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Abstract: Energy recharging has received much attention in recent years. Several recharging
mechanisms were proposed for achieving perpetual lifetime of a given Wireless Sensor Network
(WSN). However, most of them require a mobile recharger to visit each sensor and then perform
the recharging task, which increases the length of the recharging path. Another common weakness
of these works is the requirement for the mobile recharger to stop at the location of each sensor.
As a result, it is impossible for recharger to move with a constant speed, leading to inefficient
movement. To improve the recharging efficiency, this paper takes “recharging while moving” into
consideration when constructing the recharging path. We propose a Recharging Path Construction
(RPC) mechanism, which enables the mobile recharger to recharge all sensors using a constant
speed, aiming to minimize the length of recharging path and improve the recharging efficiency while
achieving the requirement of perpetual network lifetime of a given WSN. Performance studies reveal
that the proposed RPC outperforms existing proposals in terms of path length and energy utilization
index, as well as visiting cycle.

Keywords: wireless sensor network; energy management; lifetime; energy recharging efficiency;
recharging path reduction

1. Introduction

Wireless sensor networks (WSNs) have been widely used in various fields such as environmental
monitoring, health care, industry, transport and logistics [1–5]. Most wireless sensors are
battery-powered. The limited energy of the batteries is a constraint on the lifetime of WSNs.
Thus, the issue of energy management has received much attention in the last decade. In the literature,
plenty of approaches have been proposed to cope with the energy management problem. These studies
mainly focus on two techniques: energy conservation technology [6–9], and energy replenishment
technology [10–16].

The energy conservation technology aims to prolong the lifetime of WSNs by reducing the energy
consumption of the network. In the past years, some energy conservation algorithms [6–9] were
proposed. To extend the lifetime of WSNs, most proposed mechanisms use power reduction to
conserve the limited battery energy. These mechanisms include the optimization of routing decisions,
node energy management, MAC protocols, cross-layer optimization, etc. However, since the energy
conservation approaches only try to reduce energy consumption, without considering the energy
replenishment, it is difficult to sustain the operations of WSNs.
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Energy replenishment technology involves recharging the sensor by collecting energy from the
surroundings or RF-based energy transmission, aiming to achieve perpetual network operation.
There are numerous proposed schemes [10–19] to recharge the sensors in the monitoring area.
Depending on the source of recharging energy, the existing energy replenishment mechanisms can
be further classified into two categories: energy replenishment from environmental energy or from
mobile rechargers.

In the first class, numerous energy harvesting systems [10–13] have been proposed. They consider
that there are various renewable environment resources, such as solar energy, wind energy,
thermal energy, etc. Since these renewable energy sources are mainly obtained from the environment,
these energy supports are unreliable.

To improve the instability characteristics usually found in the first class, plenty of RF-based energy
transmission mechanisms have been proposed [14–16]. They assume that the sensors are stationary
in the network. The sink node is considered as a static energy station which provides energy to a
mobile recharger. Then, these mechanisms employ several rechargers to periodically visit and provide
energy to each sensor. This implies that the sensors can be recharged at fixed time intervals, however,
how to improve the energy efficiency while maintaining the recharging demand of each sensor is still
a big challenge.

This paper considers the problem of energy recharging efficiency of wireless sensor networks.
We present an algorithm to construct a path which passes through each sensor for a mobile recharger
to recharge each sensor with a guarantee that each sensor can be fully recharged. To reduce the path
length, the proposed algorithm then utilizes the triangle theorem, aiming at minimizing the recharging
path length. The contributions of this paper are itemized as follows:

(1) Recharging while moving:

This paper presents and implements the concept of “recharging while moving”. The mobile
recharger therefore can efficiently move along the path with a constant speed.

(2) Guarantee that each sensor can be fully recharged:

A recharging segment is analyzed and constructed such that the mobile recharger moving along
the segment of each sensor can guarantee that each sensor is fully recharged.

(3) Joint mobility and energy recharging:

As far as we know, this is the first work that allows the recharger to be moved with a constant
speed while each sensor can be fully recharged by mobile recharger.

(4) Reducing the length of recharging path:

The proposed path reduction approach further reduces the length of recharging path while
satisfying the perpetual operation demand of WSNs, as compared with existing works [14–16].

The remainder of this paper is organized as follows: Section 2 reviews related works on energy
replenishment. Section 3 presents the network environment and problems investigated in this
paper. Section 4 gives a sensor recharging model which is applied in the proposed RPC mechanism.
In Section 5, the performance evaluation of the proposed RPC algorithm is presented. Section 6
concludes this paper.

2. Related Works

This section reviews existing works related to energy replenishment in WSNs. In the literature,
plenty of mechanisms have been proposed to support perpetual network operations. These solutions
can be classified into two categories, including the energy replenishment by environmental energy
resources and energy replenishment by mobile rechargers. The following reviews these related studies.
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2.1. Energy Replenishment by the Environmental Energy Resources

There are numerous studies focus on how to transform renewable energy, such as solar energy,
wind power and thermal energy, into electrical energy for maintaining the perpetual operations
of WSNs.

In [10], Jay et al. proposed a micro-solar power subsystem to supply energy to sensors. This system
consists of several pieces, including solar panels, regulators and energy storage elements. The solar
panel acquires the solar energy from the environment first. Then, the system transforms this solar
energy into electric energy in order to recharge the sensors. However, to ensure the sensors can be
recharged constantly, the micro-solar power subsystem must be connected to each sensor, which
increases the size of each sensor. Furthermore, the fatal shortcoming of solar energy is its unreliability
factor, as the strength of light changes with the weather, so the energy provided to sensors is unstable.

As a kind of available renewable and free energy source, wind energy has been widely used in
supplementary energy systems. Tan et al. [11] provided a wind turbine generator (WTG) to sense the
wind speed of the environment. This wind energy harvesting (WEH) system transforms the wind
energy into electrical energy to recharge the sensors. However, as the strength of wind is unstable,
the WEH could not obtain the expected energy. In addition, the size of the WEH mechanics may pose
a new deployment problem.

The concept of using a thermal energy harvesting system to recharge WSNs has received
significant attention over the past years. Study [12] proposed a Seebeck heat pump to transform
the surrounding thermal energy into electric energy. The proposed device was composed of two
thermoelectric generator (TEG) systems: an energy collection system and an energy recharging
system. The energy collection system captures the solar radiation while the energy recharging system
recharges the sensor batteries. However, the construction of the proposed TEGs system is too complex.
Additionally, the energy consumption of the TEG system is higher than that of other energy harvesting
systems [11].

2.2. Energy Replenishment by Mobile Rechargers

Since the amount of energy that can be harvested from the environment is limited, numerous
studies [13–16] have focused on how to recharge sensors by using a mobile recharger. He et al. [13]
proposed an energy recharging scheme based on RFID technology. In this study, the tag is considered
as a sensor which obtains energy from the reader through RF signals. However, the main problem is
how to deploy the readers to guarantee the tags will be fully recharged while minimizing the energy
cost. In addition, since each sensor needs a RF reader, the number of readers increases with the number
of sensors, resulting in a high cost of the recharging system.

To resolve the problems of [13], Zhang et al. designed a novel recharging paradigm,
called collaborative mobile charging, which recharges the sensors in the monitoring area by using
several mobile rechargers [14]. The mechanism assumes the rechargers are able to charge each other.
Then, a multiple mobile recharger collaboration schedule is proposed to recharge the sensors in the
WSNs. However, the mobile recharger can only recharge one sensor in a certain time period, leading to
low recharging efficiency.

With the purpose of reducing the number of mobile rechargers needed, reference [15] proposed
an energy recharging system based on a single mobile recharger. This system consists of three parts,
including a mobile recharger, sensors with power receivers, and an energy station. The energy
station arranges the visit sequence for the mobile recharger according to the energy consumption
information reported by the sensors. Then, the mobile recharger recharges the sensors following the
arranged sequence. However, the sensors need to transmit their energy information to the energy
station periodically, leading to additional energy consumption. Furthermore, they do not consider the
recharging path length of mobile recharger, resulting in low recharging efficiency.

To improve the recharging efficiency of mobile recharging systems, Xie et al. [16] considered
the requirement of periodic recharging of the sensors and proposed a mobile recharging algorithm
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by using a wireless charging vehicle (WCV). They assume that the WCV carries a power station.
The WCV travels over the WSNs and recharges the sensors periodically. The travel path of the WCV
is constructed by applying the shortest Hamiltonian cycle. Although the recharging path length has
been considered, the path length can be further reduced.

Shi et al. proposed a recharging path construction mechanism based on the shortest Hamiltonian
cycle [18]. The constructed path passes through the location of each sensor. A wireless charging vehicle
travels along the path to recharge sensors. However, the path length still can be further reduced.

In [19], a recharging mechanism, called OWER-MDG is proposed. A mobile vehicle (SenCar) is
used to recharge sensors and collect data from them. In each run, OWER-MDG selects several anchor
sensors from among the static sensors and constructs a path passing through the recharging ranges of
the anchor sensors. The sensors with low remaining energy will be selected as anchor sensors and
will be recharged before other sensors. Since the path constructed in each run cannot visit all sensors,
several runs are needed to fully recharge all sensors in the monitoring area. That is, the path that visits
all sensors can be treated as the connection of the paths constructed in several runs. Though the data
collection can be completed in each run, the path for mobile recharger to recharge all sensors is long.

All of the energy management mechanisms discussed above emphasize the recharging quality
and aim to guarantee that each sensor can be fully recharged. Studies [10–12] aim to recharge sensors
by adding an energy harvesting system to each sensor. However, the power supplied by these systems,
such as solar, wind and thermal, is unstable and unpredictable. On the other hand, in the energy
recharging mechanisms proposed in [13–16,18,19], the recharging paths for mobile rechargers must
pass through the central location of each sensor, leading to energy inefficiency. This paper proposed a
recharging path reduction mechanism (RPC) which analyzes and constructs the shortest recharging
segment for each sensor and ensures the sensor can be fully recharged when the mobile recharger
moves along this segment. Compared with the existing works, the proposed RPC reduces the path
length and guarantees each sensor to be fully recharged. Table 1 summaries the comparisons of the
related researches and the proposed RPC.

Table 1. The comparison between the existing algorithms and the proposed RPC.

Charging
Stability

Recharging
While Moving

Without Passing
Center of Sensor

Periodic
Recharging

Solar system [10] × × × ×
WEH system [11] × × × ×

Thermal system [12] × × × ×
WISP [13] # × × ×
CMC [14] # × × #

DIWC system [15] # × × #
Mobile system [16] # × × #
The proposed RPC # # # #

3. Network Environment and Problem Formulation

This section initially introduces the network environment and the assumptions of this work. Then,
the problem formulation is proposed. Subsequently, the sensor recharging model is presented.

3.1. Network Environment

Assume that the working scenario of the proposed recharging algorithm is an indoor sensor
network. In this scenario, there is no sunlight or other environmental energy recharging mechanisms
that can be applied to recharge the sensors. Given a monitoring region O, this paper assumes that a
set of h static sensors S = {s1, s2, s3, . . . , sh} is distributed over region O, where s1 denotes the sink
node. All sensors have the same sensing rate and their readings are directly transmitted to the mobile
recharger. Therefore, the energy consumption rates of all static sensors are equal. Each static sensor
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is equipped with a rechargeable battery with limited capacity. A mobile recharger, denoted by M,
should move with a constant velocity and periodically visit each static sensor, aiming at collecting data
from each static sensor and recharging the visited sensor during a predefined period T.

Constructing an efficient recharging path for recharger M has several challenges. First of all,
the shortest path that passes through all sensors is not a good solution. The major reason is that the
path might too long since it is not necessary to pass the location of each sensor. In fact, the path only
needs to intersect with the recharging range of each sensor. This guarantees at least that the mobile
recharger has an opportunity to recharge the sensor. To further guarantee that the sensor can be fully
recharged, the length of recharging time period should be accurately evaluated. Another challenge
is that the recharging ranges of many sensors might be intersected with each other. It is difficult to
construct the shortest path by considering both the factors of required recharging time period and the
overlapped recharging ranges of neighboring sensors. This paper aims to construct the shortest path
for M such that the energy recharge of each sensor can be satisfied. We assume that the information
including the total number and the locations of static sensors are known. Figure 1 presents a scenario
where a set S = (s1, s2, s3, . . . , s14) of fourteen static sensors and a mobile recharger have been deployed
in the region O.
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3.2. Problem Formulation

This paper aims to construct the shortest recharging path for mobile recharger M such that each
sensor can be fully recharged. Let P denote the recharging path and len() denote the function that
returns length of a path. Equation (1) represents the goal of this paper:

Minimize len(P) (1)

The goal given in Equation (1) should satisfy the following three constraints: the first one is the
Sensor Recharging Constraint, which asks each sensor to be fully recharged when the mobile recharger
visits it. That is, in worst case, the recharging energy obtained by each sensor should be equal to
or not less than the capacity of the sensor battery. Let Eneed denote the battery capacity of each
sensor. Let Ti denote the time period that mobile recharger falls in the recharging range of sensor
si. Let Ti = ki·tunit=[t1

i , tki
i ] where notation tunit denotes the length of each time slot and let et

i denote
the obtained energy of sensor si from the mobile recharger M at time point t. The following Sensor
Recharging Constraint asks each sensor to be fully recharged:∫ t

ki
i

t1
i

et
i dt ≥ Eneed where 0 ≤ i ≤ h− 1 (2)

Another constraint is required to guarantee that each sensor’s energy can support the energy
consumptions for sensing and communication. Recall that the mobile recharger M travels along path
P takes time period Tp. That is to say, each sensor can be recharged again every time period Tp.
Equation (3) depicts the Network Lifetime Constraint:
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(esen + ecom)·
Tp

tunit
≤ Eneed (3)

The third constraint is to guarantee that all sensors that fall in the recharging range of the
mobile recharger can obtain the energy from mobile recharger simultaneously. Let St denote the set of
sensors which satisfy the condition that mobile recharger falls in the sensor’s recharge range at time t.
Let notation bt

i be a Boolean variable representing whether or not the sensor si is recharged at the
time t. Assume that the number of elements in St is kt. The following Recharging Neighbors Constraint
should be satisfied:

∑
si∈St

bt
i = kt (4)

3.3. Sensor Recharging Model

Let P denote the path along which the mobile recharger moves and recharges each sensor’s battery.
This section aims to analyze the energy obtained by the sensor when the recharger moves along path P.
Recall that notations M and si denote the recharger and the recharged sensor, respectively. We aim to
construct path P along which each sensor can be fully recharged while the length of P can be as short
as possible.

The mobile recharger M moving along path P and recharging each sensor si should guarantee
that the battery of each sensor is fully recharged. Let d be the distance between M and si. It is obvious
that the recharged energy of si is decreased with the distance d. Let Ptx

M denote the recharging power
applied by recharger M. Let notations Gtx and Grx denote the antenna gains of M and si, respectively.
Let λ denote by the amplitude, Lp denote the polarity loss, and Prx

si
denote the power received by si.

According to Friis’s free space equation [17], the recharging power obtained by si from a fix recharger
M can be formulated as Equation (5):

Prx
si

=
GrxGrxη

Lp

(
λ

4π(d + β)

)2
Ptx

M (5)

where η is referred to as rectifier efficiency, and β is a parameter to adjust the Friis transmission
equation to room environment.

According to Equation (5), the distance d is an important parameter in recharging model. A large
value of d will lead to low recharging efficiency while a small value of d might result in a long path.
Let notation rrch represent the threshold of distance. It is obvious that we have:

Ri = π·(rrch)
2

(6)

when condition rrch ≤ d is satisfied, the recharging energy obtained by si can be neglected. That is,
Prx

si
= 0. Let the location of si be (0, 0). The battery energy of si received from M which is located at

position (x, y) is represented as Equation (7):

Prx
si
(x, y) =


τ

(d + β)2 , d ≤ rrcg

0, d ≥ rrcg
(7)

where τ = Gtx×Grx×η
Lp ×

(
λ

4×π

)2
× Ptx

M , and d =
√

x2 + y2.

4. Recharging Path Construction (RPC) Algorithm

This section presents the proposed RPC algorithm, which aims to reduce the length of recharging
path while satisfying energy recharging requirements of all sensors. The proposed RPC mainly consists
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of four phases. The first phase aims to construct an initial recharging path that passes through all
sensors. Based on the constructed path, all sensors are ordered in a certain sequence. The second phase
aims to divide the ordered sensors into many groups. The third phase aims to reduce the length of the
subpath of each group. Finally, the fourth phase interconnects the subpaths of all groups and forms
the recharging path.

4.1. Initial Recharging Path Construction (IRPC) Phase

Recall that the set of sensors is represented by S = {s1, s2, . . . sh}. Let (xi, yi) denote the location
of sensor si. Let ssoutheast be the southeast point in S. That is:

ssoutheast = arg min
si∈S

yi (8)

Initially, the ssoutheast will be chosen as the first point for constructing the path. The path P
that passes each si ∈ S will be constructed point by point. The IRPC Phase mainly consists of three
steps: the convex polygon construction, the remaining points connection and the renumbering steps.
The following describes the first step.

Step 1: Convex Polygon Construction

Initially, let ŝ1 = ssoutheast will be the first point. Let φ be a horizontal line passing through ssoutheast
and φ has an infinite length. Then we turn φ in a counterclockwise direction until it touches any point,
say ŝ2. Then sensor ŝ2 will play the role of ssoutheast and repeatedly executes the operations describe
above to find the next point ŝ3. Let ŝk be the last point which find ŝ1 as its next point. Then we have
constructed a path Pinit = (ŝ1, ŝ2, . . . ŝk) which forms convex polygon G.

Step 2: Remaining Points Connection

This step will be executed if k < h. This implies that there should be h− k + 1 remaining points
that are inside G but are not included in Pinit. In this step, the remaining h− k + 1 points should be
included in the polygon. Let Srem be the set of remaining h− k + 1 points. The point in Srem that is
closest to path Pinit will be chosen as first point by applying Equation (9):

sclosest = arg min
sj∈Srem ,ŝi∈G

[
dist

(
sj, ŝi

)
+ dist

(
sj, ŝi+1

)
− dist(ŝi, ŝi+1)

]
(9)

Then the point sclosest will be included in polygon G to form a new polygon by connecting sj to
two points ŝi and ŝi+1 and removing the edge of (si, si+1). The above mentioned operations will be
applied repeatedly until all h− k + 1 points have been included in the polygon.

Step 3: Renumbering

Let the constructed polygon be G =
(
ŝ1, . . . , ŝi, sj, . . . , ŝk

)
. Let the sink node be the xth point in G.

In this step, the sensors in G will be renumbered such that the sink node will be the first point in the
constructing path. Therefore, the renumbered path will be:

Pinit
I =

(
ŝx, ŝ(x+1)mod h, . . . , ŝ(x+h−1)mod h

)
(10)

The renumbered path P which starts from sink node can be represented as Pinit
I = (s̃1, s̃2, s̃3, . . . , s̃h)

where s̃i = ŝ(x+i−1)mod h.
The following gives an example of the proposed IRPC Phase. Figure 2 depicts the set of seven

sensors S = {s1, s2, . . . s7}. Herein, the sink node is also considered as a sensor, and is denoted by s1.
In the first step of this phase, a convex polygon must be constructed starting at the sensor

ssoutheast = s2. Let ŝ1 = s2. As shown in Figure 2a, the dotted horizontal line is φ. Then, turn φ in
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a counterclockwise direction until it touches the first point s3, which plays the role of ŝ2. Similarly,
treating sensor ŝ2 as ssoutheast, the point ŝ3 can be identified. Repeatedly perform the abovementioned
operations, until ŝ1 is finally identified. Then the path Pinit can be constructed as:

Pinit = (ŝ1 = s2, ŝ2 = s3, . . . ŝ5 = s1)

As shown in Figure 2b, the convex polygon G is obtained.
The second step aims to add the remaining points to convex polygon G. If all the sensors have

been included in G, this step can be ignored. On the contrary, the second step should be applied. In this
example, the set of remaining points are Srem = {s4 , s7}. According to Equation (13), sensors s4 and s7

should be further added to G, as shown in Figure 2c. Let PRPC
I denoted by the initial recharging path.

By applying the third step, the sensors in S can be renumbered as PRPC
I = (s̃1, s̃2, s̃3, . . . , s̃7), as shown

in Figure 2d.
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After finishing the IRPC Phase, an initial path that passes each sensor has been constructed.
However, the path length might too long. To reduce the path length of PRPC

I , the next phase of the
proposed RPC will simply partition the ordered sensors into groups.

4.2. Partitioning Phase

According to the path constructed in the first phase, all sensors are well ordered. This phase
aims to partition the ordered sensors into several groups. The motivation of the partitioning task is to
simplify the path reduction design. In the later phases, the path reduction will be performed group by
group and then the reduced subpaths of all groups will be interconnected as a recharging path.

In fact, the path reduction is a big challenge. Each sensor si can have many neighbors. It is difficult
for determining the previous and next visited sensors by selecting sensors from neighboring sensors of
si. This occurs because that the length of recharging path is highly related to the positional relationship
of two adjacent sensors. To simplify the path reduction, this phase partitions all sensors into groups.

The partitioning phase will construct three partitions C1, C2 and C3, regardless the number of
sensors. Each partition consists of dh/3e disjoint groups, and each group contains exactly three sensors.
Since three sensors can form a triangle, the property that the sum of lengths of two edges must larger
than the length of the remaining edge. Based on this property, the length reduction operation can
be applied to reduce the subpath of each group. The following formally list the three partitions.
Each partition Ci will be the input of later phases, aiming to construct the reduced recharging path:

C1 =
{

gi
1

∣∣∣ gi
1 =

(
s3∗(i−1)+1, s3∗(i−1)+2, s3∗(i−1)+3

)
, 1 ≤ i ≤ dh/3e

}
C2 =

{
gi

2

∣∣∣ gi
2 =

(
s3∗(i−1)+2, s3∗(i−1)+3, s3∗(i−1)+4

)
, 1 ≤ i ≤ dh/3e

}
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C3 =
{

gi
3

∣∣∣ gi
3 =

(
s3∗(i−1)+3, s3∗(i−1)+4, s3∗(i−1)+5

)
, 1 ≤ i ≤ dh/3e

}
Take Figure 3 as an example. Based on the output of IRPC phase, we have path PRPC

I =

{s1, s2, . . . s8}. Partitioning Phase will create the following three partitions:

C1 =
{{

g1
1 = (s1, s2, s3)

}
,
{

g2
1 = (s4, s5, s6)

}
,
{

g3
1 = {(s7, s8)}

}
C2 =

{{
g1

2 = (s2, s3, s4)
}

,
{

g2
2 = (s5, s6, s7)

}
,
{

g3
2 = (s8, s1)

}}
C3 =

{{
g1

3 = (s3, s4, s5)
}

,
{

g2
3 = (s6, s7, s8)

}
,
{

g3
3 = (s1, s2)

}}
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4.3. Inner-Group Path Reduction Phase

This phase aims to reduce the subpath for each group. The path reduction scheme consists of two
major tasks. The major work of this phase is to construct a chord as the recharging segment for each
sensor. To achieve this, two tasks should be performed in this phase. The first task aims to analyze the
length of the recharging segment. Then the second task further constructs the recharging segment for
each sensor and connects the segments of sensors in each group. The constructed recharging segment
should support the property of ‘recharging while moving’. That is, the mobile recharger moves along
the constructed segment can fully recharge the battery of that sensor. The following analyzes the
length of the recharging segment.

Step 1: Analyzing the Length of the Recharging Segment

It is obvious that the static sensor can be recharged only if the mobile recharger M is within Ri.
The following presents how to construct a recharging segment for each sensor. Recall that the segment
li = (pi, qi) is a straight line between entering point pi and leaving point qi and len(li) denote the
length of li. The total recharging energy of si obtained from the M can be evaluated by applying
Equation (11):

EH =
∫ len(li)

v

0

τ

(v× t + β)2 dt =
τ × len(li)

v× β× (len(li)/2 + β)
(11)

There are infinite recharging segments in each recharging range. This paper aims to reduce the
length of recharging segment li for each sensor while satisfying the Sensor Recharging (SR) Constraint (1).
Recall that each sensor has the same battery capacity Eneed. As shown in Figure 4, the constructed
recharging segment li should satisfy the constraint (1).
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That is, the sensor can obtain at least recharged energy Eneed after M completing the movement of
segment li. Let notation dr denote the shortest distance from point si to li. Equation (12) reflects the
fact mentioned above:

2
∫ len(li)

2v

0

τ√
(v× t)2 + (dr)2 + β

dt− Eneed ≥ 0 (12)

where dr ≤ rrch.
According to Equation (12), the lengths of li and dr can be calculated. The distance from sensor si

to the recharging segment li should be equal or less then dr, in order to guarantee the full recharge of
sensor si. In addition to the first task, the next task aims to further construct the recharging segment
and the reduced subpath for each group.

Step 2: Constructing the Reduced Subpath for Each Group

This task aims to reduce the length of subpath for each group. The major work of this task is
to construct the recharging segment li for middle sensor of each group. By applying the Triangle
Theorem, a reduced recharging path of a group can be constructed. Then, we apply the proposed
operations to each group of three partitions C1, C2 and C3. As a result, the reduced subpath of each
group can be constructed.

Assume that there is a group gj
i which contains three sensors sa, sb and sc. The goal of this step is

to reduce the recharging path that connects sa, sb and sc. The following uses Figure 5 as an example to
illustrate how to reduce the length of the recharging path.
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As shown in Figure 5a, the yellow path represents the initial recharging path of group gj
i . Let sb

be the middle sensor of group gj
i , the length that falls inside the recharging range of sensor sb is

2rrch. The path reduction can be achieved by the following operations. The triangle connecting
sensors sa, sb and sc is denoted by ∆sasbsc, as shown in Figure 5a. We shift the segment lac toward sb,
until the distance between sensor sb and the segment lac is equal to dr. Let points p and q represent
the intersecting points of recharging circle of sensor sb and segment lac. The path lpq in this example
can be considered as the li, which has the important property that the recharger M moving along the
recharging segment lpq with a constant velocity v can fully recharge the battery of sensor sb. As a result,

a new recharging path of group gj
i = {sa, sb, sc} can be constructed, as shown in Figure 5b. Compared

with the initial path in Figure 5a, the length of the constructed path in Figure 5b has been significantly
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reduced. The above mentioned operations should be applied to all groups such that the subpath length
for each group can be reduced.

4.4. Inter-Group Path Reduction Phase

The previous phase has reduced the subpath for each group. This phase aims to further
interconnect the subpaths of all groups, forming the reduced recharging path. The major work
in this phase mainly consists of two steps. The first step aims to construct the new recharging path of
each partition. The second step calculates the saving path length of each partition, and then considers
the shortest reduced recharging path as the final recharging path.

Step 1: New recharging path construction for each partition

This step aims to connect all the subpaths constructed in Phase 3 such that a path for the considered
partition can be formed. Consider a particular partition Ci(i = 1, 2, 3) which consists of k groups
g1

i , g2
i , . . . , gdh/3e

i , where k = 1, . . . , dh/3e and gj
i is in the previous order of gj+1

i along the clockwise

direction. In this example we connect the reduced subpath starting from the group gj
i . Let Lj

i represent

the reduced recharging path of group gj
i . Let notations sstart

(i,j) and send
(i,j) denote the starting and ending

sensors of path Lj
i , respectively. By connecting the ending sensor send

(i,j) in group g(j mod k)
i to the starting

sensor sstart
(i,j+1) in group g(j+1) mod k

i , 1 ≤ j ≤ k, a final path for a certain partition can be obtained.
Figure 6 gives an example of a new reduced recharging path of a partition.
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By applying the operations proposed in this step to each partition of C1, C2 and C3, three new
reduction paths can be constructed. As shown in Figure 7, there are eight sensors in the monitoring
area. Let notations P1

C1
and P1

C2
represent the initial paths of C1 and C2, respectively, while notations

P2
C1

and P2
C2

denote the reduced path of C1 and C2, respectively.
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Step 2: The Selection of Recharging Path

This step aims to choose the shortest recharging path from the constructed paths in the first
step. As discussed above, three new recharging paths P2

Ci
(i = 1, 2, 3) have been constructed. Then we

calculate the length of path P1
C1

, P1
C2

and P1
C3

.
Take Figure 5 as an example. Let notations α and β denote the angles of ∠sbsasc and ∠sbscsa,

respectively, as shown in Figure 5a. Let wij denote the saving length of recharging path of group gj
i .

Compared with Figure 5a, the saving path length in Figure 5b can be represented as Equation (13):

wi,j = lsbm + lsbn − lmn (13)

As shown in Figure 5a, the lengths of segments lom and lon could be expressed by Equations (14)
and (15), respectively, according to Pythagorean theorem:

lom =
rrch

tanβ
(14)

lon =
rrch

tanα
(15)

Based on Equations (14) and (15), we have:

lmn = lom + lon =
rrch

tanβ
+

rrch

tanα
(16)

Similarly, segments lbm and lbn can be calculated by applying Equations (17) and (18), respectively:

lbn =
rrch

sinα
(17)

lbm =
rrch

sinβ
(18)

Substituting Equations (16)–(18) into Equation (13), we have:

wi,j = lbm + lbn − lmn =
rrch

sinβ
+

rrch

sinα
−
(

rrch

tanβ
+

rrch

tanα

)
(19)

Let C
wij
i (1 ≤ i ≤ 3) denote the total saving path length of partitions ci, (1 ≤ i ≤ 3). The values of

C
wij
1 , C

wij
2 and C

wij
3 can be obtained by applying Equation (20):

C
wij
i =

j=dh/3e

∑
i,j=1

wij, 1 ≤ i ≤ 3 (20)

where variable i denotes the sequence number of partitions while variable j denotes the sequence
number of group in partition Ci. Then, the partitions which has maximal saving length will be
considered as the best recharging path, called Pbest.

4.5. The Proposed RPC Algorithm

This subsection presents the RPC algorithm by summarizing the operations presented previous
subsections of Section 4. Algorithm 1 depicts the detailed steps designed for the proposed RPC
algorithm. In Phase I, steps 1–8 select the southeast sensor as an initial node to construct a convex
polygon G. Next, if k < n, steps 9–15 connect the remaining points to G. In Phase II, steps 16–18 divide
all sensors into different groups, and three partitions C1, C2 and C3 can be formed. In Phase III, for a
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group gj
i , steps 19–29 construct a recharging segment lmn to replace the subpaths lmk and lkn. Then,

in the Phase IV, steps 24–26 calculate the value of wij for each group. Steps 27–29 calculate the saving
length of partitions Ci, and select the shortest path as the final recharging path, called Pbest.

Algorithm 1: Recharging Path Construction (RPC) Algorithm

Inputs:
1. A set of sensors S = {s1, s2, . . . , sh}. Notation(xi, yi) denotes the location of sensor si.

The mobile recharger is labeled with s1.
2. The southeast point ssoutheast, horizontal line L passing through ssoutheast.

Output:
The recharging path Pbest.

P
H
A
S
E

I

/* Initial Recharging Path Construction (IRPC) Phase */
1. for(i = 1, i ≤ h, i ++){

2. ssoutheast = argmin
si∈S

(yi);

3. ŝ1 = ssoutheast
4. Turn L in an anticlockwise direction until L
5. touches any point, say ŝi+1;
6. ŝi+1 plays the role of ssoutheast;
7. goto 4;
8. Connect each ŝi+1;}
9. Let convex polygon G=ŝ1, ŝ2, . . . ŝk;
10. if (k < n){
11. Srem = s1, . . . sn−k+1;
12. for(j = 1, j ≤ n− k, j ++){
13. compute sclosest according to Exp. (10)
14. lsi , si+1 ← lsi , sj + lsj , si+1 ;}}
15. Let P = (s̃1, s̃2, s̃3, . . . , s̃n,);

P
H
A
S
E
II

/*Partitioning Phase*/
16. for(j = 1, j ≤ h/3, j ++){
17. gj=(si, si+1, si+2);

18. Construct three partitions C1, C2 and C3};

P
H
A
S
E
III

/*Inner-Group Path Reduction Phase*/
19. for(j = 1, j ≤ h/3, j ++){
20. gj

i = (sk−1, sk, sk+1);
21. Construct ∆sk−1sksk+1;
22. Shift the segment l(k−1)(k+1) toward sk;
23. lmk + lkn ← lmn ;

P
H
A
S
E
IV

/*Inter-Group Path Reduction Phase*/
24. for(j = 1, j ≤ h/3, j ++){
25. for(i = 1, i ≤ 3, i ++)
26. Compute wi,j according to Exp. (19);}
27. Compute C

wij
1i , C

wij
2 and C

wij
3 by Exp. (20);

28. Pbest = min
(

C
wij
1 , C

wij
2 , C

wij
3

)
;

29. Return Pbest;
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5. Performance Evaluation

This section presents the performance evaluation of the proposed RPC method in terms of
recharging path length and energy efficiency. The proposed RPC algorithm is compared with
the HAM-based recharging mechanism [18], the approach proposed in [19], which is referred to
OWER-MDG and the optimal recharging path. The HAM-based recharging mechanism mainly applies
the Hamiltonian algorithm to construct the recharging path which passes through the center of each
sensor. The detailed scheme of the OWER-MDG mechanism has been reviewed in the related work of
this paper.

To investigate how well the proposed RPC algorithm performs, we should compare the proposed
RPC with the optimal result, but to our knowledge, there is no optimal mechanism proposed in
literature for recharging paths. The “recharging while moving” can effectively reduce the total length
of the path of mobile recharger, as compared with the most existing mechanisms that the recharging
path passes the location of each sensor. Therefore, we propose a near optimal mechanism which
applies exhausted search to find the near optimal path. To satisfy the three constraints given in
problem formulation section, the mobile recharger should move along the recharging segment of each
sensor. However, there are infinite numbers of recharging segments in a sensor. The best recharging
segment depends on the relative locations of neighboring sensors. To obtain the optimal result, we turn
the recharging segment of each sensor every 10 degree, as shown in Figure 8. Then the concept of
exhausted search is applied such that all combinations for connecting neighboring recharging segments
are considered. The path with shortest length will be treated as the near optimal mechanism and is
compared with the proposed mechanism. Figure 9 gives one possible combination of the recharging
segments of the neighboring nodes. As shown in Figure 9, the paths marked with black and red inks
represent the original and the optimal paths, respectively.
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5.1. Simulation Environment

In the experimental study, we use MATLAB 2015 as the simulation tool. The following illustrates
the parameters considered in the simulation environment. A set of static sensors are randomly
deployed in a given area O sized 400 m × 400 m. The number of sensors deployed in area O is ranging
from 5 to 30. All results are obtained from the average of 100 experiments. Three scenarios of sensor
deployments are considered in the experiment, including distributed, centralized as well as their
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combination. In the distributed scenario, all sensors are randomly deployed over the area O. In each
round, one location is randomly determined in the area O and one sensor is deployed at that location.
This operation will be repeated performed until the predefined number of sensors have been deployed.
Figure 10a depicts the deployment snapshot of 20 sensors in the distributed scenario.
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In the second scenario (centralized scenario), a predetermined number of sensors are randomly
partitioned into six groups. There are six locations randomly determined in area O. One sensor will
be selected from each group and there are totally six sensors selected from six groups. These sensors
are called initial sensors which will be deployed at the six determined locations. Then the sensors in
the same group will be deployed at the neighborhood location which is randomly determined within
the range of 30 units distance far from the initial sensor of the same group. Therefore, all sensors in a
group can be closed to each other. Figure 10b depicts the deployment snapshot of 20 sensors using the
centralized scenario. The 20 sensors are randomly partitioned into six groups which contain 5, 5, 4, 3,
2, 1 sensors. Then one sensor in each group will be randomly deployed in area O. After that, all the
other sensors in the same group can be deployed accordingly.

The third scenario is the combination scenario, which combines the abovementioned two scenarios.
Initially, one random number ranging from 1 to 10 is generated as the number of sensors in the first
group. All the other sensors will be treated as different groups. Each of these groups exactly has one
sensor. As shown in Figure 10c, the random number 9 is generated. This indicates that the first group
contains nine sensors. All the other 11 sensors are individual groups. Each group contains one sensor.
Similar to the first scenario, we randomly determine 10 locations in area O and one sensor selected
from each group plays the initial sensor and is deployed at the each determined location. After that,
similar to the second scenario, the sensors in the same group will be deployed in the neighborhood
locations of the initial sensor.

In each scenario, since the location of each sensor has been known, the proposed algorithm will
select the southeast sensor, whose location satisfying condition ssoutheast = arg min

si∈S
(yi), as the first

sensor of path Pinit. This sensor will be denoted by ŝ1. Then the path can be constructed by applying
the proposed algorithm presented in Section 4.5.

5.2. Performance Study

Figure 11 depicts the recharging path length in three scenarios by applying the four compared
algorithms. The number of sensors is ranging from 5 to 30. In general, In Figure 11a–c, the path lengths
of four compared algorithms are increased with the number of sensors. This occurs because that the
size of area covered by sensors can be enlarged when the number of sensors increased. Therefore,
the mobile recharger needs to visit a larger area, leading to the incensement of recharging length.
Consider the scenario 1. As shown in Figure 11a, the OWER-MDG mechanism constructs several tours
to recharge all sensors in the network. For each recharging tour, SenCar travels along a specific path
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consisting of some anchor sensors with heavy data traffic. Since the path constructed by OWER-MDG
does not visit all sensors in each tour, the recharging path for all sensors can be treated as the connected
path of the tours that are constructed by several runs. As a result, the OWER-MDG has longest path.
In the HAM-based recharging mechanism, the recharging path is constructed passing through the
location of each sensor. Therefore, the recharging path length obtained by applying the HAM-based
recharging mechanism is shorter than the OWER-MDG mechanism.
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deployment scenarios.

The proposed RPC algorithm derives the recharging segment of each sensor. The mobile recharger
travels along a certain chord of recharging range of each sensor. This can guarantee that the sensor
can be fully recharged. Then, the proposed RPC algorithm reduces the length of recharging path by
executing the Inner-Group Path Reduction Phase and the Inter-Group Path Reduction Phase. As a
result, the proposed RPC algorithm constructs a shorter path than the OWER-MDG and HAM-based
recharging algorithms in all scenarios, as shown in Figure 11a–c. Since the near optimal mechanism
exhaustedly selects the recharging segment of each sensor according to the relative locations of all
sensors, it obtains a shorter recharging path, as compared with the other three algorithms.

The energy consumption of mobile recharger highly depends on the length of recharging path
and the number of sensors. The mobile recharger M receiving data from a sensor and moving a unit
distance consume energy at the rates of 0.075 J/s and 8.267 J/unit [20], respectively. For each static
sensor, the energy consumptions for sensing and transmitting data to recharger M are set to 0.1 J/s and
0.18 J/s, respectively. In general, the energy consumption of four compared algorithms increased with
the number of sensors and length of recharging path. Figure 12 compares the energy consumptions
of HAM-based recharging, the OWER-MDG algorithm, the proposed RPC algorithm and the near
optimal mechanism, by varying the number of sensors and the adopted three scenarios. The number
of sensors varies from 5 to 30 in each scenario. As shown in Figure 12, in each scenario, when the
number of sensors increased, the energy consumption is also increased. On the other hand, if we
fix the number of sensors, say 20, scenarios 1 and 2 obtain the longest and shortest path lengths,
respectively. These results are similar, no matter the applied algorithm is HAM-based recharging,
OWER-MDG algorithm, the proposed RPC algorithm or the near optimal mechanism. In comparison,
the near optimal mechanism outperforms other three compared algorithms in all cases in terms of
energy consumptions. The proposed RPC consumes less energy than the HAM-based recharging and
OWER-MDG algorithm in all cases. Therefore, the energy consumption of the proposed RPC is closest
to the near optimal mechanism.
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compared algorithms.

A good recharging algorithm will create a short recharging path such that the mobile recharger
spends less time in travelling the path and spends most of its time recharging the battery of each
sensor. The ratio of recharging time to total required time presents the recharging efficiency of a
recharging algorithm. The following defines recharging efficiency index, denoted by Itime, to measure
the efficiency of a recharging algorithm. Consider a fixed scenario x, where x = a1, a2 and a3
represents the considered scenario 1, scenario 2 and scenario 3, respectively. Let notations trch(x, y) and
tmove(x, y) denote the recharging time and path traveling time required by algorithm y, respectively.
The recharging efficiency index, denoted by Itime(x, y), is defined by Equation (21):

Itime(x, y) =
trch(x, y)

tmove(x, y) + trch(x, y)
(21)

A larger value of Itime(x, y) indicates the recharging algorithm y is more efficient. Figure 13
investigates the recharging efficiency indices by applying the HAM-based recharging, OWER-MDG,
the proposed RPC algorithm and the near optimal mechanism in three scenarios.Sensors 2017, 17, 13 17 of 21 
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Consider the HAM-based recharging algorithm. Let notation HAM denote the HAM-based
recharging algorithm. Since scenarios 1 and 2 yield the longest and shortest recharging paths,
respectively, we have:

tmove(a1, Ham) > tmove(a3, Ham) > tmove(a2, Ham)
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Since the same Hamiltonian algorithm is applied to three scenarios, we have:

trch(a1, Ham) = trch(a2, Ham) = trch(a3, Ham)

As a result, we have:

Itime(s2, Ham) > Itime(s3, Ham) > Itime(s1, Ham)

That is, when the applied algorithm is HAM-based recharging algorithm, scenario 2 has the best
efficiency. Similarly, no matter whether OWER-MDG or the proposed PRC algorithm are applied,
scenario 2 has the best efficiency. The derivations also match the results as shown in Figure 13.

Since the four compared algorithms can similarly achieve the best efficiency in scenario
2, the following discussions use scenario 2 in our experiment environment. In comparison,
the near optimal mechanism constructs the shortest travelling path, as compared with the other
three mechanisms. The proposed RPC outperforms the OWER-MDG and HAM-based recharging
mechanisms in terms of path length. Consequently, we have:

Itime(a2, Opt) > Itime(a2, RPC) > Itime(a2, HAM) > Itime(a2, OWER−MDG)

The experiment results shown in Figure 14 also verify the abovementioned discussions.
Recall that there are three clustering mechanisms proposed in the second phase of the proposed

RPC algorithm. Figure 14 aims to depict that each of the three clustering mechanisms is possible
to obtain the best results, depending on the distributions of the sensor nodes. The proposed RPC
algorithm is applied to compares the three clustering mechanisms and selects the best one that can
obtain the shortest path. Compare Figure 14a–c. The first clustering mechanism yields the shortest
recharging path, as shown in Figure 14a. The second clustering mechanism constructs the longest
recharging path.

Scenario 2 has different results. Alternatively, the second clustering mechanism, as shown in
Figure 14e, obtains the shortest path. In scenario 3, the proposed RPC chooses the third path, as shown
in Figure 14i.

Figure 15 presents an example to show the path reduction using the second clustering as our
strategy. The number of sensors is set to 9. Figure 15a represents the recharging path constructed after
applying the first phase of the proposed RPC mechanism. As shown in Figure 15a, the recharging
path passes through the center of each sensor. Figure 15b shows the recharging path after applying
all phases of the proposed RPC mechanism. Obviously, the length of recharging path has been
significantly reduced.
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(a) The path constructed by the First phase of RPC; (b) The path constructed by all phases of RPC.

In general, the recharging range of a sensor is an important parameter on the impact of recharging
path length. Figure 16 shows the impact of recharging radius on the path length by applying the three
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compared algorithms. In the Hamiltonian algorithm, the recharging path passes through the center of
each sensor, the change of recharging range has no effect on the recharging path length.Sensors 2017, 17, 13 19 of 21 
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As shown in Figure 16, the OWER-MDG, the proposed RPC algorithms and the near optimal
mechanism have similar results that the recharging path length is reduced with the recharging
radius. This occurs because that the static sensor can obtain the energy from the mobile recharger,
even though their distance is long. In comparison, the OWER-MDG algorithm results in longest
path since the visiting of all sensors requires several runs. The proposed RPC algorithm constructs a
shorter recharging path than the OWER-MDG and HAM-based mechanisms. Since the near optimal
mechanism applies an exhaustive search to construct the recharging path, it constructs the shortest
path, as compared with the other three algorithms.

Another important parameter, the speed of mobile recharger, can impact the recharging path
length. Figure 17 compares the path length of the four compared algorithms by varying the speed of
mobile recharger. The number of sensors is varied from 1 to 30. As shown in Figure 17, the HAM-based
recharging algorithm yields the same value of recharging path length, regardless of the speed of the
mobile recharger. This occurs because that the recharging path should pass through the location of
each sensor.
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The change of speed of mobile recharger does not impact the paths constructed by the HAM-based
and OWER-MDG mechanisms. That is, the two mechanisms construct the same paths even though the
speed of mobile recharger changed. On the contrary, the length of the recharging path constructed
by applying the proposed RPC is increased with the speed of the mobile recharger. This occurs
because a mobile recharger with a fast speed can shorten the time period that the charger falls in the
recharging range, leading to the situation that the battery of some sensors cannot be fully recharged.
To guarantee that each sensor can be fully recharged, the length of the mobile recharger trip should be
lengthened. In comparison, the optimal algorithm obtains the shortest recharging path. The proposed
RPC outperforms the HAM-based recharging and OWER-MDG algorithms in terms of recharging
path length.

6. Conclusions

This paper proposed an energy recharging mechanism, called RPC, which aims at achieving
the perpetual operation of the WSNs while improving the efficiency of wireless energy recharge.
In the proposed RPC, we consider the “recharging while moving” concept, aiming to recharge the
sensors while the mobile recharger moves in their recharging range. The proposed RPC consists of
four phases. In the first phase, an initial path passing through the central point of each sensor is
constructed. Based on the result of the first phase, the second phase partitions the ordered sensors
into different groups which are the inputs of following phases. Then the third phase establishes a
recharging segment for each sensor. Moving along the segment, a mobile recharger can recharge that
sensor such that sensor’s battery is guaranteed to be fully recharged. The fourth phase of the proposed
RPC further reduces the path length, aiming to improve the recharging efficiency. Compared with the
existing studies, the proposed RPC significantly reduces the length of the recharging path, and hence
improves the recharging efficiency of WSNs while satisfying the fully recharge demands of each sensor
and achieving the perpetual operation of the WSN.
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