This is because the CoDA can manage the
nodes hierarchically via double Voronoi diagram. Meanwhile, the CoDA can determine the cluster
heads via the optimal clustering method. As a result, the node average energy consumption remains
at a lower level. At the same time, the cluster heads can also balance well the energy consumption
of different cluster heads in multi-hop transmission mode through the optimized path forwarding to
relay nodes, which can avoid the overloaded energy consumption.
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Figure 10. Comparison of average energy consumption of sensor nodes.

The energy consumption of the each node is shown in Figure 11, and the energy consumption of
the top 20 clusters is more comparable to the latter. The energy consumption in HCDD and CoDA is
more smooth and lower than in DDB. The DDB protocol adopts the polling mode method to select
cluster heads with same probability, and there may be a chance that a cluster head will die earlier
and cause the hot-spot problem. The HCDD and CoDA algorithms in the cluster head selection are
conditional and relatively stable. By searching for the solution for minimizing the maximum distance
between adjacent nodes and the maximum number of hops simultaneously, CoDA obtains the optimal
path for cluster heads to deal with inter-cluster communication. Therefore, it has a better effect on
energy consumption.
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Finally, the synchronization error and overhead of the CoDA and DDB protocol are analyzed.
The time derivation is set as sending node broadcasts a message until it being receives by the destination
node. Figure 12 shows the synchronization error comparison. Each error variable is independent and
follows the Gauss distribution. In the early stage of synchronization, the synchronization error of the
two protocols is not quite different. With the time elapse, it can be observed that CoDA demonstrate
much better than DDB in aspect of synchronization error, and the variation range of error value is
stable and narrow.
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Figure 13 shows the comparison of cumulative synchronization error of different protocols. In the
experiment, the synchronization of 4 hops is set up, and the simulation time is limited to 120 s. In the
initial stage, DDB can obtain relatively better precise synchronization than CoDA. Generally, the
differences of cumulative synchronization error between DDB and CoDA are not significant. With the
passage of time, the cumulative synchronization error demonstrates an increasing trend.
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As shown in Figure 14, the CoDA and DDB algorithms are compared to the synchronization
overhead. Before the burst packet is sent, the RTS packet is 20 bytes, CTS is 14 bytes, the data frame
is 2346 bytes. Besides, the reply message is a fixed length. Therefore, the effect of RTS/CTS on the
convergence rate is very small. From the experimental results, it can be seen that the number of
synchronous information packets of CoDA can be controlled at a lower level with the increase of the
node. That is because the inter-cluster communication by multi-hop mechanism in CoDA can reduce
a large number of overhead packets compared to DDB, which can reduce the power consumption
of cluster heads. In addition, the number of synchronization messages is related to the number of
nodes in the network. The number of nodes is more, the greater the synchronization overhead is.
In general, the CoDA has the advantages of less accumulation error, high synchronization accuracy
and good availability.
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6. Conclusions

Topology control is a basic problem in wireless sensor networks, and it is also one of the
important supporting technologies for large-scale applications. By means of reasonable topology
control mechanism, the networks can work stably and effectively, thus extending their lifetime and
reducing communication countermeasures. In this paper, a bio-level Voronoi diagram is proposed,
which is a high energy efficiency data collection protocol that integrates topology control, MAC
and routing. The research of this paper can provide a topology control mechanism and methods
of network planning and dynamic maintenance. Also, it offer a powerful optimization mechanism
and application example for research on variable, complex constraints and real-time requirements in
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large-scale and complex networks, therefore, our work has both a certain theoretical significance and
practical application value.
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