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Abstract: Thermoelectric generators (TEGs) are now capable of powering the abundant low power
electronics from very small (just a few degrees Celsius) temperature gradients. This factor along
with the continuously lowering cost and size of TEGs, has contributed to the growing number of
miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of
an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped
with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter
interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the
characterizations of different TEGs and DC-DC converters to determine the optimal design based on
the amount of power that can be generated from a TEG under different loads and at temperature
gradients typical of industrial environments. A prototype system was implemented and the power
consumption of this system under different conditions was also measured. Results demonstrate
that the power generated by the TEG at very low temperature gradients is sufficient to guarantee
continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport
and aerospace.
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1. Introduction

The average number of sensors on electromechanical systems (EMS), which includes different
aerial and ground vehicles, complex infrastructures such as manufacturing plants, underwater oil &
gas pipelines has undergone an exponential increase. Those EMS building blocks that are not fitted
with sensors and therefore are not monitored and controlled by an automation system in real-time
must undergo a periodic manual inspection and maintenance. This manual inspection which has
a probability of being either premature or overdue is unreliable and adds extra costs. The effort
of guaranteeing the safety by continuously monitoring the parts of EMS is the reason behind the
expansion in the number of on-system sensors.

In EMS, critical fasteners that are located close to a large source of heat, such as an engine,
are subject to a continuous rapid heating and cooling which will eventually render them brittle [1].
The fasteners (bolts) are also subject to wear and tear caused by being over stressed. Over time and due
to movement, bolts may also become loose and unable to provide the proper tension to hold the parts
together. It is therefore important to monitor the health of critical fasteners in EMS, especially those
whose failure can lead to a total failure or significant reduction in performance of the whole EMS.

The safety and average time before the need for a replacement of critical fasteners can be
determined using a continuously recorded temperature data. The tension in the fasteners can also
be monitored to have feedback about the loosening of the bolts. Bolts that are crucial for the proper
functioning of the whole system usually have a large diameter which makes them ideal to fit small
temperature sensors with an intelligent circuitry within the head.
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The purpose of this work is to develop a system that monitors the safety of critical fasteners.
The system has a small form factor to fit on the head of the bolt with the embedded temperature sensors.
The heart of the system is a low power micro-controller with an integrated radio module to send the
sensed data to a central controller. The module will be powered from a TEG that generates electricity
from the temperature gradient between the surface of the critical fastener and the environment. Figure 1
is a schematic representation of the architecture of the envisioned system. In terms of performance the
system should fulfill the following requirements

1. Generate its own energy
2. Monitor available energy before transmission and postpone transmission if available energy is

below a threshold
3. Dynamically adjust its duty cycle (CPU wakeup frequency) based on available energy from TEG
4. Dynamically adjust radio transmission power (above a certain threshold) based on available

energy and environmental conditions
5. Stay alive for as long as possible

The remainder of this paper is organized as follows. Section 2 provides a brief survey of the state
of the art in terms of TEG powered applications. In Section 3, the experimental setup is explained,
and in Section 4 the obtained results are presented with the discussion. Finally, a conclusion is drawn
based on the results.
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2. Related Work

Monitoring critical fasteners is an issue that several companies are recently trying to address.
For example, Stress Indicators Incorporated [2] is a company that produces smart bolts with a built-in
visual tension indicator. This product measures tension on the bolt and displays the result via a shade
of red LED mounted on the top of the bolt. Although this is an innovative product, it is not suitable for
a coordinated sensing as it would be difficult to interface it into an existing closed loop control system.
In [3], General Motors employed smart bolts with a combination of small memory and RFID heads.
These bolts are mounted on the engine blocks. As the engine passes through the assembly line, data is
read and written to the RFID tag by the machines. This data is used at subsequent stages to verify if
correct operations were done at the previous stage of assembly. Here the concern was so much into
storing state information during the engine assembly rather than monitoring the health of the bolt
itself. To the best of our knowledge, even if wireless sensor networks is a consolidated technology
for more than ten years (e.g., [4]), we have not come across any other publication or product that



Sensors 2017, 17, 2211 3 of 17

monitors different properties of bolts in real time and relays gathered data to a central controller, while
many works are targeting TEGs to build a reliable power supply for wireless sensor in industrial
environments [5–7]. An interesting solution in this field is to exploit Phase-Change Materials (PCMs) to
maximize the energy extracted from a thermal gradient, specifically in those cases where temperature
gradients are not constant and reverse thermal gradient may cyclically occur [8], for example in
airplanes during take-off and landing phases [9].

In the field of micro-fabrication process, different groups work towards the definition of
a reliable, easy to industrialize [10] and possibly complementary metal-oxide semiconductor (CMOS)
compatible [11] fabrication process to enable a fast and seamless integration of thermoelectric power
supply within the very same integrated electronics that realize the monitoring task [12]. For example,
authors in [13] developed and characterized soil moisture sensor within the same ceramic substrate
housing a custom thermoelectric generator.

In terms of characterization of TEGs to find the maximum power, Gao et al. [14] proposed
an additional numerical analysis to improve the estimation of maximum power by measuring the open
circuit voltage and short circuit current, in addition to the traditional approach as presented for example
in [15]. A non-invasive thermal resistance estimation of TEGs is also presented in [16,17]. In a different
approach [18], presents a model to predict the harvested energy using TEGs and photovoltaics based
on parameters such as light intensity, temperature gradient, human activity. This model can be adapted
to perform theoretical analysis prior to performing any experiment on TEGs.

A common application of TEGs is harvesting small energy to power electronics with low power
consumption. Since the very early attempts of using TEGs without intermediate power conditioning
for ultra-low power applications (as in [19,20]), there have been a lot of progresses in harnessing
thermoelectricity for different applications. The possibility of powering a network of wireless sensors
using a combination of TEGs and DC-DC boosters is explored in [21]. In this work, the DC-DC booster
efficiency was roughly approximated between 10–50% and the sensor module with an on-board
ZigBee radio was operating with a 10% duty cycle. In [22,23], an interesting application of powering
gas sensors in a server farm using heat generated from the servers in the data center is proposed.
The experiments include the analysis of performance of a combination of two TEGs as generators and
two server boards running benchmark applications as the source of thermal energy. The system was
functioning with a duty cycle of 0.0027%. Interestingly, authors of [24], demonstrate that in indoor
conditions, TEGs exploiting human body warmth can provide a power density (20 µW/cm2) larger
than that of photovoltaic panels. Similarly, an application on [25] demonstrates the use of TEGs to
power sensors used in body area networks for assisting healthy aging. TEGs were powered from
body heat scavenging up to 520 µW at 15 ◦C thermal gradient resulting into a 0.4% duty cycle of the
application. In [26], TEGs are used as a power source to monitor deep sea pipelines. The TEG was
generating energy from the temperature difference between the pipe and the water. The collected
temperature and motion data of the pipe was relayed using optical wireless communication. Usually
thermoelectric generators are considered by designers when a significant thermal energy source is
available (either cold or hot), providing tens of degree C difference with respect to the environment,
however, authors of [27] demonstrated the possibility to recharge a super-capacitor with a thermal
gradient as low as 0.6 ◦C, paving the way to new application scenarios.

3. Method and Approach

The purpose of our work is building a self-powered smart bolt that senses its own temperature,
tension and other physical parameters and transmits the sensed data to a central controller over
sub-GHz radio. Our approach is first modularizing the system into three units namely the power
generation unit i.e., TEG, the power conditioning unit i.e., DC-DC boost converter and storage capacitor
and finally the core system which is composed of a CC1310 microcontroller and sensors. The TEGs
used in this work are Peltier modules or thermoelectric coolers (TECs).
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The primary objective of this work was not achieving accuracy and higher performance in the
sensing side but rather the focus was in making the system energy neutral using TEG, considering that
usually systems, typically employed for structural monitoring, exploit other environmental energy
sources [28]. This requires conducting an accurate power budget analysis of each sub-system under
different schemes. Accordingly, the TEGs were characterized to record the amount of power they can
generate under different conditions. The DC-DC converters were also characterized for their efficiency
and finally the power consumption of the prototype system was analyzed under different conditions.

3.1. Characterization of TEGs

The power density and the power density per square temperature gradient (power factor) are
the two important parameters that uniquely identify the performance of a TEG. The design of the
self-powered bolt started from characterization of three commercial thermoelectric generators from
Digi-Key distributor namely 926-1216-ND (TEG1), 926-1192-ND (TEG2), and 926-1225-ND (TEG3).
Table 1 contains the summary of the specification of the TEGs. The characterization included measuring
(i) the TEG output power at different values of load resistors and at a constant temperature gradient, ∆T,
between the faces of the TEG and (ii) the TEG output power at different ∆T values at a matched load.

Table 1. Summary of Specifications of thermoelectric generators (TEG) from datasheet.

Label Model L [mm] H [mm] Rin [Ω] ∆Tmax [K] A [mm2]

TEG1 926-1216-ND 26 14 0.25 @ 25 ◦C hot side T 67 1507
TEG2 926-1192-ND 5 3.4 1.04 @ 25 ◦C hot side T 67 17
TEG3 926-1225-ND 3.9 3 dnp 92 15.21

The first test was done by keeping ∆T constant while varying the load resistance and recording
the current and load voltage values to find the maximum power. This test was repeated for several
∆T values with a waiting time of at least 30 min to let the temperature reach a steady state and
a uniform distribution on the heating plate. We used a series of four 1 Ω, 25 W resistors supplied
with a 12 V DC (max 200 W) source and an analog potentiometer to regulate the heat, mounted on the
bottom of an aluminum plate to realize a uniform heating plate, while a 40 × 40 × 15 mm3 aluminum
heat-sink was placed on the cold TEGs’ side. Finally, three NTC thermistors were used to collect
hot-side, cold-side and environmental temperatures during tests. The selected range of the temperature
gradients provides a better understanding of the TEGs properties. The values of ∆T ranged from 5 ◦C
to 40 ◦C. During these tests, the temperature of the hot side did not exceed 80 ◦C. The resistor values
used for this test ranged from 0.8 Ω to 10 kΩ. Then the gathered data was processed using MATLAB
to determine maximum power point of the TEG for each ∆T. The second test was done by recording
the output power of the TEG by using a matched resistor load and varying ∆T values.

The current in the circuit and the voltage at the load were continuously recorded using NI
LabVIEW USB-6008 acquisition tool from National Instruments [29]. Additionally, a µCurrent [30]
amplifier has been used to adapt the very small current generated by TEGs with the input range
of the acquisition tool. The acquisition board was sampling data at 100 Hz and was feeding it to
a LabVIEW project on a PC that was sorting and storing the measured values. The temperature at the
faces of the TEGs were measured using a NTCLE100E3 thermistors whose R25 = 10 kΩ. Pictures of
the measurement setup and related schematics are shown in Figure 2, while the circuit used for the
acquisition and characterization of TEGs is depicted on Figure 3.
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When current starts to flow in the measurement circuit the temperature gradient, ∆T, between
the faces of the TEG starts to fluctuate due to the Peltier effect [15]. The fluctuation of ∆T in turn
causes the fluctuation of the Seebeck coefficient. Therefore, an external thermostating circuit should be
used to keep the temperature at a set point while conducting measurement. In [15], the thermostating
was implemented using two extra TEGs, one as a heater and the other as a cooler, controlled in
a feedback loop according to the temperatures of the faces of the main TEG. While providing a reliable
measurement data, this solution has the disadvantage of adding complexity to the simple circuit used
for acquisition. In our work a different approach was followed to overcome this problem. First the
fluctuation of ∆T in relation to the current was observed from repetitive measurements using the
circuit shown in Figure 3 which is a circuit without thermostating. This led to identification of a pattern
as to how ∆T was varying with the current. Then a software filter was implemented in Matlab to
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correct the fluctuation and gain correct output power values despite the fluctuation. Hence, instead of
building a complex thermostating circuit the simple characterization circuit of Figure 3 was kept as is.

A heat sink was used for cooling and to provide a mechanical load on the TEG. Mechanical
pressure on the TEG helps to reduce thermal contact resistance and creates a uniform temperature
distribution on the surface of the TEG.

3.2. Characterization of DC-DC Converters

Two DC-DC boost converters were selected for the characterization, namely the LTC3108 from
linear technologies [31] and the Nextreme WPG-1 from formerly Nextreme now Laird Technologies [32].
The former one is an ultra-low voltage step-up integrated circuit that can work with input voltages as
low as 20 mV, has selectable output voltage level with maximum 10 mA current and, finally it does not
integrate maximum power point tracking (MPPT) features. Also, the latter one has no MPPT since
it is based on the Texas Instruments BQ25504 boost converter [33], with a minimum input of 80 mV
and 1 mW maximum output power with selectable voltage range. A super capacitor was connected to
the output of both boost converters to store energy coming from the TEG when the load was in low
power mode. The converters were characterized for their efficiency and charging profile of the output
250 mF supercapacitor. The converters were supplied once from the TEG and at another time from
a DC source (Keysight E3648A [34], while in both cases their input and output powers were recorded
simultaneously. The efficiency of DC-DC converters varies in relation to the input power therefore
supplying the converter from the DC source was necessary to assess the efficiency of the converter at
higher input power.

3.3. Measuring the Power Requirements of the System

The smart bolt consists of CC1310 microcontroller [35] interfaced with a temperature sensor and
a tension sensor and it was powered from a TEG. The system was running a TI-RTOS based firmware
and the MCU was programmed and debugged using SmartRF06 [36] evaluation module. The power
consumption of the MCU was measured by varying the transmission power, packet size, duty cycle
and type of modulation.

4. Results and Discussion

4.1. Results from the Characterization of TEGs

The characterization of the thermoelectric modules was conducted to verify the data reported
by the manufacturer before employing the TEGs for use and to obtain more information about the
power density and the power factor, parameters that were not reported on the technical document
provided by the manufacturer. The results from the experiments are summarized on Table 2. The table
contains results obtained from the TEGs in our experiments (the first three entries) and for comparison
it also includes results reported on other TEG modules (the last four entries in Table 2) by other
authors. The characterization result of TEG4 (PE127-14-15) and TEG5 (Thermolife 009r) are as reported
in [15] and the results for TEG6 (Peltier module 12706AC) and TEG7 (TEC-12710) are reported in [37]
respectively. Due to their small surface area, TEG2 and TEG3 have a very low Pmax/∆Tmax

2 but their
power factor exceeds TEG1’s power factor in orders of magnitude. A similar comparison of power
factors of the TEGs on Table 2 reveals that TEG2 and TEG3 have the best performance. Based on
the results, the TEGs that were used in this work had a better performance than the TEGs they were
compared with.
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Table 2. Summary of experimental results and comparisons with reference works in literature.

Label Rin [Ω] Pmax/∆Tmax
2 [µw/K2] PF [µw/mm2k2]

TEG1 1.4 40.625 0.0271
TEG2 2.3 6.94 0.404
TEG3 2.1 6.04 0.397
TEG4 2.23 224 0.14
TEG5 250 K 1 0.015
TEG6 1.9 5.31 0.0033
TEG7 1.08 0.25 0.156

Figure 4a depicts the variation of the output power of TEG1 with the load resistance under
different temperature gradients (accordingly Figure 4b,c report results for the other two devices).
As shown in the graph, as the resistance of the load increases the output power is severely reduced.
The TEGs used in this work are Peltier modules which are designed with a low internal resistance to
increase the current flow and therefore to absorb more heat when a constant voltage is applied. There is
also a discrepancy between the manufacturer reported internal resistance values as summarized in
Table 1 and the internal resistance values measured in the lab (Table 2). This is because selected
commercial TEGs are designed as system for thermal management, and, specifically, to reach very
low cool down temperatures. Their design has not been optimized for harvesting applications and
this different kind of utilization, namely extracting power from thermal gradients instead of pumping
energy to generate it, is the main cause of this discrepancy. Moreover, the characterization has been
performed using discrete resistors at different temperature gradients thus values reported in Table 2
represent a numerical estimation obtained fitting the curves presented in the following.
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While having information about the maximum power from a TEG is very important to plan the
power budget of an application, it is also more important to have a measure of the power factor and
power density to correctly understand the capabilities of a TEG and making the right decision in the
design choice stage. The power density (power per unit area) vs. ∆T at a matched load for each module
is shown in Figure 4d. Even though TEG1 generates higher power compared to the other TEGs, due to
its larger surface area, it has a lower power density compared to the other two TEGs.

The open circuit voltage and ∆T also have a linear relationship and this is clearly depicted on
Figure 4e. TEG1 has the highest open circuit voltage for a temperature gradient compared to the two
TEGs. The knowledge of the open circuit voltage under different temperature gradients is useful to
correctly choose or size the input stage of any energy harvesting circuitry (or to tune the maximum
power point tracking stage in the case it is available, not considered in this work).

4.2. Results from the Characterization of DC-DC Converters

In low energy harvesting, the power scavenged from TEGs is used to supply electronic devices
continuously or with some duty cycle. TEGs provide adequate power but with very low nominal
voltages. For example, TEG 1 was generating 18 mW at a temperature gradient of 20 ◦C at 140 mV.
This power is considerably large but the low voltage from the TEG is not enough to start almost any
kind of electronic device. Hence, to use the TEG power, the TEG voltage needs to be boosted using
DC-DC boost converters. A prototype load which replicated the behavior of the MCU with a radio
was used for the characterization of the converters. This load was simulating a radio communication
with a duty cycle of 0.5% and it was running with a period of 3 s. It was consuming 42.15 mW in
the active mode and 360 µW in low power mode. Figures 5 and 6 depict the recorded measurements
when the LTC3108 and Nextreme modules were being supplied by a TEG and DC source respectively.
On Figure 5a for example, the TEG was depicted as charging the supercapacitor connected to the
LTC3108 boost converter, while Figure 5b shows the case when DC supply is employed. The load
was connected to the supercapacitor only after the supercap voltage reached 3.3 V. In this test the
TEG current, TEG voltage, the current to the supercap and the supercap voltage were simultaneously
recorded. Figure 6 depicts similar measurements for the Nextreme converter. The result of the
characterization of the converters is summarized in Tables 3 and 4, while the thermal gradient used to
conduct tests with TEGs was kept around ~15 ◦C.
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Table 3. LTC3108 Characterization Result.

Supply Vin [mV] Iout [µA] Pin [mW] Pout [mW] η (%)

TEG 78 250 1.69 0.83 49.1
DC 477 1000 42 3.16 13.29

Table 4. Nextreme Characterization Result.

Supply Vin [mV] Iout [µA] Pin [mW] Pout [mW] H (%)

TEG 136 380 3.4 0.95 27.1
DC 477 850 43.5 2.6 5.9

As the input power increases the efficiency of both converters decrease significantly. From the
results of the efficiency the LTC3108 outperformed the Nextreme-WPG-1 module in both cases.
However, when supplied from the TEG it took the Nextreme module about 25 min to charge the
supercap to 3 V while it took the LTC3108 close to 40 min to do the same. Even though the LTC3108
had a higher efficiency (almost double) it was receiving less input power from the TEG (because of the
different working point) and therefore it took longer time to charge.

Thus, in conclusion, the optimal choice depends on the application, one could prefer higher
efficiency (longer recharge time) in case of applications with very low duty-cycle, or a faster recharge
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(with higher wastes) when the startup time is crucial. In this work, we opted for the most efficient
LTC3108 solution.

The supercap charging power was not constant. To calculate the efficiency of the converter the
average output power was used. The average power was calculated first by forming a set consisting
of the rate of change of energy at the capacitor every 330 ms into a set. The set was then observed to
have a normal distribution as depicted in Figure 7. The mean of this distribution was then taken as the
average power and it was used to estimate the efficiency. Figure 7a,b depict the normal distribution of
the average output power when the Nextreme module was charging the supercap when the module
was supplied from the DC source and the TEG, respectively. The mean output powers were around
2.6 mW for the DC source and 0.9 mW for the TEG. Similarly this procedure was repeated for the
LTC3108 IC, to extract characteristics used in the following, not shown for the sake of summary.
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4.3. Results from the Characterization of the System

The smart bolt system consists of a CC1310 low power wireless MCUs from Texas instruments
and a TC3108 DC-DC boost converter. For this experiment, the system was powered using TEG1.
Despite their higher power factor, TEG2 or TEG3 are too small to provide enough total power for the
final application; however, given their small size a number of these TEGs can be combined in series
to suit the power budget of the application and the volume of the final system. Although TEG1 has
a relatively larger footprint (1.5 cm2) compared to the other two TEGs, it can still easily fit on the top of
most critical fasteners. The CC1310 has an ARM cortex M3 CPU running with a 48 MHz clock. For the
prototype system, temperature readings from the internal temperature sensor of the MCU were used
as transmitted data. The MCU also has an ARM M0 core that runs the radio firmware. The radio
communicates with the software running on the main CPU using a shared memory interface. For this
test, another CC1310 module was used as a receiver to record correct reception of transmitted packets.

The energy consumed by the microcontroller was then measured (i) by varying the transmission
power and the type of modulation while keeping the packet size and transmission period constant;
(ii) by varying the packet size and transmission period under a fixed transmission power and
modulation; and (iii) by varying the transmission power, type of modulation and packet size under
a fixed transmission period. In all cases, the transmission frequency was 868 MHz. All the unused
GPIOs were connected to the internal pull resistor to protect current leakage. The device power
management is handled by TI-RTOS. With minimal or no configuration in the application, the RTOS
by default invokes a target specific power policy during the idle time of the application. In this test,
since the application, running on the Cortex M3 was utilizing only the radio and no other peripherals
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both CPUs switch into standby mode immediately after transmission. The wakeup time of the radio
was observed to be 0.9 ms.

In case (i) the power consumption of the system during transmission was measured by varying the
transmission power values from −10 dbm to 14 dbm in Gaussian frequency-shift keying (GFSK) and
On-Off keying (OOK) modulations. The packet size was 32 bytes and the transmission was repeated
every second for both modulations. For a fixed transmission power, the amount of current drawn by
the system remains constant even when varying the packet size and duty cycle. In fact, the variation
of these parameters only changes the duration the system stays in the active mode and hence only
changes the energy consumption. The result of this test is represented in Figure 8. As depicted in the
plot, the usage of GFSK modulation resulted in a slightly higher power consumption by the system.
In case (ii) the power consumption of the system was measured by varying the packet size and the
transmission period, meanwhile keeping the transmission power constant at 14 dbm. The radio was
transmitting in GFSK modulation while the packet sizes that were tested were 5, 20, and 64 bytes
with transmission duration of 2.96 ms, 5.37 ms, and 12.39 ms respectively. The transmission was
repeated with periods of 500 ms, 1 s, and 1.5 s resulting in duty cycles of [0.592%, 1.074%, 2.47%],
[0.296%, 0.537%, 1.23%], and [0.197, 0.358%, 0.826%], respectively, for each packet size. Figure 9 shows
the relationship between duty cycles and the average power consumption over different packet sizes.
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Gaussian frequency-shift keying (GFSK) modulation.

Based on the results of the first test, the system was consuming 102 mW when transmitting at
14 dbm and 240 µW in the low power mode. The power consumption reported in this test is the
average power consumption in the active and low power modes which is calculated by dividing the
total energy in the active mode and low power mode by a single transmission period. As inferred from
Figure 9, the average power is directly related to the packet size and the duty cycle. As the size of packet
increases the current drawn by the MCU and hence the energy consumption increases considerably.
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For case (iii) the power consumption of the system was measured over packets of sizes of 5, 20, 32,
64, and 100 bytes and set of transmission power levels ranging from −10 dbm to 14 dbm. The purpose
of this test was further quantifying the performance of the system by measuring the energy per bit
under a set of changing parameters. The energy per bit values obtained from this test will ultimately be
used by the microcontroller for a choice of transmission parameters based on the available energy at the
supercapacitor and sensed channel condition. The transmission period was one second. The measured
power consumption was then used to calculate the energy per bit. The measurement was done for
both the GFSK and OOK modulations. Also, in this case the average energy from the average power
was used to calculate the energy per bit. As seen on Figure 10, GFSK has a lower energy per bit at
lower packet sizes and the reverse is true as the packet size starts to increase. For example, for a 5 byte
packet the transmission of a single bit in GFSK at 14 dbm has an energy cost of 6.9 mJ while the same
transmission in OOK costs about 7.1 mJ. At a packet size of 32 bytes, the energy per bit at 14 dbm is
about 3.9 mJ in GFSK while it is 3.6 mJ for OOK. The same pattern repeats for different transmission
power values and packet sizes. From the results obtained at lower packet sizes, the energy per bit is
slightly lower when using GFSK and in reverse using OOK results in a lower energy per bit in larger
packets. The average power in this case is calculated by first computing the total energy consumed by
the module in each period and dividing this energy by the period.
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The results of the prototype system are depicted on Figure 11. Figure 11a represents the power
consumption of the system during transmission and in low power modes when the system was
transmitting with a period of 1 s, collected using Picoscope USB oscilloscope and the µCurrent
amplifier, where 1 mV corresponds to 1 mA. Figure 11b presents an excerpt of the current drawn by
the system along with the voltage at the supercapacitor. The system was powered from TEG1 with
a temperature gradient of 20 ◦C with respect to the environment. The system was sending packets of
32 bytes every second at 14 dbm. The test was done to measure the performance of the final system
and assert the results obtained so far. The voltage of the supercap started from 0 V and the load
was connected from the beginning of the test. The system started operation after the voltage from
the DC-DC converter rose above 2.5 V (around second 1.1 in Figure 11b) and this took a duration of
16 min. The charging of the supercap reached 3.1 V in 45 min and the system continued to function in
a self-sustainable manner.Sensors 2017, 17, 2211 13 of 17 
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After the power generation and consumption analysis of the different modules and components
of the system, and the radio performance, we focused on the study of the expected performance of
the whole smart bolt. The performance of the system evaluated by setting the transmission power to
14 dbm and using GFSK modulation. The packet size was also set to 32 bytes and it had a transmission
time of 7.26 ms. Then the maximum duty cycle at which the system remains energy neutral under
different temperature gradients is computed by accounting the power generated by the three TEGs at
different temperature gradients and the energy consumed by the system while transmitting. Table 5 is
a summary of the results. The values in Table 5 are calculated using Equation (3) which was derived
from Equations (1) and (2).

Etot = Eactive + Esleep = PinT = Ptxttx + Psleep(T − ttx) (1)

T =
Ptxttx − Psleepttx

Pin − Psleep
(2)

Duty − Cycle =
ttx

T
(3)

In Equation (1), Etot, Eactive, and Esleep are the total energy, energy consumed while the system
is active, and in low power mode, respectively. ttx is the transmission time and T is the sum of
transmission and sleep times. Pin is the power at the load and it is obtained by multiplying the power
generated by TEG1 at different temperature gradients (in Figure 4a) by the efficiency of the DC-DC
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converter. Ptx is the power consumption of the system during transmission of packets and it was
determined in the characterization of the power consumption of the load (Figure 6). Psleep is the
power consumed by the load in low power mode and it was determined to be 240 µW. The maximum
duty cycle for each power level is then calculated by determining the minimum amount of time the
system must remain in low power mode to store enough energy for the next transmission. For instance,
to stream a packet of 32 bytes (7.26 ms transmission time) at a temperature gradient of 10 ◦C, the system
must transmit with a minimum period of 468 ms (1.55% duty cycle). One interesting result from
this summary was understanding that TEG2 and TEG3 are not able to support the application at
a temperature gradient below 14 ◦C.

Table 5. Estimation of max duty cycle based on input power.

Label
Experimental Result

∆T = 10 ∆T = 20 ∆T = 30

TEG1
Pin (mW) 1.8 Pin (mW) 16.4 Pin (mW) 44.5

%d 1.55 %d 18.9 %d 77

TEG2
Pin (mW) 0.18 Pin (mW) 0.87 Pin (mW) 2.0

%d - %d 0.62 %d 1.76

TEG3
Pin (mW) 0.15 Pin (mW) 0.45 Pin (mW) 1.4

%d - %d 0.2 %d 1.15

4.4. Discussion

The results of all the experiments done in this work are not used only at the design stage for
choosing the right type of TEG or DC-DC converter but are also used by the firmware to adaptively
decide radio transmission parameters at run-time. The firmware that is running on the cortex M3
receives a temperature reading and the energy level of the supercap. The temperature reading which is
going to be transmitted to a central controller is also used by the application to estimate the amount of
power that is being generated by TEG using characterization information in Section 3.1. The application
then measures the amount of energy stored in the supercapacitor.

Based on these two values (TEG power and energy in the supercap) and assessment of the channel
from previous transmissions the application makes a revision on the transmission power and the duty
cycle values. If the energy in the supercap is below a threshold, EL, the application takes the system
into a low power mode after scheduling the next wakeup to Twake. Twake is the time the TEG takes to
charge the supercap to EH and it is easy to calculate as the application is already aware of the amount
of power the TEG is generating and the charging profile of the supercap by the DC-DC converter from
Section 3.2. The application flow is depicted in Figure 12.

In the current stage of deployment, only the internal temperature of the MCU is available,
while the interfacing of external NTC probes and pressure/strain sensors is under development.
This information is used as the estimation of the hot-side temperature since the very low power
consumption of the MCU and the very low duty cycle (active time is few tens of ms for the whole task)
result in negligible heat dissipation by the electronics.
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5. Conclusions

In this work, the design of an energy neutral wireless bolt was investigated. The system transmits
temperature of the bolt to a central controller in the sub-GHz band and it consisted of TEG, a CC1310
MCU from TI and a LTC3108 DC-DC converter. There Peltier modules, which were used as TEGs
were characterized to evaluate their performance. The characterization of two DC-DC converters was
also done to determine their efficiency. Finally, the power consumption of the system under different
transmission parameters was recorded and this result was then used to design an algorithm which
determines the duty cycle and transmission parameters of the system based on the available energy
and channel conditions. The firmware of the system was TI-RTOS based and it was possible to stream
temperature data every 488 ms (1.55% duty-cycle) with a ∆T as low as 10 ◦C.
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