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Abstract: In this paper, a smartphone-based lung function test, developed to estimate lung function
parameters using a high-resolution time-frequency spectrum from a smartphone built-in microphone
is presented. A method of estimation of the forced expiratory volume in 1 s divided by forced vital
capacity (FEV1/FVC) based on the variable frequency complex demodulation method (VFCDM) is
first proposed. We evaluated our proposed method on 26 subjects, including 13 healthy subjects
and 13 chronic obstructive pulmonary disease (COPD) patients, by comparing with the parameters
clinically obtained from pulmonary function tests (PFTs). For the healthy subjects, we found that an
absolute error (AE) and a root mean squared error (RMSE) of the FEV1/FVC ratio were 4.49%± 3.38%
and 5.54%, respectively. For the COPD patients, we found that AE and RMSE from COPD patients
were 10.30% ± 10.59% and 14.48%, respectively. For both groups, we compared the results using
the continuous wavelet transform (CWT) and short-time Fourier transform (STFT), and found that
VFCDM was superior to CWT and STFT. Further, to estimate other parameters, including forced vital
capacity (FVC), forced expiratory volume in 1 s (FEV1), and peak expiratory flow (PEF), regression
analysis was conducted to establish a linear transformation. However, the parameters FVC, FEV1,
and PEF had correlation factor r values of 0.323, 0.275, and −0.257, respectively, while FEV1/FVC
had an r value of 0.814. The results obtained suggest that only the FEV1/FVC ratio can be accurately
estimated from a smartphone built-in microphone. The other parameters, including FVC, FEV1, and
PEF, were subjective and dependent on the subject’s familiarization with the test and performance of
forced exhalation toward the microphone.

Keywords: smartphone microphone; pulmonary function test; FEV1/FVC; COPD; high-resolution
time-frequency

1. Introduction

Lung diseases are some of the most common medical conditions [1]. Many people suffer from
lung diseases stemming from smoking, infections, and genetics. The lungs are the primary organs
expanding and relaxing thousands of times each day to bring in oxygen and push out carbon dioxide.
As one inhales, the breath travels through the mouth or nose to the windpipe and lungs, and further
moves through smaller tubes to deliver oxygen throughout the organ. A number of lung diseases
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adversely affect lung function by affecting the airways. These include asthma, chronic obstructive
pulmonary disease (COPD), chronic bronchitis, emphysema, acute bronchitis, and cystic fibrosis [2].

For lung function evaluation, pulmonary function tests (PFTs) have found widespread clinical
use. PFTs can help diagnose asthma, allergies, chronic bronchitis, respiratory infections, lung fibrosis,
bronchiectasis, and COPD by evaluating how well the lungs take in and release air. For basic PFTs,
a spirometer is the main piece of equipment, and an important clinical diagnostic device that should
be used by all primary care and most specialist physicians [3]. Indeed, it was reported that 66% of
primary care offices owned and used their own spirometer at the primary contact point. This low
amount should reflect, in part, the need for alternatives to the spirometer [4,5]. A standard spirometer
measures forced expiratory flow and displays a volume-time curve and a flow–volume loop (or curve),
as shown in Figure 1. From the measurements, the following parameters are quantized: the forced
vital capacity (FVC); the forced expiratory volume in one second (FEV1); the FEV1/FVC ratio; the peak
expiratory flow (PEF); the forced expiratory flow at 25%, 50%, or 75% of FVC (FEF25, FEF50, and FEF75);
and the forced expiratory flow between 25% and 75% (FEF25%–75%) [6–8]. All of these parameters are
clinically important in assessing lung function.
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Figure 1. Examples of forced expiratory flow measure, (a) volume-time plot; and (b) volume–flow
plot [7].

Among these parameters, the most common clinical measures are FVC, FEV1, FEV1/FVC, and
PEF, as they are used to quantify the degree of airflow limitation in chronic lung diseases, such
as asthma, COPD, and cystic fibrosis. The FEV1/FVC ratio has been widely accepted, especially
for assessing COPD, which obstructs the main airway. In 1983, the European Community for Coal
and Steel (ECCS) initially defined airway obstruction with an FEV1/FVC ratio below the lower fifth
percentile of a large healthy reference group, which is the statistically-defined lower limit of normal
(LLN) [9]. The same definition was followed by the American Thoracic Society (ATS) in 1991 [10],
the European Respiratory Society (ERS) in 1993 [11], and the National Lung Health Education Program
(NLHEP) in 2000 [12]. Depending on the organization and year, the definition has occasionally been
modified by using a fixed value instead of the LLN. In 1987, ATS defined airway obstruction with an
FEV1/FVC ratio lower than the fixed value of 0.75 [13], followed by the British Thoracic Society (BTS)
with 0.70 in 1997 [14], the National Institute for Health and Clinical Excellence (NICE) with 0.75 in
2004 [15], the ATS and ERS with 0.70 in 2004 [16], and the Global Initiative for Chronic Obstructive
Lung Disease (GOLD) with 0.75 in 2007 [15]. In this way, the FEV1/FVC ratio has been a widely
accepted standard for assessing COPD, as summarized in Table 1 [15].
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Table 1. Criteria for assessing COPD according to various organizations [15].

Organization Year Criterion/Reference

ECCS 1983 FEV1/FVC < LLN [9]
ATS 1987 FEV1/FVC < 0.75 [13]
ATS 1991 FEV1/FVC < LLN [10]

ECCS/ERS 1993 FEV1/FVC < LLN [11]
BTS 1997 FEV1/FVC < 0.70 and FEV1 < 80% predicted [14]

NLHEP 2000 FEV1/FVC < LLN and FEV1 < LLN [12]
NICE 2004 FEV1/FVC < 0.75 and FEV1 < 80% predicted [15]

ATS/ERS 2004 FEV1/FVC < 0.70 post-bronchodilator [16]
GOLD 2007 FEV1/FVC < 0.75 post-bronchodilator [15]

Home spirometry may provide the convenient way for patients who live great distances from their
clinics and research facilities. It also allows patients to monitor more frequently for detecting changes
in lung function, which results in in earlier treatment of exacerbations, more rapid recovery, reduced
healthcare cost, and improved outcomes [17,18]. Even though there are portable spirometers available,
they are expensive, which limits the popularity to many people. Since the smartphone is popular
and capable for users to measure forced exhalation with its built-in microphone, it can be a cheap
home spirometer available to smartphone users. In addition, since smartphone technology has the
capacity for users to communicate with physicians (e.g., using cloud technology), smartphone-based
home spirometry has the potential in providing early diagnosis of lung disease for those who may
have breathing problems on a day-to-day basis [19–23]. Recently, a smartphone-based approach that
measures lung function using the built-in microphone has been introduced [24]. In their pilot study, the
researchers demonstrated the extraction of the FVC, FEV1, PEF, and FEV1/FVC parameters. However,
the approach used the spectrogram of the signal based on the short-time Fourier transform (STFT)
with 30 ms frames. The STFT has a limitation in its time-frequency resolution capability, which is due
to the uncertainty principle. The Heisenberg-Gabor inequality states that the time–bandwidth product
of a signal is the lower bound by some constant. This means that a signal cannot be simultaneously
narrow in time and frequency domains. These limitations in resolution were one of the reasons for the
invention of wavelet theory. Recently, the variable frequency complex demodulation method (VFCDM)
has shown a higher resolution than any other time-frequency spectrum methods, such as the smoothed
pseudo Wigner-Ville (SPWV), short-time Fourier transform (STFT), and the wavelet transform (WT)
methods [25–28].

In this paper, VFCDM-based lung function parameter estimation is presented by using an audio
signal recorded from a smartphone built-in microphone. The estimation method of the FEV1/FVC
ratio is first presented, and the accuracy of the VFCDM is then compared with that of CWT and
STFT. The main contribution is to introduce the smartphone built-in microphone-based FEV1/FVC
ratio estimation by using the high-resolution time-frequency spectrum, VFCDM, which accurately
detects the main time-varying resonance frequency. To evaluate our proposed method, we compared
the estimated FEV1/FVC ratio with the parameters clinically obtained from PFTs. In addition,
we evaluated the other parameter estimation of FVC, FEV1, and PEF.

2. Materials and Methods

2.1. Subjects

Twenty-six subjects took part in this study, including 13 healthy subjects and 13 COPD patients.
The healthy subjects (10 males, three females), with ages ranging from 24–47 years (30.85 ± 7.74;
mean ± STD), had an average weight of 68.15 ± 16.01 kg and an average height of 170.23 ± 9.18 cm.
The COPD patients (10 males, three females), with ages ranging from 51–89 years (71.92 ± 10.49),
had an average weight of 61.00 ± 10.54 kg and an average height of 163.00 ± 6.30 cm. They were all
severe COPD. Table 2 lists the subject details including their average lung function parameters. The
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study protocol and data analysis were approved by the Institutional Review Board (IRB) at Wonkwang
University Hospital (WKUH), and all subjects consented to participate in the experiment. Since the
forced expiration could aggravate certain medical conditions, individuals with the following medical
conditions were excluded: hemoptysis of unknown origin; pneumothorax; angina; recent myocardial
infarction; thoracic, abdominal, and cerebral aneurysms; cataracts or recent eye surgery; recent thoracic
or abdominal surgery; nausea; vomiting; acute illness; and recent viral infection.

Table 2. Subjects’ information.

Subjects Healthy Patient Total

(n = 13) (n = 13) (n = 26)

Gender (n)
Male 10 Male 10 Male 20
Female 3 Female 3 Female 6

Age (years) 30.85 ± 7.74 71.92 ± 10.49 51.35 ± 22.85
Height (cm) 170.23 ± 9.18 163.00 ± 6.30 166.58 ± 8.51
Weight (kg) 68.15 ± 16.01 61.00 ± 10.54 64.58 ± 13.77
FVC (Liters) 4.89 ± 1.09 2.64 ± 0.82 3.77 ± 1.49
FEV1 (Liters) 4.02 ± 0.84 1.25 ± 0.52 2.63 ± 1.57
PEF (Liter/s) 10.62 ± 3.09 2.97 ± 1.06 6.80 ± 4.51

FEV1/FVC (%) 87.77 ± 6.61 48.31 ± 15.32 65.54 ± 21.03

Values are means ± standard deviations.

2.2. Data Collection and Preprocessing

The participants were instructed to follow the rules before the spirometry test [29]:

• Do not smoke during the hour before the test;
• Do not drink alcohol during the four hours before the test;
• Do not eat a large meal during the two hours before the test;
• Please wear loose clothing;
• Do not perform vigorous exercise within 30 min of the test; and
• If on puffer (inhaler) medication, you may be asked to refrain from taking it for a few hours before

the test.

The audio data was measured and collected using an iPhone 5S (manufactured by Apple Inc.,
Cupertino, CA, USA). The subjects’ forced exhalation sounds were recorded using the built-in
microphone and converted into digital audio signals at a sampling rate of 44,100 Hz. The subjects
were required to breathe in their full lung capacity and then forcefully exhale as much air from the
lungs as possible through the mouthpiece (normally taking over 6 s). The mouthpiece was attached
to the iPhone microphone using a custom-made 3D-printed adapter (see Figure 2a,b). To achieve the
spirometry measurement, much effort has been carried out on the vortex whistle [30–33]. We modified
the vortex whistle available for the smartphone built-in microphone. The mouthpiece used in this
experiment was VBMax PFT Filter 33 mm from A-M Systems (Sequim, WA, USA). The adapter was
printed with polylactic acid (PLA) material. It is an end-opened device which allows the air to pass
through to the microphone and exit freely at the end. Rubber material was inserted between the
mouthpiece and an adapter to prevent air leakage. The mouthpiece plays an important role because
it essentially helps to maintain lip posture, fixes the distance between the lips and the microphone,
and reduces surrounding background noise by guiding the airflow directly towards the microphone.
Furthermore, it attaches and detaches easily to an iPhone 5S for an older person, and enables the
test to be performed in the same manner as that performed with clinical equipment at a hospital.
The clinical test was performed at Wonkwang University Hospital and the smartphone-based test
was performed in an open-space environment. Participants performed the clinical tests followed
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by smartphone-based test under two trained pulmonologists. Performing clinical test at first allows
participants to familiarize with the smartphone-based test. Participants performed three trial tests
with the smartphone, as shown in Figure 2c. Each test was completely effort-dependent, and each
participant was instructed by a trained specialist using gestures. The original audio signals with a
sampling rate of 44,100 Hz were down-sampled to 2450 Hz, and a seventh-order elliptic low-pass
filter with a cutoff frequency of 800 Hz was applied to remove unwanted signal components. These
parameters were found based on the prior-evaluation tests under a very quiet room without any noise
interference. In addition, to reduce the computational complexity, we down-sampled the signal to
2450 Hz, which still preserved the recorded data. Among the three trials from the smartphone-based
test, the parameter set was selected based on the Morris/Polgar standards [34–37] under the two
trained pulmonologists. The participants also performed three trial tests with clinical equipment as
a reference, with some times between tests to allow recovery to a rested condition. The pulmonary
function test (PFT) data was captured using Vmax software version IVS-0101-21-2B (manufactured by
CareFusion Corporation, San Diego, CA, USA), which automatically provided the PFT parameters.
Each participant performing PFT was seated in the cabin of a Vmax Autobox (Body Plethysmography
System, V62J) manufactured by CareFusion, and performed the test.
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2.3. Resonance Frequency Estimation Using High Resolution Time-Frequency Spectrum

Using the audio signal, we analyzed the dominant frequency of the forced exhalation sound by
using the variable frequency complex demodulation (VFCDM) method [26]. The VFCDM method
has shown higher resolution than any other time-frequency spectrum methods, such as smoothed
pseudo Wigner-Ville (SPWV), short-time Fourier transform (STFT) and wavelet transform (WT)
methods [25–28]. Considering a sinusoidal signal x(t) to be a narrow band oscillation with an
instantaneous amplitude A(t), a center frequency f0, a phase ϕ(t), and a direct current component dc(t):

x(t) = dc(t) + A(t)cos(2π f0t + ϕ(t)) (1)

For a given center frequency, information on the instantaneous amplitude A(t) and phase ϕ(t) are
extracted by multiplying Equation (1) by e−j2π f0t, providing the following formula:

z(t) = x(t)e−j2π f0t = dc(t)e−j2π f0t +
A(t)

2
ejϕ(t) +

A(t)
2

e−j(4π f0t+ϕ(t)) (2)
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The shift by e−j2π f0t results in moving the center frequency, f0, to zero frequency in the spectrum
of z(t). If z(t) in Equation (2) is subjected to an ideal low-pass filter (LPF) with a cutoff frequency
fc < f0, the filtered signal zlp(t) contains only the component of interest, and the following formulae
are obtained:

zlp(t) =
A(t)

2
ejϕ(t) (3)

A(t) = 2
∣∣∣zlp(t)

∣∣∣ (4)

ϕ(t) = dc(t) + A(t)cos(
∫ t

0
2πf(τ)dτ+ ϕ(t)) (5)

The acoustic signal x(t) contains the modulating frequency, which changes according to time.
Therefore, x(t) can be formulated as:

x(t) = dc(t) + A(t)cos(
∫ t

0
2π f (τ)dτ + ϕ(t)) (6)

Similarly, multiplying Equation (6) by e−j
∫ t

0 2π f (τ)dτ provides the instantaneous amplitude, A(t),
and instantaneous phase, ϕ(t):

z(t) = x(t)e−j
∫ t

0 2π f (τ)dτ = dc(t)e−j
∫ t

0 2π f (τ)dτ +
A(t)

2
ejϕ(t) +

A(t)
2

e−j(
∫ t

0 4π f (τ)dτ+ϕ(t)) (7)

From Equation (7), when z(t) is filtered with an ideal LPF with a cutoff frequency fc < f0, the
filtered signal zlp(t) contains the same instantaneous amplitude A(t) and phase ϕ(t) as in Equations (4)
and (5). Details regarding the VFCDM algorithm are described in [26].

Figure 3 shows an example of the main procedure to obtain the volume-flow curve and
time-volume curve from the audio signal, as well as the comparison among the resultant time-frequency
spectra of VFCDM, CWT, and STFT. Figure 3a shows the original audio signal with a sampling rate of
44,100 Hz from the built-in microphone. The original audio signal was then down-sampled to 2450 Hz,
and the seventh-order elliptic LPF with a cutoff frequency of 800 Hz was applied. Figure 3b–d show the
resultant time-frequency spectra using VFCDM, CWT, and STFT, respectively. The filter parameters of
the VFCDM were with the bandwidth Fw = 0.03 Hz (normalized frequency) and the length of the filter
Nω = 64. For CWT, the Morlet wavelet scalogram was chosen with the lowest and highest normalized
frequencies set to 0.01 Hz and 0.5 Hz. Morlet wavelet transform allows multi-resolution analysis in
the time-frequency domain of a non-stationary, transient signal. For STFT, the data was buffered into
30 ms frames and shifted by every sample. Each frame is then windowed using a Hamming window
and then computed the magnitude squared of the FFT to produce a spectrogram. In Figure 3b,d
the frequencies providing the maximum power for each sample, with an interval of 1/2450 s, are
also plotted. These show that VFCDM provides a higher resolution in both time and frequency
than CWT and STFT. With the time-frequency spectrum from VFCDM, we plotted maximum power
versus accumulated maximum power, as shown in Figure 3e, which shows a similar pattern to the
flow-volume curve depicted in Figure 1b. In addition, we plotted the accumulated maximum power
versus the sample (time), as shown in Figure 3f, which shows a similar pattern to the volume-time
curve depicted in Figure 1a.
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Figure 3. Main procedure to obtain flow-volume curve and volume-time curve from healthy subjects
and comparison of VFCDM, CWT, and STFT: (a) original audio signal; (b) resultant time-frequency
spectrum from VFCDM; (c) resultant time-frequency spectrum from CWT; (d) resultant time-frequency
spectrum from STFT; (e) maximum power vs. accumulated maximum power from VFCDM; and
(f) accumulated maximum power vs. time from VFCDM.
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2.4. Instantaneous Power and Performance Evaluation

VFCDM, CWT, and STFT were applied for the estimation of the FEV1/FVC ratio for healthy
subjects (N = 13) and COPD patients (N = 13). To investigate the effect of instantaneous power,
the summation of power values equal to or greater than a varying percentage THP of the maximum
power at each sample was considered. THP was altered to 50%, 70%, 80%, 90%, and 100%, and
the estimated FEV1/FVC ratio was evaluated. Using the power summation for each sample, power
summation vs. accumulated power summation was plotted representing the flow–volume curve, and
time vs. accumulated power summation was plotted representing the volume-time curve.

To further investigate the VFCDM based estimation of the other lung function parameters
including FVC, FEV1, and PEF, the values of total power, total power in 1 s, and global maximum
power were extracted, each of which corresponds to FVC, FEV1, and PEF, respectively. The extracted
parameters are denoted by SFVC, SFEV1, and SPEF. It was assumed that SFVC, SFEV1, and SPEF were
related by the following linear transformation:

TFVC ≈ SFVC = KFVC·EFVC + CFVC (8)

TFEV1 ≈ SFEV1 = KFEV1·EFEV1 + CFEV1 (9)

TPEF ≈ SPEF = KPEF·EPEF + CPEF (10)

where TFVC, TFEV1, and TPEF are the reference values, and SFVC, SFEV1, and SPEF are the estimated
values of FVC, FEV1, and PEF, respectively. All the reference values were obtained from the clinical
results. EFVC is the summation of maximum power (THP = 100%) for the entire recorded samples,
EFEV1 is the summation of maximum power for the first one second, and EPEF is the global maximum
power in the entire recorded samples; KFVC, KFEV1, and KPEF are the scaling constants; and CFVC,
CFEV1, and CPEF are offset constants. For each equation, we have a dependent variable corresponding
to a reference value and an independent variable corresponding to a predictor. Then, the relationship
with the constant values between a dependent variable (TFVC, TFEV1, or TPEF) and an independent
variable (EFVC, EFEV1, or EPEF) can be estimated by linear least squares regression. Statistical analyses
were performed using IBM SPSS Statistics for Windows, version 22.0 (manufactured by IBM Corp.,
Armonk, NY, USA, 2012). Pearson’s correlation coefficients were used for performing linear regression
analysis. For comparison with the correlation coefficient from the FEV1/FVC ratio, we similarly
formulated the linear transformation as:

TFEV1/FVC ≈ SFEV1/FVC = KFEV1/FVC·EFEV1/FVC + CFEV1/FVC (11)

where EFEV1/FVC = EFEV1/EFVC.
For the evaluation, we used absolute error (AE) and root mean squared error (RMSE) defined by:

Absolue error (AE) = |EFEV1/FVC − TFEV1/FVC| (12)

Root Mean Squared Error (RMSE) =

√
∑

(EFEV1/FVC − TFEV1/FVC)
2

N
(13)

where N is the number of subjects; and EFEV1/FVC and TFEV1/FVC are the estimated FEV1/FVC ratio
and its reference value, respectively.

3. Results

3.1. Estimation of FEV1/FVC Ratio

Figure 4a–c show the absolute error distributions of the estimated FEV1/FVC ratios from healthy
subjects according to THP based on VFCDM, CWT and STFT, respectively. The central red circle
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mark is the median, the lower and upper whiskers are the 25th and 75th percentiles, the blue square
marks are the 10th and 90th percentiles, and the blue diamond marks are the 5th and 95th percentiles.
A significant difference between VFCDM and CWT at p < 0.01 was found based on the t-test. Similarly,
a significant difference between VFCDM and STFT was found. In addition, it was found that the
absolute error decreased as THP increased up to 100% for all VFCDM, CWT, and STFT. Thus, VFCDM
with THP = 100% provided the best accuracy for the FEV1/FVC ratio estimation. Table 3 summarizes
the absolute error (AE) and RMSE values from healthy subjects according to THP for VFCDM, CWT,
and STFT, respectively. It shows that RMSE from VFCDM with THP = 100% is 2.07 and 2.19 times
lower than the CWT and STFT with THP = 100%, respectively. For mean AE, VFCDM with THP = 100%
provided 2.39 and 2.57 times lower than CWT and STFT with THP = 100%, respectively.

Sensors 2016, 16, 1305 8 of 16 

 

ிܶாଵ/ி ≈ ܵிாଵ/ி = ிாଵ/ிܭ · ிாଵ/ிܧ +  ிாଵ/ி (11)ܥ

where ܧிாଵ/ி =  .ிܧ/ிாଵܧ
For the evaluation, we used absolute error (AE) and root mean squared error (RMSE) defined 

by: Absolue	error (AE) = หܧଵ/େ − ܶଵ/େห (12) 

Root Mean	Squared	Error (RMSE) = ඨ(ܧଵ/େ − ܶଵ/େ)ଶܰ  (13) 

where N is the number of subjects; and ܧଵ/େ and ܶଵ/େ are the estimated FEV1/FVC ratio 
and its reference value, respectively.  

3. Results  

3.1. Estimation of FEV1/FVC Ratio 

Figure 4a–c show the absolute error distributions of the estimated FEV1/FVC ratios from healthy 
subjects according to THP based on VFCDM, CWT and STFT, respectively. The central red circle mark 
is the median, the lower and upper whiskers are the 25th and 75th percentiles, the blue square marks 
are the 10th and 90th percentiles, and the blue diamond marks are the 5th and 95th percentiles. A 
significant difference between VFCDM and CWT at p < 0.01 was found based on the t-test. Similarly, 
a significant difference between VFCDM and STFT was found. In addition, it was found that the 
absolute error decreased as THP increased up to 100% for all VFCDM, CWT, and STFT. Thus, VFCDM 
with THP = 100% provided the best accuracy for the FEV1/FVC ratio estimation. Table 3 summarizes 
the absolute error (AE) and RMSE values from healthy subjects according to THP for VFCDM, CWT, 
and STFT, respectively. It shows that RMSE from VFCDM with THP = 100% is 2.07 and 2.19 times 
lower than the CWT and STFT with THP = 100%, respectively. For mean AE, VFCDM with THP = 100% 
provided 2.39 and 2.57 times lower than CWT and STFT with THP = 100%, respectively. 

 
(a) (b) (c) 

Figure 4. Absolute error distribution of FEV1/FVC from healthy subjects according to THP based on 
(a) VFCDM; (b) CWT; and (c) STFT.  

Figure 5a–c show the absolute error distributions of the estimated FEV1/FVC ratios from COPD 
patients according to THP based on VFCDM, CWT and STFT, respectively. A significant difference 
between VFCDM and CWT at p < 0.01 was found based on the t-test. Similarly, a significant difference 
between VFCDM and STFT was found. Table 4 summarizes the absolute error (AE) and RMSE values 
from COPD subjects according to THP for VFCDM, CWT, and STFT, respectively. It shows that RMSE 
from VFCDM with THP = 100% is 1.67 and 1.58 times lower than the CWT and STFT with THP = 100%, 
respectively. For mean AE, VFCDM with THP = 100% provided 2.03 and 1.91 times lower than CWT 
and STFT with THP = 100%, respectively.

50% 70% 80% 90% 100%
0

5

10

15

20
VFCDM

A
b

so
lu

te
 E

rr
o

r 
(N
=
13

)

THp

50% 70% 80% 90% 100%
0

5

10

15

20
CWT

A
b

so
lu

te
 E

rr
o

r 
(N
=
1
3)

THp
50% 70% 80% 90% 100%

0

5

10

15

20

THp

A
b

so
lu

te
 E

rr
o

r 
(N
=
1
3)

STFT

Figure 4. Absolute error distribution of FEV1/FVC from healthy subjects according to THP based on
(a) VFCDM; (b) CWT; and (c) STFT.

Figure 5a–c show the absolute error distributions of the estimated FEV1/FVC ratios from COPD
patients according to THP based on VFCDM, CWT and STFT, respectively. A significant difference
between VFCDM and CWT at p < 0.01 was found based on the t-test. Similarly, a significant difference
between VFCDM and STFT was found. Table 4 summarizes the absolute error (AE) and RMSE values
from COPD subjects according to THP for VFCDM, CWT, and STFT, respectively. It shows that RMSE
from VFCDM with THP = 100% is 1.67 and 1.58 times lower than the CWT and STFT with THP = 100%,
respectively. For mean AE, VFCDM with THP = 100% provided 2.03 and 1.91 times lower than CWT
and STFT with THP = 100%, respectively.

Table 5 summarizes the whole estimated FEV1/FVC ratios from each subject at THP = 100% for
VFCDM, CWT, and STFT. For healthy subjects and COPD patients, the VFCDM provided higher
accuracy. In addition, for healthy subjects, VFCDM showed reasonably accurate estimation of
FEV1/FVC. However, for COPD patients, the estimation results were not satisfied with the clinical
needs. Nevertheless, all of the COPD results with VFCDM were less than 0.70, which met the criteria
for assessing COPD summarized in Table 1.

Figure 6a–c show screen snapshots of the iPhone 5S application for FEV1/FVC ratio estimation,
developed using the Objective-C programming language. Once recording is completed, it takes five
seconds for the app to visualize the FEV1/FVC ratio estimation result in real-time. Figure 6a shows
the screen at the commencement of recording the forced exhalation through the built-in microphone.
Figure 6b shows the forced exhalation in the process of being recorded. Recording can be stopped by
clicking the circle button at the bottom of the screen. After the recording is complete, the flow-volume
curve and the estimated FEV1/FVC ratio are displayed, as shown in Figure 6c.
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Table 3. Healthy subjects’ absolute errors (AE) and RMSEs of FEV1/FVC ratio according to THP for VFCDM, CWT, and STFT methods.

THP
50% 70% 80% 90% 100%

AE RMSE AE RMSE AE RMSE AE RMSE AE RMSE

VFCDM (N = 13) 4.29 ± 4.44 6.05 4.44 ± 3.94 5.84 4.54 ± 3.72 5.78 4.65 ± 3.39 5.68 4.49 ± 3.38 5.54
CWT (N = 13) 11.76 ± 4.09 12.40 11.65 ± 4.10 12.30 11.60 ± 4.10 12.25 11.55 ± 4.10 12.20 10.77 ± 4.14 11.48
STFT (N = 13) 11.86 ± 4.18 12.52 11.75 ± 4.18 12.42 11.71 ± 4.19 12.38 11.67 ± 4.2 12.35 11.43 ± 4.31 12.16
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Figure 5. Absolute error distribution of FEV1/FVC from COPD patients according to THP based on (a) VFCDM; (b) CWT; and (c) STFT.

Table 4. COPD patients’ absolute errors (AE) and RMSEs of FEV1/FVC ratio according to THP for VFCDM, CWT, and STFT methods.

THP
50% 70% 80% 90% 100%

AE RMSE AE RMSE AE RMSE AE RMSE AE RMSE

VFCDM (N = 13) 10.01 ± 10.56 14.26 10.29 ± 10.57 14.46 10.25 ± 10.63 14.47 10.17 ± 10.23 14.15 10.30 ± 10.59 14.48
CWT (N = 13) 18.85 ± 13.14 22.69 18.87 ± 12.79 22.52 18.85 ± 12.59 22.39 18.88 ± 12.39 22.32 20.93 ± 12.55 24.15
STFT (N = 13) 19.43 ± 11.95 22.56 19.37 ± 11.86 22.48 19.33 ± 11.90 22.47 19.34 ± 11.98 22.51 19.63 ± 12.14 22.83
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Table 5. Individual estimation values of FEV1/FVC at THP = 100% using VFCDM, CWT, and STFT methods.

Healthy #1 #2 1 #3 #4 #5 #6 #7 #8 #9 1 #10 #11 #12 1 #13

Reference 88 84 80 77 76 91 94 90 91 80 70 84 86
VFCDM 87.50 90.59 75.11 79.54 70.45 91.06 85.63 89.67 82.97 80.71 61.88 75.08 89.86

CWT 98.35 99.62 87.99 95.81 85.92 99.04 98.67 98.12 96.57 89.87 83.53 98.26 99.63
STFT 98.85 99.74 86.21 95.51 89.24 99.20 98.70 97.44 98.24 94.05 84.83 98.34 99.67

COPD #1 1 #2 #3 #4 #5 #6 #7 #8 #9 #10 1 #11 #12 #13 1

Reference 37 59 26 41 51 67 61 69 29 56 61 60 26
VFCDM 17.61 30.56 17.90 42.43 57.06 66.02 66.22 69.66 25.31 54.97 42.30 28.51 18.97

CWT 27.16 55.96 52.27 81.10 77.59 89.92 89.94 93.26 70.91 58.03 78.10 40.64 35.72
STFT 29.15 40.88 36.31 83.44 79.11 89.51 89.91 93.79 62.07 58.87 75.86 39.68 24.94

1 Female subject.
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3.2. Regression and Estimation of FVC, FEV1, and PEF

Figure 7a–d show the regression plots based on VFCDM for FEV1/FVC, FVC, FEV1, and PEF,
respectively, from healthy subjects. As expected, in Figure 7a, EFEV1/FVC, and TFEV1/FVC were linearly
correlated with r = 0.814. The constants KFEV1/FVC and CFEV1/FVC were found to be 0.64 and 31.59,
respectively. On the other hand, as shown in Figure 7b–d, FVC, FEV1, and PEF did not show strong
correlation, respectively.
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4. Discussion

We presented a smartphone-based lung function test using a high-resolution time-frequency
spectrum from a smartphone built-in microphone. Even though the time-frequency spectrum is not
a sole component for the result accuracy, it is the key algorithm to increase the accuracy. In [24],
the audio from a phone was buffered into 30 ms frames and each frame was windowed to quantify
the magnitude spectrogram of the signal. On the other hand, we down-sampled to 2450 Hz and
visualized the time-frequency spectrum with the time interval of 1/2450 s, which is equivalent to
0.41 ms, approximately. Hence, our method has approximately 73 times higher time resolution than the
previous work. More specifically, to estimate the FEV1/FVC ratio, VFCDM provided lower absolute
errors than CWT and STFT by 6.52 and 6.67, respectively. In addition, VFCDM provided lower RMSEs
than CWT and STFT by 5.94 and 6.62, respectively. The results suggest that the VFCDM approach
provided higher accuracy of the FEV1/FVC ratio than CWT and STFT due to high resolution of the
time-frequency spectrum. However, we also found that only the FEV1/FVC ratio can be accurately
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estimated using the smartphone built-in microphone since the ratio as a relative value can be obtained
directly without the estimates of FVC and FEV1. These two factors, as well as PEF, are subjective and
dependent on the subject’s familiarization with the test and performance of the forced exhalation. More
specifically, each individual may exhale with slightly different angles toward a built-in microphone
even with the add-on mouthpiece. In addition, each individual may bite the mouthpiece deeply or
shallowly. Each individual may also move or shake the smartphone during the forced exhalation
test. Those factors affect the time-frequency spectrum, and may result in inaccurate estimation of
FVC, FEV1, and PEF. Healthy subjects #2, #9, and #11 embodied such cases. Regarding FEV1/FVC,
if the three subjects #2, #9, and #11 were excluded, the estimation results from the ten other healthy
subjects provided very low absolute errors and RMSEs of 3.573 and 4.760, respectively. Regarding
FVC, FEV1, and PEF, the correlation r value could increase to 0.763, 0.928, and 0.823, respectively. Thus,
the limited and cautious force of exhalation toward the built-in microphone is necessary to increase
the estimation accuracy. Furthermore, the future research needs to be toward operation without the
add-on adapter. Furthermore, the additional condition needs to be considered: each individual should
keep the distance constant between a lip and a microphone. Then, a user may have a trouble keeping
the fixed distance between the lip and microphone before the test every time.

We also found that AE and RMSE of FEV1/FVC ratios from COPD patients were relatively high
with 10.30% ± 10.59% and 14.48%, respectively, even with VFCDM. These high errors were mainly
from the artifact sound caused by the narrow windpipe, especially for COPD patients. Most COPD
patients have a narrow windpipe, which causes artifact sound even in routine life. In the case of forced
exhalation, the artifact sound is more dominating and the real forced exhalation sound is severely
affected by the artifacts. Then, the time-varying main frequency cannot be accurately detected, and
eventually the instantaneous frequency with maximum power at each sample cannot appropriately
represent the volume of the PFT test. More specifically, in the portion of the sound without the artifacts,
our proposed method with VFCDM provides higher accuracy than CWT and STFT. In the portion of
the sound with the artifacts, there is no difference among VFCDM, CWT, and STFT. This reflects that
the results from healthy subjects have higher accuracy than those from COPD patients. In addition,
this reflects that the results with VFCDM have higher accuracy than CWT and STFT for both healthy
subjects and COPD patients. Thus, the dispersion trend according to THp is observed only in healthy
subjects as shown in Figures 4 and 5. More research regarding artifact sound detection and filtering
should be directed to be clinically available in the future.

In our study, among the healthy subjects, seven subjects were aged between 20 and 29 (group A),
and the other six subjects were aged between 30 and 39 (group B). For groups A and B, RMSE values
were 6.13 and 4.76, and AE values were 4.96 ± 3.89 and 3.93 ± 2.93. However, due to a small number
of subjects, the effect of age is not clear from the results. Similarly, for male (N = 10) and female (N = 3)
groups from healthy subjects, RMSE values were 4.61 and 7.90, and AE values were 3.48 ± 3.18 and
7.84± 1.17. From COPD patients, RMSE values were 15.17 and 11.92, and AE values were 10.65± 11.38
and 9.14 ± 99.36, respectively. Similarly with the gender effect, due to a small number of subjects and
patients, the effect of gender is not clear from the results. Thus, further studies need to rigorously
validate the FEV1/FVC ratio and revise the regression model for FVC, FEV1, and PEF by considering a
larger number of subjects with age and gender matching.

5. Conclusions

In this paper, we developed to estimate lung function parameters using a high-resolution
time-frequency spectrum from a smartphone built-in microphone. For both healthy and COPD
groups, we evaluated the estimation performance of FEV1/FVC, and found that VFCDM was superior
to CWT and STFT. Further, regression analysis was conducted to establish a linear transformation on
FVC, FEV1 and PEF. However, correlation factor values were not high comparing to FEV1/FVC since
they were subjective and dependent on the subject’s familiarization with the test and performance of
forced exhalation toward the built-in microphone.
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Abbreviations

PFT Pulmonary function test
FVC Forced vital capacity
FEV1 Forced expiratory volume in 1 s
FEV1/FVC Forced expiratory volume in 1 s/forced vital capacity
PEF peak expiratory flow
ATS American Thoracic Society
BTS British Thoracic Society
ECCS European Community for Coal and Steel
ERS European Respiratory Society
GOLD Global Initiative for Chronic Obstructive Lung Disease
LLN Lower limit of normal
NICE National Institute for Health and Clinical Excellence
VFCDM Variable frequency complex demodulation method
CWT Continuous wavelet transform
RMSE Root mean squared error
STFT short time Fourier transform
SPWV Smoothed pseudo Wigner-Ville
COPD Chronic obstructive pulmonary disease
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