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Abstract: We apply the principles of atmospheric surface layer dynamics within a vineyard canopy to
demonstrate the use of forward-looking infrared cameras measuring surface brightness temperature
(spectrum bandwidth of 7.5 to 14 µm) at a relatively high temporal rate of 10 s. The temporal surface
brightness signal over a few hours of the stable nighttime boundary layer, intermittently interrupted
by periods of turbulent heat flux surges, was shown to be related to the observed meteorological
measurements by an in situ eddy-covariance system, and reflected the above-canopy wind variability.
The infrared raster images were collected and the resultant self-organized spatial cluster provided the
meteorological context when compared to in situ data. The spatial brightness temperature pattern
was explained in terms of the presence or absence of nighttime cloud cover and down-welling
of long-wave radiation and the canopy turbulent heat flux. Time sequential thermography as
demonstrated in this research provides positive evidence behind the application of thermal infrared
cameras in the domain of micrometeorology, and to enhance our spatial understanding of turbulent
eddy interactions with the surface.

Keywords: time sequential thermography; micrometeorology; self-organizing maps; surface energy
balance; turbulence; microclimate; infrared camera

1. Introduction

There is great interest in using near-target remote sensing techniques such as time-sequential
thermography (TST) in precision agriculture, ecology [1] and phenomics [2]. Thermography techniques
have to address the thermal condition of the object of interest and the thermal and humidity conditions
of the intervening atmosphere. Near-surface atmospheric temperature is influenced by synoptic
weather patterns and their interaction with local topography at the smaller scale, which together
determines the nature of the air turbulence that envelops the plant and controls the rate of water vapor
and heat exchanges. On the other hand, plants are more than passive objects and employ stomata to
sense the surrounding environment and respond rapidly to abiotic stresses, such as the air temperature.
Their response is typically through stomatal conductance to water vapor and/or transpiration, which
are critical physiological controls. The plant’s surface temperature, or its brightness temperature as
sensed by a thermal infrared camera, is the result of the interaction of the air temperature and the
plant’s physiological response. Thus, to understand the plant’s microclimate through thermography
(or the environment that embodies the plant to a few orders of magnitude in spatial scale relative
to the plant’s volume), it is important to understand the brightness temperature signal (measured
by a infrared camera) as a function of near-surface meteorological parameters controlling the energy
exchanges happening across the plant-environment envelope.

Land surface temperatures are influenced by surface energy balance [3] especially when horizontal
advection processes are negligible. Surface temperature varies as a consequence of partitioning of
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net-all wave radiation (Q*, or the balance between solar and infrared radiation input and output to
the surface) into the subsurface conduction of heat (QG) and changes in sensible (QH) and latent heat
exchange (QE) with the overlying atmosphere. On short time scales (less than an hour), radiative input
is relatively constant, unless clouds interfere or overlying plant canopy causes rapid changes (flickering)
in solar radiation [4]. Higher frequency (seconds to minutes) surface temperature fluctuations are
a response to the turbulent sensible and latent heat fluxes. Turbulence, caused by eddy motion, is
expected to control temperature fluctuations on the same length and time scales as the atmospheric
eddy motions.

The brightness temperatures of objects within the surface layer were not typically considered in
the atmospheric community as a proxy for near-surface turbulence, but as infrared cameras become
cheaper and are able to record data at high spatial and temporal resolutions, it is now feasible to study
turbulence through the acquisition of brightness temperature. One of the earlier studies to investigate
the coupling between coherent turbulent structures and surface temperature over an agricultural field
(maize canopy) employed a directional infrared thermometer (sampling at 10 Hz) in identifying ramp
structures in the surface temperature signal of the canopy with significant correlation with fluctuations
in the air temperature above the canopy [5]. Coherent structures were identified as temperature ramps
in the surface and air temperature time series, with the magnitude of surface temperature ramps
being significantly smaller than the air temperature ramps. Surface temperature ramps are caused by
turbulent eddies mixing warmer (or cooler) air with cool (warm) air from aloft. A similar study was
conducted over grass [3] and also found direct relationships between surface brightness temperatures
and independently measured surface-layer turbulence parameters.

Application of time-sequential thermography (TST) to calculate urban sensible heat fluxes
(from a building) was first demonstrated by Hoyano et al. [6], and was further developed conceptually
by Voogt [7] as a method for viewing the “footprint” of the coherent flow structures, and it was
later emphasized by Christen et al. [8] that brightness temperature fluctuations are largely controlled
by atmospheric turbulence while the level of fluctuation becomes modulated by surface properties,
especially its thermal admittance. The application of TST to detect large temperature fluctuations in
the unstable surface layer to understand the turbulence structure has shown great promise in field
experiments [9], and was successful in deriving surface wind velocities over simple grass areas [10]
via the principle of turbulent eddy interaction with surface brightness temperatures.

As forward-looking infrared cameras become more affordable, TST will become an attractive
method to measure the energy and moisture exchanges between the surface and overlying atmosphere.
This research utilizes spatial brightness temperature data from infrared cameras looking onto a
vineyard canopy. The canopy is also instrumented with an eddy covariance system measuring in situ
turbulent and radiation fluxes and near-ground thermistor-based temperature sensors. The brightness
temperature fluctuations (sampled sequentially over a nighttime period at a high frequency) are
then used to interpret the spatial variability of the turbulent nature of the site using a combination
of in situ metrological measurements and a pattern recognition algorithm (or self-organizing maps,
SOM) applied to the acquired brightness temperature data. The SOM approach allows for clustering
self-similar images into groups that could then be analyzed according to their unique meteorological
context. This research highlights the significance and relevance of the methodology in terms of relating
the brightness temperature variability to atmospheric turbulence, which also highlights the local
meteorology. This approach is not only limited to vineyard applications and could be applied and
assessed over various other crop types or surfaces.

2. Methods

2.1. Study Site and Instrumentation

The experimental site is located in Marlborough, situated in the South Island of New Zealand,
renowned for abundance of vineyards and a major wine-producing region. The experimental site



Sensors 2016, 16, 1518 3 of 11

was chosen to be at the Lions Back vineyard in Seddon (41◦41′51.5′ ′S, 174◦05′13.6′ ′E) (Figure 1).
This vineyard is ideal for the purpose of this experiment as it is easy to access and a nearby-elevated
escarpment provides an ideal platform for placement of the infrared cameras overlooking most of
the vineyard. Within the field of view of the cameras we have placed an eddy covariance system
containing a 3D sonic anemometer, water vapor analyzer, measurements of all-wave radiation, and near
surface air and soil temperature loggers in the same measurement area (Table 1). All measurements
were controlled through data logging devices and/or monitored manually throughout the sampling
period. The meteorological variables measured by the eddy covariance system (surface energy balance
measurement system), climate station (standard meteorological parameters), and the near surface
temperature logger (thermistor-based temperature sensing) were taken from 17 May 2014 12 a.m.
up until 18 May 2014 9 p.m. While the thermography data was collected during the evening of the
17 May 2014 between 5 p.m. and 9 p.m. local standard time, which is also highlighted with a black
rectangular box in Figure 2a.
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Figure 1. (a) The vineyard site covering most of the field of view of the two longwave infrared 
cameras shown on tripods in the foreground. The near-ground Hobo temperature logger is shown in 
the small figure inset; (b) A close up on the eddy covariance system (or EC-station in left panel) 
placed in the center of the camera’s field of view. 

Table 1. Instrumentation specifications and measured variables. 
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velocity and sonic 

temperature (u, v, w, Ts) 

±65 m·s−1 ± 0.08 m·s−1 for u, v 
±0.04 m·s−1 for w, and −30 to 

50 °C ± 0.01 °C for Ts 
20 Hz 

LICOR-7500 
Open path infrared H2O analyzer 
(situated 30 cm below the sonic 

anemometer) 
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0 to 60 parts per trillion 
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20 Hz 
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sensor 
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above ground level or AGL 
−40 to + 70 °C ± 0.2 °C 0.1 Hz 

FLIR A644sc Uncooled infrared camera 
Brightness temperature on 
a raster of 640 × 480 pixels 

−40 to 150 °C ± 2 °C  
Spectral range 7.5 to 14 μm 
Thermal sensitivity 30 mK 

50 Hz 

Optris Pi 640 Uncooled infrared camera 
Brightness temperature on 

raster of 640 × 480 pixels 

−20 to 900 °C ± 2°C  
Spectral range 7.5 to 13 μm 
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Figure 1. (a) The vineyard site covering most of the field of view of the two longwave infrared cameras
shown on tripods in the foreground. The near-ground Hobo temperature logger is shown in the small
figure inset; (b) A close up on the eddy covariance system (or EC-station in left panel) placed in the
center of the camera’s field of view.

Table 1. Instrumentation specifications and measured variables.

Instrument Description Measured Variable Range and Accuracy Sampling
Frequency

Campbell
Scientific
CSAT3

Three-dimensional
ultrasonic anemometer

Cartesian components of velocity
and sonic temperature (u, v, w, Ts)

±65 m·s−1 ± 0.08 m·s−1 for u, v
±0.04 m·s−1 for w, and −30 to

50 ◦C ± 0.01 ◦C for Ts
20 Hz

LICOR-7500
Open path infrared H2O

analyzer (situated 30 cm below
the sonic anemometer)

Specific humidity 0 to 60 parts per trillion (ppt)
±0.6 ppt 20 Hz

Kipp and
Zonen CNR1 Net radiometer Incident and reflected long- and

short-wave radiation components ±10% over 24 h 1 Hz

Vaisala
HMP45C

Temperature and relative
humidity probe

Air temperature, soil surface
temperature, and relative humidity

−40 to +60 ◦C ± 0.3 at 0 ◦C
0 to 90% ± 2% 1 Hz

HOBO U23 Radiation shielded
temperature sensor

Air temperature at 35 cm above
ground level or AGL −40 to +70 ◦C ± 0.2 ◦C 0.1 Hz

FLIR A644sc Uncooled infrared camera Brightness temperature on a raster
of 640 × 480 pixels

−40 to 150 ◦C ± 2 ◦C
Spectral range 7.5 to 14 µm
Thermal sensitivity 30 mK

50 Hz

Optris Pi 640 Uncooled infrared camera Brightness temperature on raster of
640 × 480 pixels

−20 to 900 ◦C ± 2◦C
Spectral range 7.5 to 13 µm
Thermal sensitivity 75 mK

0.1 Hz
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Figure 2. (a) Air temperature and relative humidity from within and above the vineyard canopy. The 
climate station data was collected from a low escarpment around 5 m above the canopy’s horizon. 
The black box shows the time period of the operation of the infrared cameras; (b) Wind speed (line) 
and direction (dotted) from within (blue) and above (black) the canopy; (c) The surface radiation and 
turbulent energy budget from the eddy covariance system inside the canopy. 

2.2. Self-Organizing Maps, SOMs 

The SOMs algorithm for the pattern recognition used in this analysis is SOM_PAK, found at 
Helsinki University of Technology website [11]. SOM iterates through the input dataset while 
matching each input to the SOM node that is closest in terms of its Euclidean distance, and then 
adjusts the node and its neighbors to incorporate the input data. A learning rate parameter controls 
the rate at which the SOM absorbs the information from the input data while a neighborhood radius 
determines which other nodes, are affected by the input data. The learning rate decreases to zero and 
the neighborhood radius decreases to one as the algorithm iterates through the dataset. Several 
matrix sizes (representing the number of maps or patterns) were tested, and for each matrix size the 

Figure 2. (a) Air temperature and relative humidity from within and above the vineyard canopy.
The climate station data was collected from a low escarpment around 5 m above the canopy’s horizon.
The black box shows the time period of the operation of the infrared cameras; (b) Wind speed (line)
and direction (dotted) from within (blue) and above (black) the canopy; (c) The surface radiation and
turbulent energy budget from the eddy covariance system inside the canopy.

2.2. Self-Organizing Maps, SOMs

The SOMs algorithm for the pattern recognition used in this analysis is SOM_PAK, found at
Helsinki University of Technology website [11]. SOM iterates through the input dataset while matching
each input to the SOM node that is closest in terms of its Euclidean distance, and then adjusts the node
and its neighbors to incorporate the input data. A learning rate parameter controls the rate at which
the SOM absorbs the information from the input data while a neighborhood radius determines which
other nodes, are affected by the input data. The learning rate decreases to zero and the neighborhood
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radius decreases to one as the algorithm iterates through the dataset. Several matrix sizes (representing
the number of maps or patterns) were tested, and for each matrix size the number of iterations and
learning rate function types were adjusted, with the aim of reducing the quantization error, or the
mean Euclidean distance between the input data and the SOM; bigger matrices generally exhibit lower
errors. When the change in the error is minimal, the process can be considered complete. Criterion
referred to as the “Sammon Map” is used to inspect whether each node of the SOM has more in
common with its neighboring nodes, than non-neighboring. If not, the SOM algorithm was rerun
with adjusted parameters. For examples on using SOM for various sources of meteorological data
see [12–18].

The brightness temperatures (180× 180 pixels) extracted as a spatial subset from the total infrared
camera image (640 × 480 pixels) were used as input data for the SOM algorithm. First the pixel-wise
data was normalized so that all pixel variables have a variance of 1, this allows for a more effective
way in extracting patterns without biasing regions towards extreme values. Before executing the
SOM algorithm the infrared brightness temperature perturbations (Tb’) were calculated based on
the deviation of every sample (at 10 s interval) from the 10 min average. The de-trended Tb’ were
then related to the turbulence and/or radiation forcing measured by the eddy covariance unit. The
number of nodes (or pattern groups) was chosen to be a 3 × 3 matrix arrangement after testing with
several other arrangements and an optimization between the size of the matrix and the detail of output
was reached. After constructing the SOM, the non-clustered data was then matched with its most
representative node (or spatial pattern), and then a number count was found to compare the relative
population of each node with the original or non-clustered data. As a result, all 9 nodes had best
matching units between 60 and 120, which suggests that the nodes were relatively well populated.

3. Results

3.1. Micrometeorological Context

The experiment extends between midnight of 17 May 2014 up until the early evening of
18 May 2014. During this period the region was synoptically quiescent, which limited surface wind
speeds to less than 3 m·s−1, and the diurnal temperature ranged between just below freezing level and
20 ◦C (Figure 2). The air temperatures measured from within the vineyard canopy (EC station), near
the surface air (Hobo north) and from a nearby climate station (Figure 2a) all show similar diurnal
temperature variations within the experimental domain. The first morning period (17 May 12 a.m. to
8 a.m.) was colder by 5 to 10 ◦C than the following morning period (18 May 12 a.m. to 8 a.m.), mainly
due to the more stable atmosphere maintained by weak surface wind speeds and the surface radiation
cooling process. The following early morning wind speeds measured at 6 m above ground level (AGL)
at the nearby climate station site increased up to 6 m·s−1, causing higher levels of turbulence within
the canopy as registered by the increase in the sonic wind speed (Figure 2b) and the increase in the
latent heat flux during the period between 12 a.m. and 8 a.m.) on 18 May. The relative humidity during
this period (70%) was also lower than the night before (90%, Figure 2b), and the wind direction was
from the northwest sector which blows relatively dryer air from the elevated mountainous regions.

3.2. Brightness and Air Temperature Relationship

In this section we aim to present a direct comparison between the measured brightness
temperatures as seen by both of the long-wave infrared cameras and in situ air temperatures measured
from within the canopy and from the surface at the northern edge of the canopy. The method we
have used relies on averaging the brightness temperature over a 25 m2 area and a larger field of view
area (see boxes (1), (2) and (3) in Figure 3a). Figure 3a shows a snapshot from the Optris camera of
the entire field of view taken at 7:28 p.m. on 17 May 2014 local standard time. The color scale in
Figure 3a represents the brightness temperature and a clear depiction of the warmer vegetated canopy
(around 7 ◦C) rows running north to south and a cooler grass surface between the canopy rows with a
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brightness temperature of around 4 ◦C. Figure 3b is a derived image that represents the brightness
temperature perturbation calculated by de-trending each sampled pixel from the temporal mean over
a 10 min period. This statistical quantity represents a perturbation value that clearly shows pixels
and regions that are either warmer (positive) or cooler (negative) than their neighbors. The resulting
image highlights clouds in the upper sky section of the image that were invisible in Figure 3a, and
warmer structures over the canopy. Figure 3c presents a time series of the area-averaged brightness
temperature measured by the FLIR and Optris cameras over regions (2) and (3). A time series of the air
temperature as measured by the EC-station and the HOBO temperature logger is also added to the
figure to relate the brightness temperature to the air temperature as a function of the height of the air
temperature measurement and location with respect to the vegetated canopy.

Sensors 2016, 16, 1518 6 of 11 

 

from the temporal mean over a 10 min period. This statistical quantity represents a perturbation 
value that clearly shows pixels and regions that are either warmer (positive) or cooler (negative) 
than their neighbors. The resulting image highlights clouds in the upper sky section of the image 
that were invisible in Figure 3a, and warmer structures over the canopy. Figure 3c presents a time 
series of the area-averaged brightness temperature measured by the FLIR and Optris cameras over 
regions (2) and (3). A time series of the air temperature as measured by the EC-station and the 
HOBO temperature logger is also added to the figure to relate the brightness temperature to the air 
temperature as a function of the height of the air temperature measurement and location with 
respect to the vegetated canopy.  

Figure 3. (a) A sample snapshot in time of the brightness temperature measured by the Optris 
camera. Regions (1), (2) and (3) represent the areas from which the mean was calculated from some of 
the analysis; (b) The same snapshot in time as in (a) but for the derived perturbation brightness 
temperature calculated from the deviation of each of the 10 s samples from the 10 min mean. Positive 
values show areas of increasing temperature in time; (c) Time series comparison of brightness 
temperature from two cameras, air temperature from the eddy covariance station and near-surface 
Hobo temperature logger; (d) Scatter plot of brightness temperature and in situ air temperatures. 

3.3. Brightness Temperature and Turbulent Heat Flux 

The horizontal and vertical kinematic heat flux components were calculated from the 
covariance of the horizontal (U, V) and vertical (W) velocity components and the sonic temperature 
recorded by the sonic anemometer. In Figure 4a the kinematic heat flux is sampled at 10 s periods 
from collected data at 20 Hz; the results show turbulent horizontal and vertical heat advection over 
the few hours of the evening when the brightness temperature was sampled via the infrared 
cameras. Figure 4a shows an initial period of moderate to little turbulent heat flux (5 p.m. to 6:30 p.m.), 
with an increase of heat flux over the rest of the evening. This result is also supported by an increase 
in above-canopy wind speeds after 6 p.m. as depicted by the climate station wind speed data in 
Figure 2b. Figure 4b shows the area-averaged (area (2) in Figure 3a) de-trended brightness 

0 2 4 6 8 10 12
0

2

4

6

8

10

12

T
ir
 FOV area average ( oC )

T
ir fo

r 
~

 2
5

 m
2  a

re
a

 a
ve

ra
g

e 
( 

o C
 )

 

 
EC VS Optris (R 2, RMSE = 0.96, 0.27)
EC VS FLIR (0.95, 0.23)
Hobo north VS Optris (0.95, 0.35)
Hobo north VS FLIR (0.98, 0.25)

(d)

Figure 3. (a) A sample snapshot in time of the brightness temperature measured by the Optris camera.
Regions (1), (2) and (3) represent the areas from which the mean was calculated from some of the
analysis; (b) The same snapshot in time as in (a) but for the derived perturbation brightness temperature
calculated from the deviation of each of the 10 s samples from the 10 min mean. Positive values show
areas of increasing temperature in time; (c) Time series comparison of brightness temperature from two
cameras, air temperature from the eddy covariance station and near-surface Hobo temperature logger;
(d) Scatter plot of brightness temperature and in situ air temperatures.

3.3. Brightness Temperature and Turbulent Heat Flux

The horizontal and vertical kinematic heat flux components were calculated from the covariance
of the horizontal (U, V) and vertical (W) velocity components and the sonic temperature recorded by
the sonic anemometer. In Figure 4a the kinematic heat flux is sampled at 10 s periods from collected
data at 20 Hz; the results show turbulent horizontal and vertical heat advection over the few hours
of the evening when the brightness temperature was sampled via the infrared cameras. Figure 4a
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shows an initial period of moderate to little turbulent heat flux (5 p.m. to 6:30 p.m.), with an increase
of heat flux over the rest of the evening. This result is also supported by an increase in above-canopy
wind speeds after 6 p.m. as depicted by the climate station wind speed data in Figure 2b. Figure 4b
shows the area-averaged (area (2) in Figure 3a) de-trended brightness temperature from the FLIR and
Optris cameras around the EC-station, and the corresponding de-trended air temperatures form the
EC-station in the green line.
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Figure 4. (a) Turbulent kinematic heat flux in the three Cartesian directions (U for east-west, V for
north-south, and W in the vertical). Statistically, the heat flux was calculated based on the covariance
of the velocity and sonic temperature; (b) Time series of brightness and air temperature at the eddy
covariance area-averaged site.

3.4. Self-Organizing Maps (SOMs) of Brightness Temperature

In this section we relate the spatial pattern of the brightness temperature to the meteorological
conditions observed at the center of the image via the eddy covariance system. An unsupervised
pattern recognition algorithm (SOM: see descriptions in the Methods section) was used to cluster
the brightness temperature field into nine different nodes. This method allows us to interpret the
brightness temperature field within the right meteorological context when other parameters (such as
data from the eddy covariance system) are composited as a function of individual clusters. Figure 5 is
the resulting SOM of all of the nearly 1000 images that were taken at a 10 s sampling interval from the
Optris infrared camera; the sky brightness temperatures (appearing as a white mask at the top half of
the nodes) were not used in the clustering but used as a derived composite variable for further analysis.
The variables, which appear in parentheses in Figure 5 and are illustrated in Equations (1) and (2),
represent the (A) mean sky brightness temperature perturbation, and the (B) ratio of the mean sky
brightness temperature perturbation to the mean of the absolute sum of the three kinematic turbulence
heat flux components derived earlier for Figure 4a.
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A (per node) = ∑n
i=1 Tb′_sky

n
(1)

where n is the number of images per node.

Tb′ _sky is the spatial average of the de-trended sky brightness temperature Tb′_sky = Tb_sky−
Tb_sky, where Tb_sky is the instantaneous pixel-based value and Tb_sky is the 10 min average.

B (per node) =
A (per node)

|cov(UTs)|+ |cov(VTs)|+ |cov(WTs)| (2)
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Figure 5. SOM nodes derived from the perturbation brightness temperature. Positive or red values
or colors indicate an increase in Tir and negative or blue values or colors indicate a decrease in Tir or
surface cooling. The numbers (A, B) on the top of each node are derived from the best matching units
of that specific node and are perturbations of (A = average sky brightness perturbation temperature,
B = average of the ratio of A by the absolute sum of the three kinematic turbulent heat flux components
that were used in Figure 4a).

4. Discussion

The results comparing the brightness temperature measured by the Optris infrared camera and in
situ air temperatures show a very good match for the canopy height air temperature measurement
and a warm bias for the air temperature measurement at the near-ground level (Figure 3c). The FLIR
camera results show a systematic cold bias, with larger temperature oscillations when compared with
the Optris, which could be explained by the automatic focusing method employed by the FLIR camera,
which tends to periodically auto-sharpen the image, but also could be explained by the need for a
camera calibration. Figure 3d shows a correlation diagram between the brightness temperature and
the in situ air temperature measurement between the smaller area-averaged regions (1) and (2) and the
larger field of view region (3). The results show a good linear correlation and a low value of root mean
square error; they also show the cold bias offset previously revealed by the FLIR camera. This results
also shows that the one-to-one relationship between the brightness temperature and the in situ air
temperature is still preserved while spatially up-scaling the image over a homogenous terrain.
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The brightness temperature signal of the Optris camera when compared to the direct
measurements of turbulent heat flux (shown in red in Figure 4b) follows the air temperature trend and
responds to the cooling and warming period suggested by the heat flux advection. The brightness
temperature oscillation range also scales to the ranges shown by the air temperature record. The FLIR
brightness temperature trend (shown in blue in Figure 4b) generally follows the initial cooling and then
warming cycle but tends to overestimate the range with around five relatively large peaks. These peaks
are linked to the automatic focusing of this specific infrared camera. Between 5 p.m. and 6:30 p.m. the
brightness and air temperature trend did not exhibit either a positive or negative trend in comparison
with the negative (cooling) or warming (positive) trends outside this period. This period also reflects a
period of quiescence and little to no turbulent heat flux as shown in Figure 4a.

The unsupervised clustering carried out by the SOM technique in Figure 5 was successful in
distinguishing nine clusters that have a meteorological context when compared to in situ measurements.
The color in Figure 5 represents the brightness temperature perturbation (red being a warming trend
and blue a cooling trend). The SOM shows distinct features that are relatively different among nodes.
For example, node 1 shows a field-wide warming trend, while node 9 a field-wide cooling trend.
Nodes 4 and 6 show the same extremes but with lower magnitudes, while nodes 3 and 7 show a north
to south cooling or warming gradient and appear to represent an opposite brightness temperature
gradient. In order to link the SOM patterns to a meteorological context we have composited two
different variables (A and B in Figure 5 and Equations (1) and (2)) from the un-clustered data behind
the construction of each of the node patterns. The mean sky brightness temperature perturbations, or
A (varying between −0.17 and 0.17), correlate well with the brightness temperature trends. Positive
values of quantity A (such as in nodes 1 and 4 for example) indicate a warming sky brightness
temperature that relates to nocturnal cloud cover, which reradiates long-wave radiation back onto the
surface, creating a homogenous spatial brightness temperature positive trend. The opposite applies
for clear sky conditions (for example nodes 6 and 9). This result does not apply for nodes 2, 3, 5, 7, and
8 which show an order of magnitude lower mean sky brightness temperature perturbation and higher
values of turbulent heat flux, which clearly creates localized and distinct warming and cooling trends
within the brightness temperature spatial pattern. The particular patterns shown by nodes 3 and 7 are
intriguing, as one could hypothesize that these opposite patterns are related to turbulent advection or
mixing events that are happening within this local topographic catchment, especially as these patterns
only exist during high turbulent heat flux periods (see quantity B for these nodes in comparison to
quantity A for the other nodes).

5. Conclusions

We have demonstrated the use of forward-looking infrared cameras measuring the surface
brightness temperature over a vineyard in the spectrum bandwidth of 7.5 to 14 µm at a relatively high
temporal rate of 10 s for the application of vineyard-scale micrometeorology. Our results show that
this technique, when applied for interpreting the micrometeorology as a function of cloud cover and
within-canopy turbulence, could become a useful tool for up-scaling point measurements to spatially
wide footprints. The temporal surface brightness signal over a few hours of the stable nighttime
boundary layer intermittently interrupted by periods of turbulent heat advection was shown to be
related to the atmospheric surface-layer dynamics observed by the eddy-covariance measurements,
and reflects the temporal evolution of above-canopy wind variability.

The analysis also introduced the SOM of the spatio-temporal brightness temperature data to
reduce the dimensionality of this large dataset, but more importantly to highlight the physical dynamics
of nighttime surface brightness temperature over a complex canopy measured by an infrared camera.
The resultant spatial clusters were self-organized and compared to the meteorological context they
reflected, and the spatial brightness temperature pattern was explained in terms of the presence or
absence of nighttime cloud cover and down-welling of long-wave radiation and the canopy turbulence
heat flux. Time sequential thermography as demonstrated in this research provides positive evidence



Sensors 2016, 16, 1518 10 of 11

behind the application of thermal infrared cameras in the domain of micrometeorology. The results of
this experiment could then be used in accordance with the surface renewal theory (which assumes that
surface-atmospheric turbulence exchanges are driven by ramp-like structures within the temperature
time series), which will eventually allow for a spatial pixel-based derivation of sensible and latent heat
flux which are essential for the canopy’s water balance during daytime periods [19–22].

There are a couple of limitations to this study that need to be considered when it is applied for more
complex terrain. The first limitation comes from the potential effect of air temperature and humidity
fluctuations along the camera’s line of sight on the interpretation of surface brightness fluctuations.
This effect is usually addressed by simple one-dimensional radiative transfer modeling, which
delineates the role of infrared signal attenuation. Both of these effects have been previously found to
be less than 10% (for atmospheric temperature) and less than 3% (for atmospheric humidity) [8] for an
urban setting and results may vary for other applications. The other limitation is the variable image
pixel resolution as a function of depth. So the pixels furthest away from the camera have a different
pixel resolution than pixels close to the camera. This could be only fixed with ortho-rectification when
a high-resolution digital elevation map (DEM) for the site is available. A DEM was not available for
this study, and given that the focus of this study was not to study atmospheric turbulence as a function
of length scale, we considered that not affecting our major conclusions in this study.
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