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Abstract: The aim of this study was to investigate the relationship between surface subsidence
and groundwater changes. To investigate this relationship, we first analyzed surface subsidence.
This paper presents the results of a case study of surface subsidence in Beijing from 1 August 2007 to
29 September 2010. The Multi-temporal Interferometric Synthetic Aperture Radar (multi-temporal
InSAR) technique, which can simultaneously detect point-like stable reflectors (PSs) and distributed
scatterers (DSs), was used to retrieve the subsidence magnitude and distribution in Beijing using
18 ENVISAT ASAR images. The multi-temporal InSAR-derived subsidence was verified by leveling at
an accuracy better than 5 mm/year. Based on the verified multi-temporal InSAR results, a prominent
uneven subsidence was identified in Beijing. Specifically, most of the subsidence velocities in the
downtown area were within 10 mm/year, and the largest subsidence was detected in Tongzhou,
with velocities exceeding 140 mm/year. Furthermore, Gravity Recovery and Climate Experiment
(GRACE) data were used to derive the groundwater change series and trend. By comparison with
the multi-temporal InSAR-derived subsidence results, the long-term decreasing trend between
groundwater changes and surface subsidence showed a relatively high consistency, and a significant
impact of groundwater changes on the surface subsidence was identified. Additionally, the spatial
distribution of the subsidence funnel was partially consistent with that of groundwater depression,
i.e., the former possessed a wider range than the latter. Finally, the relationship between surface
subsidence and groundwater changes was determined.
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1. Introduction

Surface subsidence is the main regional environmental geological disaster in the plain areas of
China that may negatively affect the safety of infrastructure and human life [1]. In China, more than
70,000 km2 in seventeen provinces have been affected to varying degrees by surface subsidence [2,3].
Beijing, as an international metropolis located in the northwest edge of the North China Plain, is one
of the most serious areas in China suffering from surface subsidence [4]. Surface subsidence in Beijing
was first reported in the 1950s, and it has developed rapidly during recent decades. By the end of
2010, the area of surface subsidence, with a cumulative subsidence of more than 50 mm in Beijing,
exceeded 4200 km2, and the maximum cumulative subsidence in the significant subsidence area
reached 1233 mm [5]. Meanwhile, the annual average subsidence rates have exceeded 100 mm/year
in some areas with serious subsidence, such as in Chaoyang and Tongzhou Districts. More than
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two-thirds of the water demand in Beijing is supplied by groundwater, and the declining groundwater
level due to its over-exploitation is the main cause of surface subsidence formation and development
in Beijing [6,7]. Recently, rapid economic development, population growth and the sharp increase
in mining groundwater have made the surface subsidence in Beijing increasingly serious. Therefore,
monitoring and analyzing the spatial distribution and the state of surface subsidence activity in Beijing
are crucially important for disaster prevention and the sustainable development of urbanization.

For monitoring and analyzing surface subsidence, conventional monitoring methods
(e.g., leveling, Global Navigation Satellite System (GNSS), and layer-wise mark measurements [8])
can retrieve the deformation of a monitoring point with high temporal resolution and measurement
accuracy, although the high cost and low spatial resolution of these methods make it difficult to
efficiently monitor and analyze regional subsidence.

Recently, the interferometric synthetic aperture radar (InSAR) technique has been recognized
as an effective low-cost method for monitoring and analyzing surface subsidence and has been
successfully used in many regions, such as Las Vegas, Nevada [9], Iran [10] and western Indonesia [11].
InSAR can overcome the drawbacks of conventional methods (i.e., high cost and low spatial resolution)
and can retrieve surface deformation information over large areas and with high spatial resolution.
Conventional differential interferometric synthetic aperture radar (DInSAR) can detect regional-scale
surface subsidence with a centimeter-to-millimeter accuracy [12]. Due to its all-weather capability
of obtaining deformation information, this technique has been used widely, such as in measuring
earthquake deformation [13,14], detecting and monitoring landslides [15,16], and mapping and
quantifying urban surface subsidence [17]. InSAR techniques have been recognized as effective
low-cost methods for anticipating and monitoring natural hazards [18]. However, DInSAR is
susceptible to atmospheric delay and temporal and spatial decorrelation, reducing the competency of
the technique for long-term interval surface monitoring with high precision.

To overcome the shortcomings of DInSAR, the Persistent Scatterer Interferometric Synthetic
Aperture Radar (PS InSAR) technique [19] has been proposed. This technique can overcome
decorrelation and atmospheric delay problems by identifying and analyzing point-like stable reflectors
(PSs), such as buildings, rock outcrops and railway-related objects. PS InSAR can monitor terrain
deformation with millimetric accuracy [19,20], although it requires many SAR images (generally more
than 25 scenes). Additionally, another approach, referred to as the Small Baseline Subset Interferometric
Synthetic Aperture Radar (SBAS InSAR) technique [21], extracts deformation information via
analyzing distributed scatterers (DSs) with high coherence. SBAS InSAR can effectively mitigate
the decorrelation phenomena based on an appropriate combination of interferograms produced by
data pairs characterized by short temporal and spatial baselines [21]. Compared with PS InSAR, SBAS
InSAR can retrieve deformation information with fewer SAR images, and nonlinear deformation
information is more clearly captured. Although SBAS InSAR works well in monitoring deformations
occurring at a relatively large spatial scale (pixel dimensions in the order of 100 m × 100 m are
typical), it is not appropriate to analyze local deformations, such as single buildings or structures [22].
PS InSAR is good at detecting PSs, whereas SBAS InSAR works well for detecting DSs. Some other
methods, aiming to monitor deformation in different conditions, have been presented. For example,
the Intermittent Small Baseline Subset (ISBAS) technique [23,24], which provides greater spatial
coverage and thereby increases its usefulness for rural areas, has been used successfully for monitoring
the coalfields in the UK; an improved SBAS algorithm [25], which has extended the SBAS implemented
in the StaMPS software, has been able to assess the deformation in mountainous regions; the Quasi-PS
(QPS) technique [26], which was proposed for detecting targets with partial coherence, has been
applied successfully in non-urbanized areas; and an improved PS InSAR method was presented
to estimate deformation without requiring phase unwrapping [27]. Recently, the Multi-temporal
Interferometric Synthetic Aperture Radar (multi-temporal InSAR) technique [28] has been proposed
and applied in monitoring surface deformation [29]. With the combination of PS InSAR and SBAS
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InSAR, the multi-temporal InSAR technique can simultaneously retrieve the deformation information
of PSs and DSs and improve deformation information in investigated areas.

Researchers have investigated the surface subsidence in Beijing via different approaches and data.
Chen et al. [6] comprehensively analyzed the subsidence situation by combining groundwater contours
from 2003 to 2006 and subsidence deformation map derived from the PS InSAR technique during the
same time period. Ng et al. [30] retrieved the deformation map in Beijing from 1 February 2007 to
1 November 2008, using ENVISAT ASAR and ALOS PALSAR data based on the PS InSAR technique;
the results showed that the subsidence rates ranged from −115 mm/year to 6 mm/year in most areas.
Hu et al. [31] investigated the spatial-temporal distribution characteristics of surface subsidence in
Beijing from 2003 to 2010 via SBAS InSAR. The results showed that the maximum subsidence rates in
the Tongzhou District exceeded 110 mm/year. Chen et al. [32] employed the SBAS InSAR technique
to process ENVISAT ASAR images acquired from 2003 to 2010 and TerraSAR-X stripmap images
collected from 2010 to 2011 to investigate surface subsidence in the Beijing region; the results indicated
that the Beijing region experienced obvious surface subsidence from 2003 to 2011, with a maximum
accumulative displacement of 790 mm where the maximum subsidence is located in the eastern part
of Beijing (the rate exceeded 100 mm/year).

However, few previous studies have investigated the relationship between surface subsidence
and groundwater changes in Beijing using both the SAR and GRACE data simultaneously. Although
the spatial resolution of GRACE is approximately 300 km, it can retrieve the true amplitudes of large
water storage changes in a concentrated area that is much smaller than the resolution of GRACE
global harmonic solutions. Wang et al. [33] retrieved the water storage changes in the Three Gorges
Reservoir (TGR) of China by GRACE solutions from April 2002 to May 2010 that agree well with the
in situ measurements of TGR impounded water volume variations. Zhou et al. [34] investigated the
terrestrial water storage (TWS) variations in the Poyanghu Basin using GRACE gravity data from
January 2003 to March 2014, and the GRACE-based TWS variations showed a general consistency
with the TWS variations from satellite altimetry. Similar studies have also used GRACE to detect
mass variations within the GRACE footprint (approximately 200,000 km2), such as in southern Mali,
Africa [35], the California Central Valley [36,37] and the North China Plain [38]. In these regions,
mass variations with large variability are highly concentrated. Therefore, the signal-to-noise ratio of
mass changes is high enough to be detected by GRACE. In addition, GRACE provides an alternative
approach to study the contribution of groundwater changes on surface subsidence. Liu et al. [39] used
GRACE and GPS data to investigate vertical deformation due to significant groundwater depletion in
the North China Plain. They found the GRACE- and GPS-derived secular trends and seasonal signals
coincide well.

In this paper, to increase the spatial resolution of deformation information, we first used
the multi-temporal InSAR technique to retrieve the surface subsidence velocities and time series.
We then adopted leveling data to verify the multi-temporal InSAR-derived results. Furthermore,
we retrieved the corresponding period groundwater changes in the Beijing area using monthly
GRACE data. In addition, we comprehensively analyzed the spatial-temporal characteristics of surface
subsidence via groundwater changes and multi-temporal InSAR-derived subsidence information.
Finally, the cross-correlation between surface subsidence and the groundwater changes were analyzed
in detail.

This paper is organized as follows: Section 2 provides the information about the study area and
data. Section 3 describes the details of the multi-temporal InSAR technique and the calculation model
of TWS changes and groundwater storage changes from GRACE. Section 4 presents the multi-temporal
InSAR-derived subsidence results. In Section 5, we validate the results by leveling data and discuss the
relationship between the subsidence results and groundwater changes. The conclusions are provided
in Section 6.
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2. Study Area and Data

2.1. Study Area

Beijing (115◦42′ E–117◦24′ E; 39◦24′ N–41◦36′ N), the capital of China, is located in the North
China Plain with a total area of approximately 16,410.54 km2 (Figure 1a). The terrain is relatively flat,
and the average elevation is 43.5 m. The permanent resident population of Beijing was 21.689 million
in June 2015. The plain area in Beijing is mainly the piedmont alluvial-proluvial plain formed by the
joint action of the Yongding River, Chaobai River, Wenyu River, Ju River and other rivers. Multiple
subsidence areas (e.g., Chaoyang and Tongzhou subsidence areas) are situated in the plain area.
The range of the black box illustrated in Figure 1a is the study area, covering most of the Beijing
Plain; the central latitude and longitude are 39◦50′ N and 116◦31′ E, respectively. Figure 1b shows
that the amplitude image of ENVISAT ASAR covers the study area with a total area of approximately
6956.77 km2 (approximately 82.73 km in the range and 84.09 km in the azimuth).
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amplitude image of ENVISAT ASAR covering the study area.

Since the 1960s, population growth, urban construction, and industrial and agricultural
development in Beijing have caused increasing exploitation of the groundwater, resulting in
a gradually expanding surface subsidence range. The exploitation of groundwater in Beijing was
5.2 × 108 m3 in 1961, and the average exploitation reached 10.79 × 108 m3/year between 1961 and
1970. The exploitation of the groundwater was 25.59 × 108 m3 in 1978, and the average exploitation
of the groundwater reached 26 × 108–28 × 108 m3/year between 1990 and 1999 [40]. During 1999
to 2009, the groundwater exploitation remained larger than the groundwater recharge in Beijing.
The annual average over-exploitation reached 9.55 × 108 m3/year between 1999 and 2007 [41], causing
a continuous and rapid decline in the groundwater level and accelerating the surface subsidence
in Beijing.

2.2. Data

In this paper, we selected eighteen level 0 descending ENVISAT ASAR images acquired from
1 August 2007 to 29 September 2010, over Beijing to estimate the line-of-sight (LOS) average surface
subsidence velocity and subsidence time series. The incidence angle of the ASAR image over the
study area ranges from 17.9◦ in the near range to 22.8◦ in the far range. All of the ASAR images are in
VV polarization mode with a resolution of 7.804 m in slant range and 4.750 m in azimuth. The three
arc-second Shuttle Radar Topography Mission (SRTM) DEM provided by the National Aeronautics and
Space Administration (NASA) was used to remove the topographic phases. Meanwhile, the DORIS
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orbit data released by the European Space Agency (ESA) was adopted to improve the orbit data
precision of the ASAR images. To validate the results, twenty-six leveling points provided by the
Beijing Institute of Surveying and Mapping were used to validate the multi-temporal InSAR-derived
subsidence results, the leveling data were acquired from 2007 to 2010.

As mentioned in Section 2.1, large groundwater loss has occurred in Beijing, and the groundwater
changes are mainly concentrated on the plain area of Beijing. Although the study area is much
smaller than the spatial resolution of GRACE global harmonic solutions, the true amplitudes of the
large groundwater changes in the study area can be retrieved by GRACE solutions with the help of
hydrologic modeling. In this study, we adopted the monthly gravity fields from the Release (RL) 05
solution provided by the Center for Space Research (CSR) at the University of Texas at Austin from
August 2007 to September 2010 to estimate the regional TWS changes by averaging the values in
grids over the Beijing area. TWS changes at 6 grid points derived from GRACE in the region from
115◦–118◦ E and 39◦–41◦ N with an area of ~56,000 km2 were selected. Soil moisture (SM) changes from
the NOAH version of the Global Land Data Assimilation System (GLDAS) [42] at a spatial resolution
of 1◦ × 1◦ were used to obtain regional groundwater storage variations by subtracting them from the
GRACE-based TWS changes.

3. Methodology

3.1. Multi-Temporal InSAR Technique

The multi-temporal InSAR technique combines the approach of selecting high-coherence points in
the PS InSAR technique and the superiorities of SBAS InSAR that retrieve high-accuracy deformation
information based on multiple-master interferograms and perform better in detecting distributed
scatterers. This approach first uses the PS InSAR and SBAS InSAR techniques to select the
high-coherence points from images and then retrieves the deformation information via joint processing
of the high-coherence point data sets. Therefore the spatial sampling of deformation information is
improved. In this study, the subsidence velocity map and time series in the Beijing area were obtained
by processing the 18 ENVISAT ASAR images with the multi-temporal InSAR technique. The main
steps are as follows (Figure 2):

(1) The image acquired on 14 October 2009, was selected as the super master image for the
interferometric combinations, and all the slave images were co-registered and resampled to
the super master image.

(2) Seventeen interferograms were generated for PS analysis (Figure 3a); meanwhile, 71 pairs of
small baseline differential interferograms were processed using SBAS InSAR with a perpendicular
baseline shorter than 800 m and a temporal baseline less than 400 days (Figure 3b). Supposing
interferogram j is generated from a master image and a slave image acquired at times tB and tA
(tB > tA), after removing the flat earth effect and topographic phase, the interferometric phase of
a pixel located at coordinates (x,r) in interferogram j can be expressed as follows [22,43]:

δφj(x, r) = φ(tB, x, r)− φ(tA, x, r)
≈ φde f ,j(x, r) + φatm,j(x, r) + φorb,j(x, r) + φθ,j(x, r) + φnoise,j(x, r)

(1)

where φ(tB,x,r) and φ(tA,x,r) are the phase values of the SAR images at times tB and tA, respectively.
φdef,j(x,r) represents the deformation phase between times tA and tB in the LOS direction. φatm,j(x,r)
refers to the atmospheric phase error. φorb,j(x,r) is the residual phase due to orbit inaccuracies.
φθ,j(x,r) is the residual phase due to look angle error, and φnoise,j(x,r) is the random noise phase.

(3) PSs were identified from the interferograms generated by PS InSAR using the algorithm proposed
by Hooper et al. [43]. We retrieved DSs from small baseline interferograms in the same way that PS
pixels were retrieved, i.e., following the algorithm of Hooper et al. [43]. The spatially-uncorrelated
look angle error term, which includes contributions from both spatially-uncorrelated height errors
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and deviations of the pixel’s phase center from its physical center, was estimated and removed
after selecting the PSs and DSs. After calculating the equivalent small baseline interferometric
phase for the PSs by recombining the single-master interferometric phase, the small baseline
interferometric phases from both selected PSs and DSs were combined. If a pixel occurred in both
data sets, a weighted mean value for the phase was calculated by summing the complex signal
from both data sets [28].

(4) The phase was unwrapped by a minimum-cost flow algorithm. Then, the spatially-correlated
look angle error and other spatially-correlated noise were estimated and subtracted from the
differential phase. Next, the deformation rates of the study area were obtained by a least-squares
algorithm because no isolated interferogram clusters in the analysis. After obtaining the
deformation rates, according to the time span between ASAR images, the corresponding
deformation time series was derived.
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Figure 2. Flow diagram of the multi-temporal InSAR technique.
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Figure 3. (a) Pairs (interferograms) of ENVISAT images processed by PS InSAR; (b) Pairs of ENVISAT
images processed by SBAS InSAR. The red dot denotes the super master image. Both black lines in (b)
and the black bars in (a) represent the pairs from which the interferograms were generated. The green
square denotes the slave image.

3.2. Calculation of TWS and Groundwater Storage Changes from GRACE

Based on the method of Wahr et al. [44], TWS changes can be recovered from the GRACE temporal
gravity field, and the calculation model of TWS changes can be expressed by the equivalent water
height (EWH) as follows [44–46]:

EWH (θ, λ) =
aρave

3ρwater

∞

∑
l=0

l

∑
m=0

Plm (cosθ)
2l + 1
1 + kl

(∆Clmcos (mλ) + ∆Slmsin (mλ)) (2)
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where a (63,781,363.3 m) and ρave (5517 kg/m3) are the average radius and density of the Earth,
respectively; ρwater is the density of water (1000 kg/m3); Plmis the fully normalized associated Legendre
function; kl represents the degree-l Love numbers; ∆Clm and ∆Slm are the variations in the spherical
harmonic coefficients of the gravity field with respect to the average gravity field for the period ranging
from August 2007 to September 2010; and θ and λ are the co-latitude and longitude, respectively.

Monthly gravity fields from RL05 (at degree-l and order-m 60) provided by the CSR for the period
of August 2007 to September 2010 were used to calculate the TWS changes. The data processing,
which followed the methods of Luo et al. [47], included the following steps: (1) In GRACE observed
harmonics coefficients, the degree-2 zonal harmonics were not well estimated because the GRACE
orbit geometry is less sensitive to the coefficient of the gravity field. Therefore, degree-2 zonal C20
time series were replaced by analyzed Satellite Laser Ranging (SLR) data [48]; (2) Due to the correlated
errors among certain spherical harmonics coefficients and other errors found in GRACE spherical
harmonic coefficients, a hybrid filtering scheme that combined de-correlation filter P3M6 (at spherical
harmonics orders 6 and above, a degree 3 polynomial is fitted via least squares and is removed from
even and odd coefficients pairs) [49] and a 300 km Fan filter [50] were applied to reduce noise in the
GRACE data. The computed model can be expressed as follows [51,52]:

EWH (θ, λ) =
aρave

3ρwater

∞
∑

l=0

2l+1
1+kl

Wl
l

∑
m=0

Plm (cosθ) ·Wm(
∆C̃lmcos (mλ) + ∆S̃lmsin (mλ)

) (3)

where Wl and Wm are the smoothing kernel functions associated with order and degree, respectively.
That is: W0 = 0, W1 = 1+e−2b

1−e−2b − 1
b , WN+1 = − 2n+1

b Wn + Wn−1, , and b = ln2
1+cos( r

a )
; r is the filtering

radius; and ∆C̃lm and ∆S̃lm are the variations in the spherical harmonic coefficients of the gravity field
in Equation (2) after decorrelation filtering.

The GLDAS-based SM was initially processed in the same way as the GRACE data (i.e., model
grids were transferred to spherical harmonic coefficients, truncated at degree and order 60,
and a de-correlation filter and a 300 km Fan filter were applied) for consistency with the GRACE
resolution. Then, groundwater storage changes were computed by subtracting SM changes from
GRACE TWS changes [53].

4. Results

The LOS average subsidence velocity map in the study area derived by the multi-temporal InSAR
technique is shown in Figure 4a, where the negative values indicate that the surface is moving away
from the satellite (i.e., subsidence in the LOS direction) and the positive values indicate surface uplift.
The standard deviations of the average subsidence velocities in the study area are shown in Figure 4b.
The standard deviations were obtained by computing the deviations of the linear fitting of the velocities.
If a PS/DS point showed a strong non-linear motion, it resulted in a large residual with respect to the
linear model, i.e., in a high standard deviation. Based on the collected leveling data, a stable point
called R (Figure 4a) was selected as a reference point in the study area; all of the monitoring points’
average subsidence velocities in the deformation velocity field are related to the reference point.

As shown in Figure 4a, in the study area, uneven subsidence is prominent. The five significant
subsidence areas are located in Changping, Shunyi, Chaoyang, Tongzhou and Daxing Districts.
Additionally, a pronounced subsidence area located in Langfang City can be identified, which is
adjacent to Beijing and has a maximum velocity exceeding 75 mm/year. The main subsidence areas
in Beijing are distributed in the Chaobai River, Wenyu River and Yongding River alluvial-proluvial
fan plains. The Changping, Shunyi, Chaoyang and Tongzhou subsidence areas are mainly distributed
along the Wenyu River, Chaobai River, Qing River, and Tonghui River basins, and these subsidence
areas gradually connect into a continuous area and constitute the “North” subsidence area. The “North”
subsidence area gradually expands toward the northern part of Shunyi, the eastern part of Chaoyang,
and the eastern and southern parts of Tongzhou.
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In addition, a new subsidence area has formed east of the study area, i.e., the Yanjiao Town
subsidence area, and some of the subsidence velocities in this area have reached 50 mm/year.
The Daxing subsidence area is mainly distributed in the Yongding River coast and constitutes the
“South” subsidence area. The subsidence range of the “South” subsidence area is expanding markedly
in a northward direction.

The surface subsidence in downtown Beijing (e.g., Haidian, Fengtai and Shijingshan Districts
and the central urban area) is small and relatively stable, and most of the subsidence velocities
range from −10 mm/year to 10 mm/year. Compared with the Changping, Chaoyang and Tongzhou
subsidence areas, subsidence velocities in the Shunyi and Daxing subsidence areas are lower. The most
serious subsidence area in Daxing District is Lixian Town, where the maximum subsidence velocity
exceeds 70 mm/year. The maximum subsidence velocity in the Shunyi subsidence area reaches
60 mm/year. Multiple subsidence funnels have formed in Changping District, among which the
Shahe and Shangzhuang Town subsidence centers are more serious, with an annual subsidence
velocity exceeding 80 mm/year. The subsidence in Laiguangyin, Sunhe and Jinzhan Townships
in Chaoyang District are substantial; the maximum subsidence velocity in the Sunhe subsidence
center exceeds 80 mm/year, and the most serious subsidence area is the Jinzhan subsidence area
in which the maximum subsidence velocity exceeds 130 mm/year. Guanzhuan, Sanjianfang and
Dougezhuang Townships are the most severe subsidence areas in Tongzhou District. Subway Batong
Line, Subway Line 6 and Huitong River run through these areas along an east-west direction, and these
areas include several highways and railways. In addition, the groundwater exploitation in these
areas is serious. Therefore, it is expected that the surface subsidence in Tongzhou District is not
only affected by the surface dynamic load and the utilization of underground space but also by the
groundwater over-exploitation and geological structure. Multiple subsidence centers are located in
the area, which includes the metro, highways, railway and rivers, and the maximum annual average
subsidence velocities range between 140 mm/year and 150 mm/year.

Figure 4b shows that the standard deviations of the average velocities from all monitoring
points derived by the multi-temporal InSAR technique range from 0.2 mm/year to 8.5 mm/year;
the monitoring points with larger standard deviations are mainly distributed in the serious subsidence
areas (e.g., Tongzhou, Chaoyang and Changping Districts); the standard deviations of the average
velocities of most monitoring points distributed in the downtown area of Beijing are less than
2 mm/year. The statistical analysis of the standard deviations of all monitoring points (Figure 5)
suggests that the standard deviations of the average velocities of 96.81% monitoring points are less
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than 5 mm/year and 88.46% are less than 3 mm/year; the standard deviation of the subsidence results
derived by the multi-temporal InSAR technique is 1.99 mm/year. Therefore, the surface subsidence
monitoring accuracy using the multi-temporal InSAR technique is high.
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Figure 5. Distributions of the standard deviations of the average velocities (from Figure 4b).

5. Discussion

5.1. Validation with Leveling

To verify the reliability of the multi-temporal InSAR-derived results, we compared and analyzed
the multi-temporal InSAR-derived results with the leveling data provided by the Beijing Institute
of Surveying and Mapping; the location distribution of all leveling points are illustrated in Figure 6.
Several steps were performed for the validation: (1) the overlapping period data of the leveling and
ENVISAT ASAR image data were selected; (2) the vertical deformation of all leveling points were
projected into the LOS direction; and (3) the initial subsidence on 1 August 2007, was assumed to
be zero. Because there are few opportunities for a leveling point and the corresponding PS point
to be located in the same place, two different methods were adopted to extract the subsidence of
the PS point corresponding to the nearest leveling point. In the first method (Kriging method),
the spherical variogram model (detailed information shown in Appendix A) was computed based
on the multi-temporal InSAR-derived PS point subsidence. Based on the spherical variogram model,
Kriging was employed to estimate the subsidence of the corresponding PS point located in the same
location with respect to the leveling point. For the second method (average method), the average
subsidence rates of the PS points that lie within 200 m of the leveling point were used as the subsidence
of the corresponding PS point.

We adopted the Kriging and average methods to extract the average subsidence velocity of a PS
point located at the same location as a leveling point; the results are shown in Figure 7. Figure 7a
shows that the deformation changes of the three curves are approximately the same, indicating that the
average subsidence velocities extracted by the two methods agree well with the results obtained from
the leveling data. Moreover, the differences between multi-temporal InSAR and leveling are within
±10 mm/year, as shown in Figure 7b. We quantitatively compared the average subsidence velocities of
the 26 points (i.e., BM1–BM26) derived using the multi-temporal InSAR technique and leveling (results
listed in Table 1). For the Kriging method, the mean error is 1.44 mm/year, the root-mean-square
error (RMSE) is 4.97 mm/year, the maximum difference is 8.33 mm/year and the minimum difference
is 1.01 mm/year, while the mean error, RMSE, MAX and MIN achieved from the average method
are 1.90 mm/year, 4.78 mm/year, 8.60 mm/year, and 0.18 mm/year, respectively. The accuracies of
the two methods are similar. Therefore, the validation results indicate that the average subsidence
velocities obtained by the multi-temporal InSAR technique are highly consistent with those derived by
leveling, and the multi-temporal InSAR technique can satisfy the subsidence monitoring requirements
in the study area.
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Figure 7. (a) Comparison between multi-temporal InSAR- and Leveling-derived results. The blue
squares represent the results by the Kriging method, the red circles represent the results using the
average method and the purple triangles represent the results from leveling. (b) Differences between
multi-temporal InSAR- and Leveling-derived results.

Table 1. Comparison of the average subsidence velocities between multi-temporal InSAR- and
Leveling-derived results.

Method Mean Error (mm/year) RMSE (mm/year) MAX (mm/year) MIN (mm/year)

Kriging 1.44 4.97 8.33 1.01
Average 1.90 4.78 8.60 0.18

The leveling data were acquired only once during the summers of 2007, 2008, 2009 and 2010.
To analyze the temporal evolution of surface subsidence in the study area, we selected eight leveling
points (i.e., BM3, BM4, BM8, BM10, BM12, BM14, BM18 and BM25 illustrated in Figure 6) and the
corresponding PS points to compare and analyze their subsidence time series. The results are shown
in Figure 8.
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As shown in Figure 8, the multi-temporal InSAR-derived results show nonlinear subsidence.
The selected points show different amounts of subsidence depending on their location. Leveling point
BM3 and the corresponding PS point are located in the downtown area of Beijing (Figure 6), where the
accumulated subsidence values of the two different measuring methods are less than 30 mm (Figure 8a).
Meanwhile, the subsidence is nearly steady after April 2009, which is related to the stringent restrictions
on groundwater exploitation in the urban area and the small compressibility of most surface sediments
(e.g., coarse particle sand, gravel, and cobble) in the western part of Beijing. Among the selected points,
BM10 and BM18 are located in the most serious subsidence area, the Tongzhou District (Figure 6).
The subsidence of these pairs continues to increase, and the accumulated subsidence has exceeded
200 mm at both locations. At BM10 and BM18, the results derived by multi-temporal InSAR and
leveling coincide well, as shown in Figure 8d,g. For other points, the multi-temporal InSAR-derived
results are also consistent with the leveling-derived results. The comparative analysis indicates that
the subsidence values acquired by leveling agree well with the multi-temporal InSAR-derived results.
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Figure 8. Comparison of eight benchmarks marked in Figure 6 between the subsidence time series of
multi-temporal InSAR (blue squares) and leveling (purple triangles) data.

5.2. Comparison between Subsidence Changes and Groundwater Changes

To analyze the correlation between surface subsidence and groundwater changes in Beijing, the
monthly gravity fields from RL05 (at degree-l and order-m 60) between August 2007 and September
2010 were first used to estimate the TWS changes in the study area. The long-term trend in TWS
changes estimated from GRACE is shown in Figure 9. The mean long-term trend of TWS changes in
the study area is −8.0 mm/year (in terms of EWH). The time series of the regional TWS changes in
the study area were achieved by averaging the values in the study area. This result is illustrated in
Figure 10a (blue curve) and shows pronounced seasonal variations.

The TWS changes estimated from the GRACE data include primarily groundwater changes,
surface water changes, soil moisture (SM) changes, and ice and snow water changes. Beijing is located
in a warm temperate and semi-humid continental monsoon climate zone. Thus, the snow water
component is typically small, and its contribution to the long-term TWS trend in the Beijing area is
negligible. Nearly all of the major rivers in Beijing are dammed for municipal and industrial use;
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no reservoirs are located in the study area. The surface water reservoir storage changes in the study
area have little influence on long-term TWS changes during the study period [54]. Because our aim is
to derive the long-term trend in groundwater changes, the impact of the surface water component on
TWS changes is beyond our consideration.

The Yan Mountains and Xi Mountain are located in the northern and western parts of Beijing
(Figure 9), respectively, and the area of these mountains accounts for approximately 60 percent of the
area of Beijing. In Figure 4a, it was shown that the subsidence velocities are significantly larger than
the surface uplift. Additionally, because the mountains have limited capacity to store groundwater
and groundwater exploitation in Beijing is mainly concentrated in the plain area, the TWS change
estimated from the GRACE data in the selected area results largely from groundwater depletion in
the plain region of Beijing. Although the area for the multi-temporal InSAR data is much smaller
than the footprint of GRACE data, the prior conclusion means that it is reasonable to compare the
GRACE-based groundwater trend with the multi-temporal InSAR-derived surface subsidence trend.

Sensors 2016, 16, 1495 12 of 18 

 

The Yan Mountains and Xi Mountain are located in the northern and western parts of Beijing 
(Figure 9), respectively, and the area of these mountains accounts for approximately 60 percent of the 
area of Beijing. In Figure 4a, it was shown that the subsidence velocities are significantly larger than 
the surface uplift. Additionally, because the mountains have limited capacity to store groundwater 
and groundwater exploitation in Beijing is mainly concentrated in the plain area, the TWS change 
estimated from the GRACE data in the selected area results largely from groundwater depletion in 
the plain region of Beijing. Although the area for the multi-temporal InSAR data is much smaller than 
the footprint of GRACE data, the prior conclusion means that it is reasonable to compare the GRACE-
based groundwater trend with the multi-temporal InSAR-derived surface subsidence trend. 

 
Figure 9. Spatial pattern of the TWS trend across Beijing, Tianjin, Hebei and Shanxi as estimated from 
GRACE data from August 2007 to September 2010. The black square is the location and size of the 
study area. 

The SM changes from August 2007 to September 2010 in the Beijing area are shown in Figure 
10a (purple curve). After removing the SM changes, the TWS changes in the Beijing area were found 
to be dominated by groundwater, which agrees with the intensive groundwater consumption 
reported in previous studies [55,56]. Therefore, groundwater changes were estimated as the 
difference between the GRACE-based TWS changes and the GLDAS-based SM changes, which 
decreased gradually during the study period (black curve in Figure 10b). The red line in Figure 10b, 
which was derived by the linear fitting method, reflects the long-term trend in groundwater changes 
in the study area. We took an average of all multi-temporal InSAR pixels to obtain the average 
subsidence time series for the study area, with the result (blue curve) shown in Figure 10c. The 
average subsidence presents a nonlinear declining tendency with seasonal variability. We adopted 
the linear fitting method to deduct the seasonal variability in the average subsidence and obtained 
the relatively long-term trend of surface subsidence in the study area, as shown in Figure 10c (red 
dotted line). 

Figure 10d shows that both the groundwater changes and subsidence changes in the study area 
exhibit a continuously decreasing tendency from August 2007 to September 2010. In addition, the 
GRACE-based groundwater decreases at a rate of 5.3 mm/year (in terms of EWH), while the multi-
temporal InSAR-derived surface subsidence trend is 3.9 mm/year (in terms of subsidence). The long-
term decreasing trend in both the groundwater changes and average subsidence show a relatively 
high consistency. A comparative analysis shows that the groundwater decline and surface subsidence 
in the Beijing area are consistent. The groundwater over-exploitation seriously affects the stability of 
the surface in Beijing. 

Figure 9. Spatial pattern of the TWS trend across Beijing, Tianjin, Hebei and Shanxi as estimated from
GRACE data from August 2007 to September 2010. The black square is the location and size of the
study area.

The SM changes from August 2007 to September 2010 in the Beijing area are shown in Figure 10a
(purple curve). After removing the SM changes, the TWS changes in the Beijing area were found to be
dominated by groundwater, which agrees with the intensive groundwater consumption reported in
previous studies [55,56]. Therefore, groundwater changes were estimated as the difference between the
GRACE-based TWS changes and the GLDAS-based SM changes, which decreased gradually during
the study period (black curve in Figure 10b). The red line in Figure 10b, which was derived by the
linear fitting method, reflects the long-term trend in groundwater changes in the study area. We took
an average of all multi-temporal InSAR pixels to obtain the average subsidence time series for the study
area, with the result (blue curve) shown in Figure 10c. The average subsidence presents a nonlinear
declining tendency with seasonal variability. We adopted the linear fitting method to deduct the
seasonal variability in the average subsidence and obtained the relatively long-term trend of surface
subsidence in the study area, as shown in Figure 10c (red dotted line).

Figure 10d shows that both the groundwater changes and subsidence changes in the study
area exhibit a continuously decreasing tendency from August 2007 to September 2010. In addition,
the GRACE-based groundwater decreases at a rate of 5.3 mm/year (in terms of EWH), while the
multi-temporal InSAR-derived surface subsidence trend is 3.9 mm/year (in terms of subsidence).
The long-term decreasing trend in both the groundwater changes and average subsidence show
a relatively high consistency. A comparative analysis shows that the groundwater decline and surface
subsidence in the Beijing area are consistent. The groundwater over-exploitation seriously affects the
stability of the surface in Beijing.
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Figure 10. (a) TWS changes (blue curve) estimated from the GRACE data and SM changes (purple
curve) estimated by GLDAS_NAOH in the study area; (b) Groundwater changes (black curve) and
groundwater trend (red line); (c) Average subsidence changes (blue curve) estimated using the
multi-temporal InSAR technique and the average subsidence trend (red dotted line) in the study
area; (d) Comparison between the groundwater trend (red line) and average subsidence trend
(red dotted line).

5.3. The Correlation between Surface Subsidence and Groundwater Depression

Groundwater is an important factor for maintaining soil stress balance. Groundwater
over-exploitation may destroy the original soil stress balance and lead to surface subsidence. To further
analyze the correlation between the surface subsidence and groundwater exploitation in the Beijing
area, we compared and analyzed the spatial distribution of the average subsidence velocity from
August 2007 to September 2010 and the groundwater depression cone of the main mining layer
in 2010 in the Beijing area; the result is shown in Figure 11. The groundwater depression is mainly
distributed in the eastern and northeastern parts of downtown Beijing, and the more serious subsidence
areas (i.e., the Shunyi, Chaoyang and Tongzhou subsidence areas) are primarily located in the
groundwater depression cone. The subsidence funnel and the groundwater depression are consistent
to some extent, although the distribution range of the subsidence funnel is larger than that of the
groundwater depression. The surface subsidence in Beijing is mainly from the deformation of the
compressible deposits. Under the same stress condition, areas with higher compressible deposits
are more prone to surface subsidence. The compressible sediments in the western part of Beijing
(e.g., downtown) are mainly coarse-particle sand, gravel, and cobble with small compressibility,
while the aquifers in the eastern, northern and southern regions (e.g., Changping, Chaoyang, Tongzhou
and Daxing) are mainly composed of silt clays and fine sand characterized by thick compressible
sediments [57]. The uneven surface subsidence is strongly influenced by the thickness variability of
the compressible sediments, and the serious surface subsidence is generally distributed over thick
compressible sediments. Thus, although the formation and development of surface subsidence in the
Beijing area are mainly caused by groundwater over-exploitation, the formation and development of
surface subsidence are also affected by the thickness of the compressible deposits, the hydrogeological
condition, stratum lithology, and shallow surface space utilization.
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6. Conclusions

In this study, we adopted the multi-temporal InSAR technique to derive subsidence information
for Beijing from 1 August 2007 to 29 September 2010. The surface subsidence and the relationship
between the surface subsidence and groundwater changes in Beijing were analyzed by combining
ENVISAT ASAR data, leveling data, GRACE data, etc. The main conclusions are as follows:

(1) The surface subsidence in Beijing is notably uneven. Five significant subsidence areas that exist in
Beijing are Changping, Shunyi, Chaoyang, Tongzhou and Daxing, among which Tongzhou is the
most serious subsidence area, with a maximum velocity exceeding 140 mm/year. The subsidence
in the downtown area of Beijing is relatively stable, where most subsidence velocities are less
than 10 mm/year. Furthermore, the surface subsidence presents nonlinear deformation.

(2) A statistical analysis of the standard deviations of the average velocities indicated that 96.81% of
the monitoring point standard deviations are less than 5 mm/year, and the standard deviation of
the multi-temporal InSAR-derived subsidence in the study area is 1.99 mm/year. In addition,
the multi-temporal InSAR-derived results were validated with leveling data. The mean error and
RMSE are 1.44 mm/year and 4.97 mm/year, respectively, demonstrating that the multi-temporal
InSAR technique is effective for surface subsidence monitoring in Beijing.

(3) The groundwater changes derived from the GRACE data in Beijing show a decreasing tendency
and profound obvious seasonal variability. Based on the average subsidence of the study
area, the long-term decreasing trends in groundwater and average subsidence are consistent.
In addition, the spatial distribution of the subsidence funnel only partially overlaps the
groundwater depression region. The formation and development of the surface subsidence
in Beijing are seriously affected by groundwater over-exploitation.
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Appendix A

In this study, the Kriging method was implemented through ArcGIS 10.2 software and its
geostatistical analyst extension to estimate the subsidence of a PS point corresponding to the nearest
leveling point. Based on the multi-temporal InSAR-derived PS point subsidence, the spherical
variogram model γ (h) was obtained as follow:

γ(h) =


0, h = 0

1.077×
(

3h
2×402.338 −

h3

2×402.3883

)
, 0 < h ≤ 402.338

1.077, h > 402.338

(A1)

where h is the distance in meters. In the spherical variogram model, the nugget, sill and major range
are 0, 1.077 and 402.338, respectively. Figure A1 shows the spherical variogram model.
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Appendix B

The acronyms used in the text are listed in Table B1.

Table B1. List of acronyms used in the text.

Acronym Full Name

CSR Center for Space Research
DSs Distributed scatterers
DInSAR Differential Interferometric Synthetic Aperture Radar
ESA European Space Agency
EWH Equivalent water height
GLDAS Global Land Data Assimilation System
GRACE Gravity Recovery and Climate Experiment
GNSS Global Navigation Satellite System
InSAR Interferometric Synthetic Aperture Radar
ISBAS Intermittent Small Baseline Subset
LOS Line of Sight
Multi-temporal InSAR Multi-temporal Interferometric Synthetic Aperture Radar
NASA National Aeronautics and Space Administration
PS InSAR Persistent Scatterer Interferometric Synthetic Aperture Radar
PSs Point-like stable reflectors
QPS Quasi Persistent Scatterer
RMSE Root Mean Square Error
RL05 Release 05
SRTM Shuttle Radar Topography Mission
SLR Satellite Laser Ranging
SM Soil Moisture
SBAS InSAR Small Baseline Subset Interferometric Synthetic Aperture Radar
TGR Three Gorges Reservoir
TWS Terrestrial Water Storage
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