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Abstract: In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV)
electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an
UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied.
Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate
transformation. On the basis of this, two methods which can improve the accuracy of the multi-target
localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive
least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization
error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude
is 1140 m. The multi-target localization results are within the range of allowable error. After we
use a lens distortion correction method in a single image, the circular error probability (CEP) of the
multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS
algorithm can adaptively estimate the location data based on multiple images. Compared with
multi-target localization based on a single image, CEP of the multi-target localization using RLS
is reduced by 25%. The proposed method can be implemented on a small circuit board to operate
in real time. This research is expected to significantly benefit small UAVs which need multi-target
geo-location functions.
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1. Introduction

Real-time multi-target localization plays an essential and significant role in disaster emergency
rescue, border security and so on. Over the past two decades, considerable research efforts have been
devoted to multi-target localization. UAV electro-optical stabilized imaging systems are equipped with
many kinds of sensors, including visible light cameras, infrared thermal imaging systems, laser range
finders and angle sensors. Target localization needs to measure the attitude of the UAV, the attitude of
the electro-optical stabilized imaging system and the distance between the electro-optical stabilized
imaging system and the target.

The target localization methods from UAVs are divided into two categories. One category is
target localization using a group of UAVs [1–5]. The other category is target localization using a
single UAV [6–10]. This research aims to improve the effectiveness and efficiency of target localization
from a single UAV. Particularly, this research proposes a new hybrid target localization scheme which
integrates both zoom lens distortion correction and an RLS filtering method. The proposed scheme
has many unique features which are designed to geo-locate targets rapidly.

Previous studies on geo-locating targets from a fixed-wing UAV have several limitations.
Deming [1] described a probabilistic technique for performing multiple target detection and localization
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based on data from a swarm of flying optical sensors. Minaeian [2] described a vision-based crowd
detection and Geographic Information System (GIS) localization algorithm for a cooperative team
of one UAV and a number of unmanned ground vehicle (UGV)s. Morbidi [3] described an active
target-tracking strategy to deploy a team of unmanned aerial vehicles along paths that minimize
the uncertainty about the position of a moving target. Qu [4] described a multiple UAV cooperative
localization method using azimuth angle information shared between the UAVs. Kwon [5] described a
robust, improved mobile target localization method which incorporates the Out-Of-Order Sigma Point
Kalman Filter (O3SPKF) technique.

In [1–5], target location methods based on data fusion technology have to use a group of
UAVs. Target localization using a group of UAVs has some issues, including the high computational
complexity of data association, complexity of UAV flight plans, difficulties in efficient data
communication between UAVs and high maintenance costs due to the use of multiple UAVs. This paper
presents a method for determining the location of objects using a gimbaled EO camera on-board a
fixed-wing unmanned aerial vehicle (UAV). We focus on geo-locating targets using a single fixed-wing
UAV due to the low maintenance costs. A single fixed-wing UAV (as opposed to rotary wing aircraft)
has unique benefits including adaptability to adverse weather, good durability and high fuel efficiency.

In [6], Yan used absolute height above sea level of a UAV to geo-locate targets. In contrast,
our system focuses on geo-locating targets in the video stream and does not require absolute height
above sea level of the UAV data. In [7], Ha used scale invariant feature transform (SIFT) to extract
feature points of the same target in different frames. The author calculated the relative height between
the target and the UAV by three dimensional reconstruction. The location accuracy depends on
the accuracy of this three dimensional reconstruction. The method thus requires a large amount of
computation. In contrast, the accuracy of our system compared to that described in [7] is almost the
same, but our system has a great advantage in reduced computational complexity, so our system can
geo-locate 50 targets at the same time and improve the efficiency of multi-target localization. This is
very important in military reconnaissance and disaster monitoring applications which require good
real-time performance.

In [8], Barber introduced a system for vision-based target geo-localization from a fixed-wing
micro-air vehicle. In flight tests, the UAV geo-locates the stationary target when the UAV orbits the
targets. In [9], the UAV flies in an orbit in order to improve the geo-location accuracy. In [10],
the authors assume that the UAV’s altitude above the target is known. The target’s altitude is
obtained from a geo-referenced database made available by the Perspective View Nascent Technology
(PVNT) method. In [11], target-location need an accurate geo-referenced terrain database. In [12],
all information collected by an aerial camera is accurately geo-located through registration with
pre-existing geo-reference imagery. In contrast, our system focuses on geo-locating a specific object in
the video stream and does not require any preexisting geo-referenced imagery.

In all the above references, the UAVs are equipped with fixed-focal lenses. The authors do not
take into account the effect of zoom lens distortion on multi-target localization. Many electro-optical
stabilized imaging system are equipped with zoom lenses. The focal length of a zoom lens is adjusted
to track targets at different distances during the flight. The zoom lens distortion varies with changing
focal length. Real-time zoom lens distortion is impossible to correct by using calibration methods
because the large amount of transformation calculation has to be repeated when the focal length
is changed.

The primary contributions of this paper are: (1) the accuracy of multi-target localization has
been improved due to the combination of a real-time zoom lens distortion correction method and
a RLS filtering method using embedded hardware (a multi-target geo-location and tracking circuit
board); (2) UAV geo-locates targets using embedded hardware (the multi-target geo-location and
tracking circuit board) in real-time without orbiting the targets; (3) 50 targets can be located at the same
time using only one UAV; (4) the UAV can geo-locate targets without any pre-existing geo-referenced
imagery, or a terrain database; (5) the circuit board is small, and therefore, can be applied to many
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kinds of small UAVs; (6) multi-target localization and tracking techniques are combined, therefore,
we can geo-locate multiple moving targets in real-time and obtain the target motion parameters
such as velocity and trajectory. This is very important for UAVs performing reconnaissance and
attack missions.

The rest of paper is organized as follows: Section 2 briefly presents the overall framework of
the multi-target localization system. Section 3.1 presents the reference frames and transformations
required for the multi-target localization system. Section 3.2 presents our multi-target geo-location
model. Section 4 presents the methods to improve the accuracy of multi-target localization. Section 4.1
presents the distortion correction method. Section 4.2 presents the RLS filter method. Section 5 presents
the results of multi-target localization for aerial imaged captured from a flight test and evaluates their
accuracy. Section 6 presents the conclusions.

2. Overall Framework

The real-time multi-target geo-location algorithm in this paper is programmed and implemented
on a multi-target geo-location and tracking circuit board (model: THX-IMAGE-PROC-02, Changchun
Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China,
see Figure 1a) with the TMS320DM642 (Texas Instruments Incorporated, Dallas, TX, USA) @ 720 MHz
Clock Rate and 32 Bit Instructions/Cycle and 1 GB double data rate synchronous dynamic random
access memory (DDR SDRAM). This circuit board also performs the proposed zoom lens distortion
correction and the RLS filtering in real-time. The multi-target geo-location and tracking circuit
board is mounted on an electro-optical stabilized imaging system (see Figure 1b). This aerial
electro-optical stabilized imaging system consists of a visible-light camera, a laser range finder,
an inertial measurement unit (IMU), a global positioning system (GPS), and a photoelectric encoder.
They are in the same gimbal so that they rotate altogether in the same direction in any axis.
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Figure 1. (a) Multi-target geo-location and tracking circuit board; (b) Electro-optical stabilized imaging
system. The arrows in the Figure 1b represent the installation locations of main sensors in an
electro-optical stabilized imaging system.

The electro-optical stabilized imaging system is mounted on the UAV (model: Changguang 1,
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun,
China) to stabilize the videos and any eliminate video jitters caused by the UAV therefore greatly
reducing the impact of external factors.

The UAV system incorporates the electro-optical stabilized imaging system, UAV, data
transmission module and ground station, which is shown in Figure 2. In the traditional target
geo-location algorithms [1–12], the image and UAV attitude information are transmitted to a ground
station. The target geo-location is calculated on a computer in the ground station. However, the date
transmission model sends data with divided time mode, so the image and UAV attitude information are
respectively transmitted at different times from the UAV to the ground station, so it is not guaranteed
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that the image and UAV attitude information will be obtained at the same time in ground station.
Therefore, the traditional target geo-location algorithm on the computer in the ground station has poor
real-time ability and unreliable target geo-location accuracy.
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Figure 2. UAV system architecture.

To overcome the shortcomings of traditional target geo-location algorithms such as algorithm
complexity, unreliable geo-location accuracy and poor real-time ability, in this paper, the target
geo-location algorithm is implemented on a multi-target geo-location and tracking circuit board on
the UAV in real-time. Real-time ability is very important for urgent response in applications such as
military reconnaissance and disaster monitoring.

The overall framework of the multi-target geo-location method is shown in Figure 3. The detailed
workflows of the abovementioned multi-target geo-location method will be introduced as follows:
we use UAV to search for the ground targets, which are selected by an operator in the ground
station. The coordinates of the multiple targets in the image are transmitted to the UAV through
a data transmission model. Then, all the selected targets are tracked automatically by the
multi-target geo-location and tracking circuit board using the improved tracking method based
on [13]. The electro-optical stabilized imaging system locks the main target in the field of view (FOV)
center. Other targets in the FOV are referred to as sub-targets. The electro-optical stabilized imaging
system measures the distance between the main target and the UAV using a laser range finder.
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In order to ensure that the image, UAV attitude information, electro-optical stabilized imaging
system’s azimuth and elevation angle, laser range finder value, and camera focal length are obtained
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at the same time, the frame synchronization signal of the camera is used as the external trigger signal
for data acquisition by the above sensors, so we don’t need to implement sensor data interpolation
algorithms in the system except for the GPS data. The UAV coordinates interpolation algorithm is
shown in Equations (35) and (36).

The multi-target geo-location and tracking circuit board computed the multi-target geo-location
after lens distortion correction in real-time. Then, the board used the moving target detection
algorithm [14–18] for the tracked targets. If the target which is tracked is stationary, the multi-target
geo-location and tracking circuit board uses the RLS filter to improve the target geo-location accuracy.
The multi-target geo-location results are superimposed on each frame in the UAV and downlinked to a
portable image receiver and the ground station.

This research aims to address the issues of real-time multi-target localization in UAVs
by developing a hybrid localization model. In detail, the proposed scheme integrates the
following improvements:

(a) The multi-target localization accuracy is improved due to the combination of the zoom lens
distortion correction method and the RLS filtering method. A real-time zoom lens distortion
correction method is implemented on the circuit board in real time. In this paper, we analyse
the effect of lens distortion on target geo-location accuracy. Many electro-optical stabilized
imaging systems are equipped with zoom lenses. The focal length of a zoom lens can be adjusted
to track targets at different distances during the flight . The zoom lens distortion varies with
changing focal length. Real-time distortion correction of a zoomable lens is impossible by using
the calibration methods because the tedious calibration process has to be repeated again if the
focal length is changed.

(b) The target geo-location algorithm is implemented on a circuit board in real time. The size of
the circuit board is very small, therefore, this circuit board can be applied to many kinds of
small UAVs. The target geo-location algorithm has the following advantages: low computational
complexity and good real-time performance. UAV can geo-locate targets without pre-existing
geo-referenced imagery, terrain databases and the relative height between UAV and targets.
UAV can geo-locate targets using the embedded hardware in real-time without orbiting
the targets.

(c) The multi-target geo-location and tracking circuit board use the moving target detection
algorithm [14–18] for the tracked targets. If the target which is tracked is stationary, the
multi-target geo-location and tracking circuit board uses the RLS filter to automatically improve
the target geo-location accuracy.

(d) The multi-target localization, target detection and tracking techniques are combined. Therefore,
we can geo-locate multiple moving targets in real-time and obtain target motion parameters
such as velocity and trajectory. This is very important for UAVs performing reconnaissance and
attack missions.

The real output rate of the geo-location results is 25 Hz. The reasons are as follows:

(a) The data acquisition frequency of all the sensors is 25 Hz: the visible light camera’s frame rate is
25 Hz. The frame synchronization signal of the camera is used as the external trigger signal for
all sensors expect GPS (the UAV coordinates interpolation algorithm is shown in Equations (35)
and (36)).

(b) Lens distortion correction is implemented in real-time, and the output rate of target location
results after the lens distortion correction is 25 Hz.

(c) When it is necessary to locate a new stationary target, the RLS algorithm needs 3–5 s to converge
to a stable value (within 5 s, lens distortion correction is implemented in real-time, the output rate
is 25 Hz). After 5 s, the geo-location errors of the target have converged to a stable value. We can
obtain a more accurate location of this stationary target immediately (it is no longer necessary to
run RLS). That output rate is 25 Hz, too.
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Our geo-location algorithm can geo-locate at least 50 targets simultaneously. The reasons are
as follows:

(a) For a moving target we only use lens distortion correction to improve the target geo-location
accuracy. This consumes 0.4 ms on average when calculating the geo-location of a single target
and, at the same time, correcting zoom lens distortion (Section 5.4). It consumes 0.4 ms for
tracking the multiple targets (Section 3.3). The image frame rate is 25 fps, so the duration of a
frame is 40 ms, so our geo-location algorithm can geo-locate at least 50 targets simultaneously.

(b) For a stationary target, only when it is necessary to locate a new stationary target, the RLS
algorithm needs 3–5 s to converge to a stable value (within 5 s, lens distortion correction is
implemented in real-time, 50 targets can be located simultaneously). After 5 s, the geo-location
errors of the target have converged to a stable value. We no longer need to run RLS, so our
geo-location algorithm can geo-locate at least 50 targets simultaneously after lens distortion
correction and RLS.

Therefore, this algorithm has great advantages in geo-location accuracy and real-time performance.
The multiple target location method in this paper can be widely applied in many areas such as UAVs
and robots.

3. Real-Time Target Geo-Location and Tracking System

3.1. Coordinate Frames and Transformation

Five coordinate frames (camera frame, body frame, vehicle frame, ECEF frame and geodetic
frame) are used in this study. The relative relationships between the frames are shown in Figure 4.
All coordinate frames follow a right-hand rule.
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3.1.1. Camera Frame

The origin is the camera projection center. The x-axis xc is parallel to the horizontal column pixels’
direction in the CCD sensor (i.e., the u direction in Figure 4). The y-axis yc is parallel to the vertical row
pixels’ direction in the CCD sensor (i.e., the v direction in Figure 4). The positive z-axis zc represents
the optical axis of the camera.

3.1.2. Body Frame

The origin is the mass center of the attitude measuring system. The x-axis xb is the 0◦ direction of
attitude measuring system. The y-axis yb is the 90◦ direction of attitude measuring system. The z-axis
zb completes the right handed orthogonal axes set. The azimuth Θ, elevation angle ψ and distance λ1

output by electro-optical stabilized imaging system are relative to this coordinate frame.
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3.1.3. Vehicle Frame v

A north-east-down (NED) coordinate frame. The origin is the mass center of attitude measuring
system. The aircraft yaw β, pitch ε and roll angle γ output by the attitude measuring system are
relative to this coordinate frame.

3.1.4. ECEF Frame

The origin is Earth’s center of mass. The z-axis ze points to the Conventional Terrestrial Pole (CTP)
defined by International Time Bureau (BIH) 1984.0, and the x-axis xe is directed to the intersection
between prime meridian (defined in BIH1984.0) and CTP equator. The axes ye completes the right
handed orthogonal axes set.

3.1.5. WGS-84 Geodetic Frame

The origin and three axes are the same as in the ECEF. Geodetic longitude L, geodetic latitude
M and geodetic height H are used here to describe spatial positions, and the aircraft coordinates
(L0, M0, H0), output by GPS are relative to this coordinate frame.

The relation between camera frame and body frame is shown in Figure 4. Two steps are required.
First, transformation from camera frame to intermediate frame int1: rotate 90◦ (elevation angle ψ)
along the y-axis yc. The next step is transformation from intermediate frame int1 to body frame: rotate
azimuth angle Θ along the z-axis zint1. In Figure 4a, ψ1 represents 90◦.

The relation between body frame and vehicle frame is shown in Figure 5. Three steps are required.
First, transformation from the body frame to the intermediate frame mid1: rotate roll angle γ along the
x-axis xb. The next step is transformation from the intermediate frame mid1 to the intermediate frame
mid2: rotate pitch angle ε along the y-axis ymid1. The final step is transformation from the intermediate
frame mid2 to the vehicle frame: rotate yaw angle β along the z-axis zmid2.
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3.2. Multi-Target Geo-Location Model

As shown in Figure 4a, the main target is at the camera field of view (FOV) center, whose
homogeneous coordinates in the camera frame are [xc, yc, zc, 1] T = [0, 0, λ1, 1], Through the
transformation among five coordinate frames ranging from camera frame to WGS-84 geodetic frame,
the geographic coordinates of main target in the WGS-84 geodetic frame can be determined, as shown
in Figure 7.
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First, we calculate the coordinates of the main target in the ECEF:
xe

ye

ze

1

 =


−cL0 sM0 −sL0 −cL0 cM0 (N + H0)cM0 cL0

−sL0 sM0 cL0 −cM0 sL0 (N + H0)cM0 sL0

cM0 0 −sM0

(
N
(
1− e2)+ H0

)
sM0

0 0 0 1

 ×
cεcβ −cγsβ + sγsεcβ sγsβ + cγsεcβ 0
cεsβ cγcβ + sγsεsβ −sγcβ + cγsεsβ 0
−sε sγcε cγcε 0

0 0 0 1

 ×


cΘsΨ −sΘ cΘcΨ 0
sΨsΘ cΘ sΘsΨ 0
−cψ 0 sΨ 0

0 0 0 1

 ×


xc

yc

zc

1


(1)

where c∗ = cos(∗), s∗ = sin(∗).
Then we derive the geodetic coordinates of main target from earth centered earth fixed-world

geodetic system (ECEF-WGS) transformation equations [19]:

U = arctan
aze

b
√

x2
e + y2

e
(2)

L =



arctan ye
xe

, when xe > 0
π
2 , when xe = 0, ye > 0
−π

2 , when xe = 0, ye < 0
π + arctan ye

xe
, when xe < 0, ye > 0

−π + arctan ye
xe

, when xe < 0, ye < 0

(3)

M = arctan
ze + be2sin3U√

x2
e + y2

e − ae2cos3U
(4)

H =

√
x2

e + y2
e

cosM
− N (5)

In Equations (1)–(5), the semi-major axis of ellipsoid is a = 6378137.0m, the semi-minor axis of
ellipsoid is b = 6356752.0m, the first eccentricity of spheroid e =

√
a2 − b2/a, the second eccentricity

of spheroid is e′ =
√

a2 − b2/b, and the radius of spheroid curvature in the prime vertical is
N = a/

√
1− e2sin2M.

The key of sub-target geo-location is to build a geometrical geo-location model. The coordinates
(xc, yc, zc) of sub-targets in the camera frame are solved on the basis of their pixel coordinates,
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and then their geodesic coordinates are calculated in accordance with the coordinate transformation
Equations (1)–(5), Suppose the ground area corresponding to a single image is flat and the relative
altitudes between targets and electro-optical stabilized imaging system are the same. Based on the
image forming principles for single-plane array charge coupled device (CCD) sensors, a multi-target
geo-location model can be established, as shown in Figure 8.
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Suppose that no image distortion exists, the image point T of main target P is at the image
center, and the three points, namely projection center G, sub-target Q and its image point T, are on
the same line. Then a pin-hole imaging model will be formed and the altitude of a target relative to
electro-optical stabilized imaging system will be:

h = λ1 cos α = λ2 cos β (6)

where: h is the relative altitude, λ1 is the distance from electro-optical stabilized imaging system to
main target, and λ2 is the distance from electro-optical stabilized imaging system to a sub-target.

Suppose the line-of-sight (LOS) vectors of the main target P, the sub-target Q and the point K

beneath the camera are
→
s =

→
GF,

→
t =

→
GT,

→
j =

→
GJ respectively, α is the angle between

→
s and

→
j , and β

is the angle between
→
t and

→
j , then [20]:

cos α =

→
s •
→
j

‖→s ‖ ‖
→
j ‖

(7)

cos β =

→
t •
→
j

‖
→
t ‖ ‖

→
j ‖

(8)
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Fc is the basis vectors for camera frame in a 3-dimensional vector space, the coordinates of LOS

vectors
→
s and

→
t in the camera frame are given by Equations (9) and (10):

→
s = FT

c

 0
0
f

 (9)

→
t = FT

c

 u− u0

v− v0

f

 (10)

where f is the camera focal length, the unit is mm. The pixel coordinate of the point F is (u0, v0).
The pixel coordinates of the point T is (u, v).

Fv is the basis vectors for vehicle frame in a 3-dimensional vector space. In vehicle frame, the LOS

vector
→
j goes down axis zv, the coordinates of

→
j in vehicle frame is given by Equation (11):

→
j = FT

v jv = FT
v

 0
0
jvz

 (11)

The coordinates of
→
j in the camera frame are solved as:

jc = Rcv jv = RcbRbv jv =

 cΘcΨ cΨsΘ −sΨ

−sΘ cΘ 0
cΘsΨ sΘsΨ cΨ


 cεcβ cεsβ −sε

cβsγsε − crsβ crcβ + srsεsβ cεsγ

srsβ + srsβsε crsεsβ − cβsγ crcε

 jv (12)

where c∗ = cos(∗), s∗ = sin(∗).
Rbv is the rotation matrix transformation from the vehicle frame to the body frame. Rcb is the

rotation matrix transformation from the body frame to the camera frame. Rcv is the rotation matrix
transformation from the vehicle frame to the camera frame.

σ is the angle between the zv axis of the vehicle frame and the zc axis of the camera frame.
According to the geometric relationship in Figure 6, we obtain:

‖
→
j ‖ = jvz (13)

f = jvz cosσ (14)

Using Euler parameters, or quaternions, we have the definition:

η = cos
σ

2
(15)

It can also be shown that [21]:

η = ±1
2
(1 + trCcv)

1
2 (16)

This may be manipulated into:

2η2 − 1 =
trCcv − 1

2
(17)

Therefore:
jvz =

f
cos σ

=
f

2 cos2
(

σ
2
)
− 1

=
f

2η2 − 1
(18)
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and it follows that:
jvz =

2 f
trCcv − 1

(19)

By substituting the jvz value into Equations (11) and (12), the coordinate jc of
→
j in the camera

frame can be obtained. Then jc is substituted into Equations (7) and (8), to obtain cosα and cosβ.
Finally, according to the known main target distance λ1 and Equation (6), the relative altitude h and the

sub-target distance λ2 can be determined. Based on the sub-target distance λ2 and the LOS vector
→
t of

the sub-target in the camera frame, the coordinates of the sub-target in this frame can be determined: xc

yc

zc

 = λ2

→
t

‖
→
t ‖

(20)

Finally, the geodetic longitude L, the geodetic latitude M and geodetic height H of the sub-target
can be calculated by substituting xc, yc and zc into Equations (1)–(5).

3.3. Targets Tracking

The operator selects multiple targets in the first image and then these targets are tracked using the
tracking algorithm. In recent years, many excellent tracking algorithms were proposed [22–31]. Due to
the limited hardware resources in the TMS320DM642 (Texas Instruments Incorporated, Dallas, TX,
USA), the tracking algorithm for UAV applications must be simple as well as highly efficient to meet
the performance demands of real-time multiple target tracking. We use a simple two stage method to
improve the real-time performance of the correlation tracking algorithm described in [13]. The main
improvements are as follows:

In the low resolution stage, we calculate the average of four adjacent pixels in the original image
to generate a low resolution image, whose resolution is half that of the original image. The low
resolution template is generated in the same way. The formula of the normalized cross correlation
(NCC) algorithm is as follows:

R(u, v) =

m
∑

x=1

m
∑

y=1
T(x, y)S(x + u, y + v)√

m
∑

x=1

m
∑

y=1
T2(x, y)

√
m
∑

x=1

m
∑

y=1
S2(x + u, y + v)

(21)

where the size of low resolution template T is m×m, the size of the low resolution search area S is
n× n, (u, v) is the left corner point coordinate in the search area, 0 ≤ u ≤ n−m, 0 ≤ v ≤ n−m. T is
moving on the S during the matching operation. When R(u, v) reaches the maximum value R(u0, v0),
the point (u0, v0) is the best matching point in the low resolution search area.

In the original stage, we only need to search a small area in the original image. The size of the
template is 2 m× 2 m. The size of the small search area is (2 m + 2)× (2 m + 2). The left corner point
coordinate in the search area is (2u0 − 1, 2v0 − 1). Then, the best matching point in the original image
can be calculated using the NCC algorithm. In our implementation, m is set to 28, n is set to 46.

In [13], the time of template image matching is implemented is 0.62 ms. After improvement,
it consumes 0.4 ms on the multi-target localization circuit board. The improved method can meet the
real-time requirements of multi-target tracking.
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4. Methods to Improve the Accuracy of Multi-Target Localization

4.1. Distortion Correction

The above multi-target geo-location model is established under the assumption that image
distortion does not exist. In fact, due to the lens design and manufacturing errors of imaging systems,
the image will be distorted [32–35], so the projection rays between the image point and object point
can't completely meet the requirement of linear propagation in the total field of view (TFOV) and
instead, will bend to some extent. As shown in Figure 6, the image point of the main target moves
from the ideal position T to a distorted point position T′, and the three points, namely projection center
G, image point T′ and object point Q, are not in a straight line. Thus it does not conform to the ideal
pinhole imaging model. The calculation of target geo-location data based on the ideal pinhole imaging
model will lead to a big error, so the lens distortion must be corrected. Distortion correction involves
at first deriving the position T of the target in the ideal image from its image point T′ in the distorted
image according to the distortion model of camera, and then to calculate the geodetic coordinates of
the target by using the pixel coordinates of the ideal image point T.

Real-time distortion correction of a zoom lens is impossible by using the calibration methods
because the tedious calibration process has to be repeated again if the focal length is changed. In this
research, we divide the zoom lens distortion procedures into two steps: lens distortion parameter
estimation in the laboratory and real-time zoom lens distortion correction on the UAV.

4.1.1. Lens Distortion Parameter Estimation in the Laboratory

Lens distortion parameter estimation is performed in the laboratory. We use UAV electro-optical
stabilized imaging system to take images which contain a chessboard pattern in the laboratory.
The lines in the chessboard pattern are straight in the real world, but the images generally contain
curved lines caused by the lens distortion. We take lots of images with different focal lengths of a
zoom lens. We use the images to construct the distortion parameter table, which is shown in Figure 3.

We extract the chessboard image edges using the Canny edge detector. The thresholds of the
Canny edge detector are provided in terms of percentages of the gradient norm of the image.

For a zoom lens, the typical range of distortion coefficient k1 is given by [− 1
D2 , 1

D2 ], D is the
diagonal of the image [36]. In pixel coordinates, the image size is w× h pixels, the distortion center is
(u0, v0), the image center is (uc, vc), where uc = 0.5w, vc = 0.5h. The range of u0 is

[uc − 0.05w, uc + 0.05w]. The range of v0 is [vc − 0.05h, vc + 0.05h] [37,38].
We sampled N2 samples of u0 in the range of [uc − 0.05w, uc + 0.05w]. We sampled N3 samples

of v0 in the range of [vc − 0.05h, vc + 0.05h]. We sample N1 samples of k1 in the range of [− 1
D2 , 1

D2 ] in
each distortion center (u0, v0), so N1 × N2 × N3 possible distortion parameters are generated from
these samples in a certain camera focal length. The distortion parameter

(
ki

1, uj
0, vp

0

)
is shown in

Equation (22) to Equation (24):

ki
1 = − 1

D2 + i× δk1 (22)

uj
0 = 0.45w + j× δu0 (23)

vp
0 = 0.45h + p× δv0 (24)

where i = 1, 2, . . . , N1; j = 1, 2, . . . , N2; p = 1, 2, . . . , N3; δk1 = 2
N1D2 ; δu0 = 0.1w

N2
; δv0 = 0.1h

N3
;

For each distortion parameter (ki
1, uj

0, vp
0 ), the pixel coordinates of the corrected chessboard

image’s edge points (un, vn) are computed by using Equation (25) to Equation (28):

xd = (ud − u0)dx (25)

yd = (vd − v0)dy (26)
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un = u0 +
xd

dx
(
1 + k1x2

d + k1y2
d
) (27)

vn = v0 +
yd

dy
(
1 + k1x2

d + k1y2
d
) (28)

dx, dy are pixel size, which units are µm. The distortion center is (u0, v0), and the unit is pixels.
The pixel coordinates of the distorted image are (ud, vd), in units of pixels. The pixel coordinates of the
undistorted (corrected) image is (un, vn), and the units are pixels. (xd, yd) is the projection coordinates
of a distorted point, which units are µm.

The gradient direction α(un, vn) of the corrected chessboard image’s edge points (un, vn) are
computed using Equation (29) to Equation (31):

Gu =
Ivn ,un+1 − Ivn ,un + Ivn+1,un+1 − Ivn+1,un

2
(29)

Gv =
Ivn+1,un − Ivn ,un + Ivn+1,un+1 − Ivn ,un+1

2
(30)

α(un, vn) = arctan
(

Gv

Gu

)
(31)

I is the chessboard image brightness value, Gu, Gv are the first-order derivatives of the corrected
image’s edge points brightness.

We compute the Hough transform of the corrected chessboard image. The N strongest peaks in
the Hough transform correspond to the most distinct lines. The distance between a line Nq and the
origin is dist(q). The orientation of a line Nq is β(q), where q =1,2,..., N.

If the angular difference between the edge point orientation α(un, vn) and the line Nq orientation
β(q) is less than a certain threshold (in our implementation, it is set to 2◦. This threshold can meet the
distortion correction accuracy requirements. We compute the distance dq from edge point (un, vn) to
the line Nq:

dq = |uncos(β(q)) + vnsin(β(q))− dist(q)| (32)

If dq is less than a certain threshold. In our implementation, it is set to 2 pixels. This threshold can
meet the distortion correction accuracy requirements. The edge point (un, vn) votes for the line Nq,
the votes of the edge point (un, vn) is:

votes =
1

1 + dq
(33)

We compute the sum of all edge points votes. In this focal length, the best distortion parameters
(k1, u0, v0) are obtained by maximizing the straightness measure function:

max

{
N

∑
q=1

votes
(

dist(q), β(q), ki
1, uj

0, vp
0

)}
(34)

where votes
(

dist(q), β(q), ki
1, ui

0, vp
0

)
is the votes of the line Nq in the corrected chessboard image using

distortion parameter (ki
1, uj

0, vp
0 ).

We apply the above algorithm to calibrate the best distortion parameter (k1, u0, v0) with different
lens focal lengths. Then, the best zoom lens distortion parameters (k1, u0, v0) in all focal lengths are
gained through curve fitting using Matlab Tools. We store the distortion parameter talbe for all focal
length in the flash chip on the multi-target geo-location and tracking circuit board.

4.1.2. Real-Time Lens Distortion Correction on the UAV

The zoom lens is connected to the potentiometer through the gears. The relationship between focal
length and resistance has been calibrated in the laboratory. We can get the focal length by measuring
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the resistance value of the potentiometer in real-time. During the flight of the UAV, we use the focal
length measuring sensor (model: S10HP-3 3-turn Potentiometer, SAKAE, Nagoya, Japan, resistance
error: ±1%) to measure the camera focal length and we find the distortion parameter (ki

1, uj
0, vp

0 ) in the
flash chip on the multi-target localization circuit board. The pixel coordinates (un, vn) of the corrected
real-time image are computed using Equation (25) to Equation (28). We use (un, vn) to calculate the
geodetic coordinates of the targets.

4.2. RLS Filter

For stationary targets on the ground, the location result in different frames should be the same.
Therefore, a popular technique to remove the estimation error is to use a recursive least squares (RLS)
filter. The RLS filter minimizes the average squared error of the estimate. The RLS filter uses an
algorithm that only requires a scalar division at each step, making the RLS filter suitable for real-time
implementation, so we use RLS to reduce the standard deviation and improve the accuracy of multiple
stationary target localization.

Suppose the original geo-location data of t images are xk (k = 1, 2, . . . , t). The RLS algorithm
flowchart is shown in Figure 9. In Figure 9, I1X1 is a 1× 1 unit matrix. After the RLS filtration of the
original data xk, the obtained data are Xk (k = 1, 2, . . . t), where Xk can be longitude L, latitude M or
geodetic height H.
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The GPS data (coordinates of the UAV) refresh rate is 1 Hz, but the video frame rate is usually
above 25 Hz. To raise the convergence rate of the RLS algorithm, when the UAV speed is known,
the coordinates of the UAV at the corresponding time can be determined through dead reckoning.
In the WGS-84 ECEF, the coordinates of the UAV are [39]:

xe = xe0 +

n∫
0

Vxdt (35)

ye = ye0 +

n∫
0

Vydt (36)

where (xe0, ye0) are the coordinates at the initial time, and Vx is UAV speed in direction X, Vy is UAV
speed in direction Y. The influence of the UAV geodetic coordinate position and speed on the reckoned
coordinates of the UAV is analyzed as follows:
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(1) In the WGS-84 geodetic frame, the higher the latitude of the UAV is, the smaller the projection of
1◦ longitude onto the horizontal direction. Therefore, in the high latitude area, the measurement
accuracy of GPS is high, and the accuracy of the reckoned coordinates is high.

(2) The smaller the UAV speed is, the smaller the distance UAV moves in the same time interval,
the higher accuracy of the reckoned coordinates is.

According to Equations (35) and (36), the error resulting from the updating rate of GPS data can
be compensated to converge the RLS algorithm rapidly to a stable value. Therefore, we can geo-locate
multiple stationary ground targets quickly and accurately.

5. Experiments and Discussion

The targets location data were obtained during a UAV flight in real time. The evaluation is based
on UAV videos captured from a Changji highway from 9:40 to 11:10. The resolution of the videos is
1024 × 768 and the frame rate is 25 frames per second (fps).

5.1. The Zoom Lens Distortion Parameter Estimation Results

To evaluate the proposed lens distortion parameters estimation approach, we use a plane
containing a chessboard pattern and a zoom lens camera which are shown in Figure 10. The size of the
pattern is 450 mm× 450 mm. We take the images which contained the chessboard pattern for several
focal lengths: f = 5, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100. Then, we perform the lens
distortion parameters estimation approach in Section 4.1 to estimate the lens distortion parameters.
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Figure 10. (a) A plane containing a chessboard pattern; (b) The zoom lens camera (not yet mount in
the electro-optical stabilized imaging system).

The relationships between the distortion coefficient k1 and the focal length f are shown in
Figure 11a. The relationships between the distortion center (u0, v0) and the focal length f are shown in
Figure 11b.
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Figure 11. (a) The relationships between distortion coefficient k1 and the focal length f ; (b) The
relationships between the distortion center (u0, v0) and the focal length f .
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We fit the curve between the data. If 5.8 mm ≤ f ≤ 20 mm The relationships between the
distortion coefficient k1 and the focal length f is shown in Equation (37):

k1( f ) = ρ× f 2 + σ× f + τ (37)

where ρ = 1.369× 10−10, σ = −1× 10−9, τ = −1.108× 10−7.
If 20 mm ≤ f ≤ 100 mm. The relationships between the distortion coefficient k1 and the focal

length f is shown in Equation (38):

k1( f ) =
δ

( f + η)
+ ψ (38)

where δ = −5.245× 10−5, η = 2.768, ψ = 2.564× 10−8.
We fit the curve between the data. The relationships between the distortion center (u0, v0) and

the focal length f is shown in Equations (39) and (40):

u0( f ) = λ1 × f + µ1 (39)

v0( f ) = λ2 × f + µ2 (40)

where λ1 = 0.5722, µ1 = 500.4904, λ2 = 0.2897, µ2 = 363.5341.
Based on the above fitting formula, we calculate the zoom lens distortion parameter

(
ki

1, uj
0, vp

0

)
in all focal length to construct the distortion parameter table in the laboratory. We store the distortion
parameter table in the flash chip in multi-target localization circuit board.

5.2. Targets Location Experimental Design and Instrument Description

This test is divided into the following four parts:

(1) Monte Carlo simulation analysis of multi-target geo-location error. Through this analysis,
the expected error of multi-target geo-location can be determined.

(2) Geo-location test of a single aerial image. We substitute an actual aerial image and its
position/attitude data into multi-target geo-location program for target location resolution.
We use a high-precision GPS receiver to measure the geo-location data of various ground targets as
the nominal values for target geo-location. We compare the calculated values with these nominal
values to obtain the multi-target geo-location accuracy of the image. We correct the geo-location
error arising from lens distortion, and then compare the calculated geodesic coordinates of each
target with its nominal geodesic coordinates to determine the multi-target geo-location accuracy
after the distortion correction.

(3) Geo-location test of multi-frame aerial images. For many stationary ground targets, we use
the RLS algorithm to adaptively estimate the multi-frame image geo-location data and then by
comparing the RLS filtration results with nominal values, we determine the target geo-location
accuracy after the RLS filtration.

(4) Real-time geo-location and tracking of multiple ground-based moving targets. We derive the
motion trail of each target from the geo-location data and time interval of every image. Then we
calculate the speed of each target.

Here, a GPS receiver of the Geo Explorer 3000 series is used for ground measurements.
This instrument has 14 channels, including 12 L1 codes and carriers and two satellite-based
augmentation systems (SBAS). It is integrated with real-time two-channel SBAS tracking technology,
and supports real-time differential correction. It can achieve real-time sub-meter geo-location
accuracy—An accuracy of 50 cm is available through Trimble Delta Phase postprocessing.
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5.3. Test 1: Monte Carlo Analysis of Multi-Target Geo-Location Accuracy Error

Error analysis is an important step to judge if a geo-location method is good or not. It is
very difficult to analyze the target geo-location error through complete differential based on the
measurement equation of airborne electro-optical stabilized imaging system, so Monte Carlo analysis
is introduced to analyze the multi-target geo-location error. The Monte Carlo method is based on
the law of great number and the Bernoulli’s theory [40]. On the basis of this method, a model of
multi-target geo-location error can be established:

[∆L ∆M ∆H]T = F′(X)− F′(X− ∆X) (41)

where: ∆L, ∆M and ∆H are the geo-location errors of each target, and ∆X is geo-location
parameter error.

We use five aerial images (32 targets) for multi-target geo-location and distortion correction test.
(eight targets in the 1st image, six targets in the 2nd image, five targets in the 3rd image, five targets
in the 4th image, and eight targets in the 5th image). We use eight targets in the 1st image in Test 1.
The image size is 1024 pixels × 768 pixels, and the pixel size is 5.5 µm × 5.5 µm. The position/attitude
data of electro-optical stabilized imaging system collected through GPS, attitude measurement and
laser finding at the time of image shoot are shown in Table 1. The root-mean-square error (RMSE)
of each parameter is determined in accordance with the maximum nominal error stipulated in the
relevant measurement equipment specifications.

Table 1. Localization and attitude data of UAV electro-optical stabilized imaging system.

Designation Symbol Unit Nominal Value Error

UAV longitude L0 ◦ 112.680649 2 × 10−4

UAV latitude M0 ◦ 35.125225 1.5 × 10−4

UAV altitude H0 m 1140 15
UAV pitch angle ε ◦ 2.1 0.4
UAV roll angle γ ◦ 0.0 0.4
UAV yaw angle β ◦ 290.5 1.5

UAV speed V m/s 39 0.5
Electro-optical stabilized imaging system’s azimuth angle Θ ◦ 89.9 0.2
Electro-optical stabilized imaging system’s elevation angle Ψ ◦ −112.9 0.2

Laser range finder λ1 m 965 5

Coordinates of sub-target (u,v) pixel

(386,304),
(352,379),
(511,277),
(379,524)
(854,463),
(756,584),
(685,706)

10

Camera’s focal length f mm 50.0 0.2

Based on the nominal values and errors of above parameters, the sample model for 10,000 random
variable arrays can be established in the Matlab software. By using the Equations (1)–(20) and (41),
the geodetic coordinate RMSE of every target in this test can be determined through the Monte Carlo
method, as shown in Table 2.

5.4. Test 2: Multi-Target Geo-Location Using a Single Aerial Image with Distortion Correction

The data in Table 1 are substituted into Equations (1)–(20) to calculate the geodesic coordinates of
each target in a single image, as shown in Table 3.
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Table 2. Errors of multi-target expected location.

Longitude RMSE/(◦) Latitude RMSE/(◦) Altitude RMSE/m

Main target 0.000307◦ 0.000166◦ 25.33 m
Sub-target 1 0.000231◦ 0.000245◦ 25.33 m
Sub-target 2 0.000340◦ 0.000199◦ 26.12 m
Sub-target 3 0.000292◦ 0.000265◦ 25.33 m
Sub-target 4 0.000235◦ 0.000338◦ 25.33 m
Sub-target 5 0.000311◦ 0.000345◦ 24.56 m
Sub-target 6 0.000532◦ 0.000166◦ 26.13 m
Sub-target 7 0.000237◦ 0.000383◦ 25.34 m

Table 3. Calculated values in the geodesic coordinates of each target.

Longitude/(◦) Latitude/(◦) Altitude/m

Main target 112.679882 35.125060 171.81
Sub-target 1 112.679058 35.124549 171.82
Sub-target 2 112.680080 35.123993 171.81
Sub-target 3 112.679133 35.125134 171.81
Sub-target 4 112.678723 35.124990 171.82
Sub-target 5 112.680868 35.123948 171.81
Sub-target 6 112.679510 35.123628 171.82
Sub-target 7 112.678275 35.124593 171.82

The calculated geodetic coordinates of each target in Table 3 are compared with its nominal
geodetic coordinates measured by GPS receiver on the ground, in order to obtain its geo-location error
in a single image, as shown in Table 4. It is found that the geo-location error of each target is within
the expected error range through the comparison between the data in Table 4 and those in Table 2.
The geodetic height geo-location errors of all the targets are about 18 m—that’s basically in line with
the assumption in the Section 3.2 that “the ground area corresponding to a single image is flat and the
relative altitudes between targets and electro-optical stabilized imaging system are the same”.

Table 4. Geo-location error of each target in a single image.

Longitude Error/◦/(◦) Latitude Error/◦/(◦) Altitude Error/m

Main target 0.000217 0.000027 17.81
Sub-target 1 −0.000081 0.000180 17.82
Sub-target 2 −0.000261 −0.000111 18.81
Sub-target 3 0.000194 0.000207 17.81
Sub-target 4 0.000090 0.000294 17.82
Sub-target 5 −0.000221 −0.000303 16.81
Sub-target 6 −0.000485 −0.000007 18.82
Sub-target 7 −0.000095 0.000344 17.82

The latitude and longitude geo-location errors of sub-targets are bigger than those of main targets
for the following reasons: (1) the error arising from the slope distance difference between a main
target and a sub-target. The longer the slope distance of a target to the image border, the bigger the
geo-location error [39]; (2) the coordinate transformation error caused by the attitude measurement
error and the angle measurement error (measured by the electro-optical stabilized imaging system)
during the calculation of altitude and distance of a sub-target relative to the electro-optical stabilized
imaging system; (3) the pixel coordinate error of a sub-target found in target detection; and (4) the
pixel coordinate error of a sub-target caused by image distortion.

The geo-location errors of a target can be reduced in three ways: by reduction in the flight height
H0 or an increase in the platform elevation angle Ψ (the horizontal forward direction is 0◦) to shorten
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the slope distance, which needs to consider the flight conditions; the selection of a high-precision
attitude measuring system and the improvement in angle measurement accuracy of the electro-optical
stabilized imaging system, for which one needs to consider the hardware cost; and the distortion
correction. Therefore, the influence of distortion correction on multi-target geo-location accuracy will
be mainly discussed.

Sub-target pixel coordinate error is mainly caused by image distortion. The correction method
is discussed in Sections 4.1 and 5.1. We calculate the corrected pixel coordinates using Equation (25)
to Equation (28). Then, we use corrected pixel coordinates to calculate geodetic coordinates of target.
Geo-location errors of multi-target after distortion correction are shown in Table 5.

Table 5. Geo-location errors of multi-target after distortion correction.

Longitude Error/◦ Latitude Error/◦ Altitude Error/m Pixel Coordinates/Pixel

Main target 0.000217◦ 0.000027◦ 17.81 m (512.00, 383.99)
Sub-target 1 −0.000110◦ 0.000163◦ 17.82 m (391.06, 306.08)
Sub-target 2 −0.000259◦ −0.000067◦ 18.81 m (360.11, 378.32)
Sub-target 3 0.000173◦ 0.000207◦ 17.81 m (511.86, 280.58)
Sub-target 4 0.000016◦ 0.000285◦ 17.82 m (386.18, 516.48)
Sub-target 5 −0.000256◦ −0.000243◦ 16.81 m (838.99, 458.38)
Sub-target 6 −0.000439◦ 0.000103◦ 18.82 m (746.46, 574.63)
Sub-target 7 −0.000117◦ 0.000306◦ 17.82 m (678.45, 691.36)

It can be seen through the comparison between the data in Table 5 and those in Table 4 that,
after the distortion correction, the latitude and longitude errors of each target are generally smaller
than those before the correction, while the geo-location error of geodetic height remains basically
unchanged. For the sub-targets farther from the image center, a more significant reduction in longitude
and latitude errors can be obtained. Therefore, lens distortion correction can improve the geo-location
accuracy of sub-targets and thus raise the overall accuracy of multi-target geo-location.

Target geo-location accuracy and missile hit accuracy are usually evaluated through the circular
error probability (CEP) [41]. CEP is defined as the radius of a circle with the target point as its center
and with the hit probability of 50%. In ECEF frame, the geo-location error along X direction is x.
The geo-location error along Y direction is y. x and y can be calculated from longitude error and
latitude error listed in Tables 4 and 5. Suppose both x and y are subject to the normal distribution,
the joint probability density function of (x, y) can be expressed as:

f (x, y) = 1
2πσxσy

√
1−ρ2

× exp
{
− 1

2(1−ρ2)

[
(x−µx)

2

σ2
x
− 2ρ×(x−µx)×(y−µy)

σxσy
+

(y−µy)
2

σ2
y

]}
(42)

where µx and µy are the mean geo-location errors along X and Y directions, respectively; σx and σy

are the standard deviations of the geo-location errors along X and Y directions, respectively; ρ is the
correlation coefficient of geo-location errors along X and Y directions, 0 ≤ | ρ| ≤ 1.

Suppose x = rcosθ, y = rsinθ and r =
√

x2 + y2, the R satisfying the following equation will
be CEP:

1
2πσxσy

√
1−ρ2

R∫
0

2π∫
0

r exp
{
− 1

2(1−ρ2)

[
(rcθ−µx)

2

σ2
x
− 2ρ(rcθ−µx)(rsθ−µy)

σxσy
+

(rsθ−µy)
2

σ2
y

]}
drdθ = 0.5 (43)

where: cθ = cos θ, sθ = sin θ.
If the mean geo-location errors µx, µy are unknown, they can be substituted by the sample mean

geo-location errors µ̂x, µ̂y respectively. If the standard deviations of the geo-location errors σx, σy are
unknown, they can be substituted by the sample standard deviation of the geo-location errors σ̂x,
σ̂y respectively. If the correlation coefficients of the geo-location errors ρ are unknown, they can
be substituted by the sample correlation coefficients of the geo-location errors ρ̂. If the total mean
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geo-location error µr is unknown, it can be substituted by the total sample mean geo-location error µ̂r.
If the total standard deviation of the geo-location error σr is unknown, it can be substituted by the total
sample standard deviation of the geo-location errors σ̂r.

Suppose the number of geo-location error samples is n: (x1, y1), (x2, y2), (x3, y3), ...,(xn, yn).
The sample mean geo-location errors along X and Y directions are:

µ̂x =
1
n

n

∑
i=1

xi (44)

µ̂y =
1
n

n

∑
i=1

yi (45)

The total sample mean geo-location error is:

µ̂r =
1
n

n

∑
i=1

ri (46)

The sample standard deviations of the geo-location errors along X and Y directions are:

σ̂x =

√
1

n− 1

n

∑
i=1

(xi − µ̂x)
2 (47)

σ̂y =

√
1

n− 1

n

∑
i=1

(yi − µ̂y)
2 (48)

The total sample standard deviations of the geo-location errors is:

σ̂r =

√
1

n− 1

n

∑
i=1

(ri − µ̂r)
2 (49)

The sample correlation coefficient of the geo-location errors is:

ρ̂ =

n
∑

i=1
[(xi − µ̂x)× (yi − µ̂y)]√

n
∑

i=1
(xi − µ̂x)×

n
∑

i=1
(yi − µ̂y)

(50)

When the number of geo-location error samples is more than 30, the confidence of CEP calculation
result can reach 90% [41]. Therefore, through the multi-target geo-location and distortion correction
test for five aerial images, 32 samples of target geo-location errors are obtained before and after the
distortion correction, respectively, including eight in the 1st image, six in the 2nd image, five in the
3rd image, five in the 4th image, and eight in the 5th image. The normality test and independence
test of sample data reveal that, the samples conform to normal distribution but are not independent
(the sample correlation coefficient before the distortion correction is ρ̂ 1 = 0.6618, and the sample
correlation coefficient after the distortion correction is ρ̂ 2 = 0.5607).

Geo-location errors of the eight targets in the 1st image (which are parts of 32 targets) before the
correction are shown in Table 4. Geo-location errors of the eight targets in the 1st image (which are
parts of 32 targets) after the correction are shown in Table 5.

The multi-target geo-location errors before the distortion correction are processed through the
Equations (43)–(50) to calculate the CEP, whereas the mean geo-location errors along the X and Y
directions are 17.41 m and 20.34 m, respectively, the standard deviations of the geo-location errors
along the X and Y directions are 7.77 m and 10.05 m, respectively, and the total mean geo-location error
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and total standard deviation are 28.98 m and 6.08 m, respectively. The calculation of Equation (46)
through numerical integration finds that, among the 32 samples, 16 are in a circle with a radius of 28.74
m, which means the probability is 50%. The sizes of data samples inside and outside the solid circle
in Figure 10 also show that, the CEP1 of multi-target geo-location before the distortion correction is
28.74 m. Then the multi-target geo-location errors after the distortion correction are processed through
Equations (43)–(50) to calculate the CEP, where the mean geo-location errors along X and Y directions
are 17.04 m and 18.63 m, respectively, the standard deviations of the geo-location errors along X and Y
directions are 6.86 m and 8.25 m, respectively, and the total mean geo-location error and total standard
deviation are 26.91 m and 5.31 m, respectively. The calculation of Equation (43) through numerical
integration finds that, among the 32 samples, 16 are in a circle with a radius of 26.80 m, which means
the probability is 50%. The sizes of samples inside and outside the dotted circle in Figure 10 also show
that, the CEP2 of multi-target geo-location after the distortion correction is 26.80 m, 7% smaller than
that before the distortion correction. Note: We use original geo-location error (32 samples scattered
in the four quadrants) to calculate the CEP circle. Because there are 32 samples scattered in the four
quadrants. It’s too scattered and not conducive to the analysis of the error. Therefore, we take the
absolute value of each geo-location error, so all points are in the first quadrant in Figure 12.
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In order to compare the performance of our multi-target geo-location algorithm with that of other
algorithms, these localization accuracy results have been compared with the accuracies of geo-location
methods reported in [7–9], as shown in the Table 6. It can be seen from the Table 6 that, the target
geo-location accuracy in this paper is close to that reported in [7]. However, the geo-location accuracy
in [7] depends on the distance between the projection centers of two consecutive images (namely
baseline length). To obtain higher geo-location accuracy, the baseline length shall be longer, so in [7],
the time interval between two consecutive images used for geo-location is quite big. Meanwhile,
as the SIFT algorithm is needed to extract feature points from multi-frame images for the purpose
of 3D reconstruction, the algorithm in [7] has a heavy calculation load in prejudice of real-time
implementation. In [8], the geo-location accuracy is about 20 m before filtering. The real-time
geo-location accuracy of the two methods is almost the same. However, our UAV flight altitude
is much higher than that in [8]. In [9], geo-location accuracy is about 39.1 m before compensation.
Our real-time geo-location accuracy is higher than in [9]. In [9], after the UAV flies many around in an
orbit, the geo-location accuracy can be increased to 8.58 m. However, this accuracy cannot be obtained
in real-time. The algorithms in [7–9] are implemented on a computer in the ground station. Since the
images are transmitted to, and processed on a computer in the ground station, a delay occurs between
the data capture moment and the time of completion of processing. In comparison, the geo-location
algorithm in this paper is programmed and implemented on multi-target localization circuit board
(model: THX-IMAGE-PROC-02, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese
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Academy of Sciences, Changchun, China) with a TMS320DM642@ 720-M Hz Clock Rate and 32-Bit
Instructions/Cycle and 1 GB DDR. It consumes 0.4 ms on average when calculating the geo-location of
a single target and, at the same time, correcting zoom lens distortion. Therefore, this algorithm has
great advantages in both geo-location accuracy and real-time performance. The multi-target location
method in this paper can be widely applied in many areas such as UAVs and robots.

Table 6. Geo-location accuracy comparison between the proposed algorithm and the algorithms in
reference [7].

Algorithm Error Mean/m Error Standard/m Flight Altitude/m

Reference [7] 26.00 1 8.00 1 over 1000 m 1

Reference [8] 20.00 2 - 100 m–200 m 2

Reference [9] 39.1 3 - 300 m 3

Proposed (before correction) 28.98 6.08 1140
Proposed (after correction) 26.91 5.31 1140

1 Data from Reference [7]; 2 Data from Reference [8]; 3 Data from Reference [9].

5.5. Test 3: RLS Filter for Geo-Location Data of Multiple Stationary Ground Targets

The targets in the above tests are all stationary ground targets. After lens distortion correction,
we use the 1st aerial images (eight targets) as the initial frame for target tracking. For 150 frames
starting from the 1st image, eight targets are tracked, respectively. The coordinates of the UAV are
calculated using Equations (25) and (26). The update rate of UAV coordinate is synchronized with the
camera frame rate. The geo-location data of each target are adaptively estimated by RLS algorithm
respectively. The geo-location results of eight targets before and after RLS filtration are shown in
Figure 13 (the dots “•” in different colors in Figure 13 represent original geo-location data of the eight
targets, while �, /, .,
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,5, #, 3 and4 represent the geo-location data of main target and sub-targets
1, 2, ..., 7 after RLS filtration). It can be observed from Figure 13 that, after RLS filtration, the dispersion
of geo-location data decreases sharply for each target, converging rapidly to a small area adjacent
to the true position of the target. Figure 14 shows how the plane geo-location error of sub-target 2
changes with the number of image frames (the corresponding time) in the RLS filtration process. It can
be seen from Figure 14 that after filtering the geo-location data of 100~150 images (the corresponding
time is 3~5 s), the geo-location errors of the target have converged to a stable value. So, we can obtain
a more accurate stationary target location immediately after 150 images (it is no longer necessary to
run RLS).
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Figure 13. Localization results before and after RLS filtering.
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Figure 14. Plane localization errors after RLS filtering.

By comparing the results after the stabilization of RLS filtration with the nominal geodetic
coordinates of each target, the geo-location errors of geodetic coordinates of the targets after RLS
filtration can be determined, as shown in Table 7.

Table 7. Errors of multi-target location after RLS filtering.

Longitude Error Latitude Error Altitude Error

Main target 0.000167◦ 0.000016◦ 15.33 m
Sub-target 1 −0.000005◦ 0.000131◦ 15.33 m
Sub-target 2 −0.000193◦ −0.000086◦ 16.08 m
Sub-target 3 0.000150◦ 0.000151◦ 15.33 m
Sub-target 4 0.000073◦ 0.000217◦ 15.33 m
Sub-target 5 −0.000164◦ −0.000230◦ 14.58 m
Sub-target 6 −0.000361◦ −0.000007◦ 16.08 m
Sub-target 7 −0.000065◦ 0.000255◦ 15.33 m

It can be seen from the comparison of results between the data in Table 7 and those in Table 5
that, after RLS filtration, the longitude and latitude errors of each target are much smaller than the
multi-target geo-location errors of a single image which is only processed by lens distortion correction.
The geo-location error of geodetic height also decreases slightly.

After lens distortion correction, we use the other four aerial images (24 targets) as the initial frame
for targets tracking, respectively (eight targets in the 1st image, six targets in the 2nd image, five targets
in the 3rd image, five targets in the 4th image, and eight targets in the 5th image).

For 150 frames starting from the 2nd image, six targets are tracked, respectively. The geo-location
data of each target are adaptively estimated by the RLS algorithm, respectively. For 150 frames
starting from the 3rd image, five targets are tracked, respectively. The geo-location data of each
target are adaptively estimated by the RLS algorithm, respectively. For 150 frames starting from the
4th image, five targets are tracked, respectively. The geo-location data of each target are adaptively
estimated by the RLS algorithm, respectively. For 150 frames starting from the 5th image, eight targets
are tracked, respectively. The geo-location data of each target are adaptively estimated by the RLS
algorithm, respectively.

The multi-target geo-location data after RLS filtration are processed through the Equations
(43)–(50) to calculate the CEP, where the mean geo-location errors along the X and Y directions are
13.78 m and 14.53 m, respectively, and the standard deviations of the geo-location errors along the
X and Y directions are 5.79 m and 7.34 m, respectively. Among the 32 samples obtained through
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numerical integration of Equation (43), 17 are in a circle with a radius of 21.52 m, which means the
probability is 53%. The sizes of samples inside and outside the dotted circle in Figure 13 also show
that, the CEP3 of multi-target geo-location after RLS filtration is 21.52 m, 25% smaller than the CEP1
of multi-target geo-location of a single image. Note: We use original geo-location error (32 samples
scattered in the four quadrants) to calculate the CEP circle. Because there are 32 samples scattered in
the four quadrants. It’s too scattered and not conducive to the analysis of the error. Therefore, we take
the absolute value of each geo-location error, so all points are in the first quadrant in Figure 15.
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5.6. Test 4: Real-Time Geo-Location and Tracking of Multiple Moving Ground Targets

This test localizes and tracks four targets moving on a Changji highway in the video taken by the
UAV, as shown in Figure 16 (part of the image). The size of every image is 1024 pixels× 768 pixels,
the pixel size is 5.5 µm× 5.5 µm, and the focal length f = 73.6 mm. The target in the image center
is chosen as main target, and three targets in other positions are chosen as sub-targets. The pixel
coordinates of each target in the 1st image and the locations and attitudes data of the electro-optical
stabilized imaging system at the corresponding time are shown in Table 8.
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Table 8. Locations and attitudes data of electro-optical stabilized imaging system.

Designation Symbol Unit Value

UAV longitude L0
◦ 120.906624

UAV latitude M0
◦ 42.608521

UAV altitude H0 m 2505
UAV pitch angle ε ◦ 2.0
UAV roll angle γ ◦ −1.8
UAV yaw angle β ◦ 350.2

Electro-optical stabilized imaging system’s azimuth angle Θ ◦ −117.8
Electro-optical stabilized imaging system’s elevation angle Ψ ◦ −46.7

Laser range finder λ1 m 3240
Coordinates of sub-target1 (u,v) pixel (453, 342)
Coordinates of sub-target2 (u,v) pixel (476, 251)
Coordinates of sub-target3 (u,v) pixel (504, 213)

Camera’s focal length f mm 73.6

Nine chronological images are selected from video images to calculate the geo-location data of
each target in every image. The resultant spatial position distribution of all the targets is shown in
Figure 17a. With the main target position in the 1st image as the origin of coordinates, the spatial
positions of all the targets are projected earthwards to obtain their planar motion trails, as shown in
Figure 17b. The time span of those nine frames is 30 s.Sensors 2017, 17, 33 25 of 28 
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Figure 17. (a) The spatial localization of each target; (b) The target motion trajectory on the ground.

Since both the UAV yaw and the electro-optical stabilized imaging system azimuth are not 0 in
general, aerial images have been rotated and distorted somewhat. The aerial orthographic projection of
the abovementioned highway, as shown in Figure 18, is acquired from Google Maps. It can be known
from Figure 18 that, the actual direction of that highway is northwest–southeast. In China, cars drive
on the right side of the road, so the house in Figure 18 is near the highway which is from northwest to
southeast direction. In Figure 16b, we can see this house, so all the cars are on the road travelling in a
northwest to southeast direction. This coincides with the localization results of Figure 17.



Sensors 2017, 17, 33 26 of 28

Sensors 2017, 17, 33 25 of 28 

 

  
(a) (b) 

Figure 17. (a) The spatial localization of each target; (b) The target motion trajectory on the ground. 

Since both the UAV yaw and the electro-optical stabilized imaging system azimuth are not 0 in 

general, aerial images have been rotated and distorted somewhat. The aerial orthographic projection 

of the abovementioned highway, as shown in Figure 18, is acquired from Google Maps. It can be 

known from Figure 18 that, the actual direction of that highway is northwest–southeast. In China, 

cars drive on the right side of the road, so the house in Figure 18 is near the highway which is from 

northwest to southeast direction. In Figure 16b, we can see this house, so all the cars are on the road 

travelling in a northwest to southeast direction. This coincides with the localization results of Figure 17. 

 

Figure 18. Ortho image of the Changji highway in aerial imagery. 

On the basis of Figure 17, the motion of each target has been analyzed as below: the targets in 

the 1st image, according to their positions from front to back, are sub-target 3, sub-target 2, sub-target 1 

and main target in succession; in the 3rd–4th images, the sub-target 2 begins to catch up with and 

overtake the sub-target 3; in the 4th–6th images, the sub-target 1 begins to catch up with and 

overtake the sub-target 3; in the 7th–9th images, the main target begins to catch up with and 

overtake the sub-target 3; at last, all the targets, according to their positions from front to back, are 

sub-target 2, sub-target 1, main target and sub-target 3 in succession. This coincides completely with 

the motion law of all the targets in the video image shown in Figure 14, demonstrating that this 

geo-location algorithm can correctly locate and track multiple moving targets. The speed of each 

target can also be determined. This test has further verified the correctness of our multi-target 

geo-location model. 

6. Conclusions 

In order to improve the reconnaissance efficiency of UAV electro-optical stabilized imaging 

systems, a multi-target localization system based on a UAV electro-optical stabilized imaging 

system is proposed. First, a target location model and the way to improve the accuracy of 

multi-target localization are studied. Then, the geodetic coordinates of multiple targets are 

calculated using homogeneous coordinate transformation. On the basis of this, two methods which 

can improve the precision of the target localization are proposed: (1) the lens distortion correction 

method based on the distortion ratio; (2) the RLS filtering method based on UAV dead reckoning. 

The localization error model is established using Monte Carlo theory. The analysis of the multiple 

120.887120.888120.889120.89 120.891120.892120.893

42.595

42.596

42.597

42.598

0

20

40

60

Longitude / (°)

L
atitud

e / (°)

A
lt

it
u

d
e 

/ 
m

0 100 200 300 400 500
-250

-200

-150

-100

-50

0

50

100

East / m

N
o

rt
h

 /
 m

 

 

main target

target 1

target 2

target 3

Figure 18. Ortho image of the Changji highway in aerial imagery.

On the basis of Figure 17, the motion of each target has been analyzed as below: the targets in
the 1st image, according to their positions from front to back, are sub-target 3, sub-target 2, sub-target
1 and main target in succession; in the 3rd–4th images, the sub-target 2 begins to catch up with and
overtake the sub-target 3; in the 4th–6th images, the sub-target 1 begins to catch up with and overtake
the sub-target 3; in the 7th–9th images, the main target begins to catch up with and overtake the
sub-target 3; at last, all the targets, according to their positions from front to back, are sub-target 2,
sub-target 1, main target and sub-target 3 in succession. This coincides completely with the motion
law of all the targets in the video image shown in Figure 14, demonstrating that this geo-location
algorithm can correctly locate and track multiple moving targets. The speed of each target can also be
determined. This test has further verified the correctness of our multi-target geo-location model.

6. Conclusions

In order to improve the reconnaissance efficiency of UAV electro-optical stabilized imaging
systems, a multi-target localization system based on a UAV electro-optical stabilized imaging system is
proposed. First, a target location model and the way to improve the accuracy of multi-target localization
are studied. Then, the geodetic coordinates of multiple targets are calculated using homogeneous
coordinate transformation. On the basis of this, two methods which can improve the precision of
the target localization are proposed: (1) the lens distortion correction method based on the distortion
ratio; (2) the RLS filtering method based on UAV dead reckoning. The localization error model is
established using Monte Carlo theory. The analysis of the multiple target location algorithm is carried
out. The range of the localization error is obtained. In actual flight, the UAV flight altitude is 1140 m.
The multi-target localization results are in the range of allowable error. After we use lens distortion
correction method in a single image, CEP of the multi-target localization is reduced by 7%. The RLS
algorithm can adaptively estimate the location data based on multi-frame images. Compared with
multi-target localization based on the single frame image, CEP of the multi-target localization using
RLS is reduced by 25%.

The average time to calculate the location data and distortion correction for a single target is
0.4 ms. The normal video rate is 25 fps, so the proposed localization algorithm can locate the 50 targets
at the same time in real time. The proposed method significantly reduced the image data processing
time, it is convenient to implement the multi-target localization by using other embedded system [42].

However, when a target is out of field of view and re-enters, the operator has to identify
the target again. The future research will aim to address this problem. We will try to apply the
tracking-learning-detection (TLD) [43] for automatic target detection when a target re-enters the
field of view. Due to the difficulty of constructing TLD on the TMS320DM642 (Texas Instruments
Incorporated, Dallas, TX, USA), we will leave all these problems for our future research.
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