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Abstract: Virtual reality (VR) is a computer technique that creates an artificial environment composed
of realistic images, sounds, and other sensations. Many researchers have used VR devices to generate
various stimuli, and have utilized them to perform experiments or to provide treatment. In this
study, the participants performed mental tasks using a VR device while physiological signals were
measured: a photoplethysmogram (PPG), electrodermal activity (EDA), and skin temperature (SKT).
In general, stress is an important factor that can influence the autonomic nervous system (ANS).
Heart-rate variability (HRV) is known to be related to ANS activity, so we used an HRV derived
from the PPG peak interval. In addition, the peak characteristics of the skin conductance (SC) from
EDA and SKT variation can also reflect ANS activity; we utilized them as well. Then, we applied
a kernel-based extreme-learning machine (K-ELM) to correctly classify the stress levels induced
by the VR task to reflect five different levels of stress situations: baseline, mild stress, moderate
stress, severe stress, and recovery. Twelve healthy subjects voluntarily participated in the study.
Three physiological signals were measured in stress environment generated by VR device. As a result,
the average classification accuracy was over 95% using K-ELM and the integrated feature (IT = HRV
+ SC + SKT). In addition, the proposed algorithm can embed a microcontroller chip since K-ELM
algorithm have very short computation time. Therefore, a compact wearable device classifying stress
levels using physiological signals can be developed.

Keywords: virtual reality (VR); kernel-based extreme learning machine (K-ELM); heart rate variability
(HRV); autonomic nervous system (ANS)

1. Introduction

Virtual reality (VR) involves creating and implementing a simulated, realistic, three-dimensional
environment [1]. In other words, diverse virtual environments can be constructed in limited spaces by
generating realistic images, sounds, and other sensations. Since environments generated by VR devices
are similar to the real world, they have been used in various fields, especially as treatment options in
hospitals. For example, VR devices have been used for social-adaptation training for social phobias,
as well as for treating post-traumatic stress disorder (PTSD) [2]. In addition, many researchers have
utilized VR devices during their experiments to create environments and observe the corresponding
responses [3–5]. For instance, electroencephalogram (EEG) signals were measured in a VR environment,
which are composed of three different traffic light situations (red, green, and yellow), and EEG signals
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were well discriminated according to the traffic light color [6]. In another study, the anxiety was
triggered by VR environment using stressful job interview situation and analyzed the changes in the
cardiovascular activity [7]. As a result, the cardiovascular change of people who had been trained in
VR environment was less than that of untrained people. Taken together, the physiological signals seem
to be well changed and modified with artificial VR environment.

Generally, stress is induced by physical, mental, or emotional tensions and causes changes in
the body’s response. In addition, since VR environment can trigger unfamiliar stimuli for subjects,
several phenomena such as the anxiety, mental concentration and nausea are regarded as stress in a
broad sense. Especially, physiological changes can be caused by unfamiliar external environments
and psychological changes [8]. Among the factors that can induce physiological changes, in particular,
the autonomic nervous system (ANS) is important in regulating the functions of the internal organs
and maintaining homeostasis, as well as human physiological activities [9]. Also, external factors
including stress can affect ANS function, so that physiological phenomena and changes could diversely
appear according to the levels of perceived stresses [10].

The ANS, when affected by stress stimuli, secretes stress hormones such as cortisol and adrenaline
within the blood vessels. This causes the activation of sympathetic nerves and the inactivation of
parasympathetic nerves [11]. As the result, physiological responses can appear in the body [12].
For example, there is an evidence that cognitive loads can affect the cardiac function [13]. Given that
heartbeats depend on ANS activity, cardiac activity after tasks with cognitive loads can also be related
to ANS changes.

Heart activity, skin sweating and skin temperature are known to be regulated by the ANS,
so biosignals related to such activities (photoplethysmograms (PPG), electrodermal activity (EDA) and
skin temperature (SKT)) could provide insights on ANS activity.

The PPG signal is measured from the finger, and reflects the change in blood volume in the
peripheral blood vessels [14]. Since the changes in blood volume are associated with cardiac activity,
the peak positions of the PPG signal are similar to the R-peak positions of QRS complex in an
electrocardiogram (ECG) [15].

The heart rate variability (HRV) can be calculated from the intervals between the peaks of the
PPG signal [16]. The HRV has been used to investigate changes in the ANS, as well as diagnosing heart
disease. In particular, it is noteworthy that several HRV parameters (e.g., the ratio of high-frequency
and low-frequency (HF/LF) powers) are associated with the activities of sympathetic/parasympathetic
nerves [17].

The EDA is an electrical signal measuring continuous skin-conductance (SC) changes [18].
In general, changes in SC are associated with sweat gland activity. Whenever sweat glands secrete
sweat through the pores, SC peaks are generated. In particular, the amplitudes and frequency of SC
peaks are related to the activation of the sudomotor nerve, which is part of the ANS [19].

Lastly, changes in SKT are also associated with changes in the ANS. For instance, it is
known that the combined inhibition of dopamine (DA) and norepinephrine (NE) reuptake by the
activity of sympathetic nerves improves exercise performance and increases body temperature [20].
Taken together, the three physiological signals (PPG, EDA, and SKT) are associated with the activities
of the ANS. Considering that ANS changes can be induced by stressful tasks with cognitive loads,
we can postulate that the features obtained from measured signals can reflect not only changes in the
ANS, but also the stress levels [17,18].

Recently, mobile healthcare system has been studied for detecting stress levels using various
wearable sensors measuring the physiological signals [21,22]. The newest developed wearable sensors
can continuously measure the physiological signals including PPG, EDA, and SKT, so that the users
can check their health state without any inconvenience [23]. Mobile devices such as Galaxy gear
and Apple iWatch are appropriate to be utilized in this field. Nowadays, most mobile device has
high-performance microprocessor. With advances in engineering technology, the performance of
microprocessors embedded in mobile devices has been improved and complex mathematical problem
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can be calculated as well. Eventually, classification methods that require the complex computation can
work with the microprocessor embedded in mobile device.

Automatic classification methods using features extracted from biosignals have been
developed [24–26]. In general, conventional neural network algorithms are used to estimate optimal
boundaries for separating distinct classes and also to perform iterative processes to obtain the
optimized weights and biases of each layer. However, a long and complex iterative process is required
to utilize large datasets, which include extensive biological information [27]. Moreover, it is difficult to
be operated on microprocessor having limited resources. To solve this problem, the extreme learning
machine (ELM) was developed.

Since the ELM is based on single-hidden–layer feedforward neural networks (SLFNs),
and randomly selects the input weights and biases for the hidden layer, it has low computational
complexity as well as high classification accuracy [28]. In addition, the kernel-based extreme learning
machine (K-ELM), an extended version of the ELM, is more robust than the ELM, with smaller
computation time [27,29]. In other words, the K-ELM uses fewer resources while showing high
performance compared to other neural networks. Therefore, K-ELM algorithm can work in a
microcontroller chip with a small memory.

In this study, a stressful task with cognitive loads was designed to measure stress-related
biosignals in a VR environment. The task was composed of five sequential sessions with varying
stress levels: baseline, mild stress, moderate stress, severe stress, and recovery. During this task,
physiological signals (PPG, EDA, and SKT) were measured simultaneously. Then, we classified these
five different states by combining K-ELM and the features obtained from the three physiological
signals. Additionally, we evaluated whether the calculated features reflect intended stress levels,
and compared the performances of the conventional machine learning algorithms with those of the
proposed algorithm.

2. Materials and Methods

2.1. Data Acquisition

2.1.1. Participants

Twelve healthy subjects (six females, six males) voluntarily participated in the study. The average
age of the subjects was 27.5 years (standard deviation (SD): ±3.18). None of the subjects had any
experience with the VR equipment. In addition, they had not taken any medicine, etc. that could affect
the result of this study. Before participating in the experiment, the subjects were fully aware of the
purpose and procedure of our research. This study was approved by the Institutional Review Board of
the Gwangju Institute of Science and Technology (GIST).

2.1.2. Stress-Inducing Task in VR Environments

The participants performed a stress-inducing task with a cognitive load: arithmetic subtraction.
The task proceeded in configurable VR environments using the commercial Gear VR device (Samsung
Electronics, Inc., Suwon, Korea). Our task was composed of five sessions, including three with different
levels of stress: mild stress (MIS-S), moderate stress (MOS-S), and severe stress (SES-S). The other two
sessions were the baseline session (BA-S) and the recovery session (RE-S).

To acquire suitable VR videos, we investigated the YouTube website (https//www.youtube.com)
and initially selected nine VR videos. Then, 22 people (who did not participate in the main experiment)
scored the nine VR videos to assess how much stress they triggered; finally, three VR videos were
selected. According to the scores, we assigned the three videos to the mild, moderate, and severe
stress-inducing sessions.

During the MIS-S, we provided a relatively static VR environment, consisting of a monotonous
landscape with the sound of waves on the beach. At the same time, the subject subtracted double-digit
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numbers from four-digit numbers (e.g., 1000 − 17). In the MOS-S, we provided a relatively dynamic
VR environment consisting of a car-racing situation on a rainy day, while similar arithmetic tasks
were performed at the same time. Lastly, the SES-S was composed of VR stimuli that could induce a
sensation of fear: a dark, dingy room where a guard on patrol appears while a frightening background
sound is heard. Again, similar arithmetic tasks were conducted simultaneously. To avoid the familiarity
of arithmetic calculation in each stress-inducing session, we randomly changed the numbers in each
session [3].

After the experiment, we conducted two questionnaire surveys to evaluate how much stress was
induced: the state-trait anxiety inventory (STAI) Y-1 and the visual analogue scale (VAS). The STAI
Y-1 questionnaire consists of 20 questions and is often used to assess anxiety states [29]. The VAS is
a subjective assessment of a stress-inducing task and is scored from 0 (lowest stress) to 10 (highest
stress). Each subject filled out a questionnaire for each stress-inducing session [30].

2.1.3. Experimental Procedure

We performed a stress-inducing experiment with five sessions: BA-S, MIS-S, MOS-S, SES-S,
and RE-S. In BA-S and RE-S, a black cross mark was displayed on a white background on the monitor.
The difference between BA-S and RE-S is their order during the experiment. The flow of our experiment
is shown in Figure 1. The length of each session is four minutes. Whenever each session finished,
the subject rested for 10 min to reduce the effect of the previous session. All experiments were
performed while the subjects were seated in a comfortable chair.
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Figure 1. Total experiment flow: (a) Cross mark in the baseline session; (b) mild-stress session with
beach scenery; (c) moderate-stress session with a car-racing situation; (d) severe-stress session with a
dark, dingy room; (e) cross mark in the recovery session.

Three physiological signals were measured from each subject during the experiment:
a photoplethysmogram (PPG), electrodermal activity (EDA), and skin temperature (SKT).
The physiological signals were obtained using the Biopac PPG100C, Biopac EDA100C, and UIM100C
systems (Biopac System, Inc., Goleta, CA, USA). The PPG sensor was attached to the index finger,
EDA sensors were attached to the middle and ring fingers, and the SKT sensor was attached to the
thumb of the non-dominant hand. Each physiological signal was sampled at 400 Hz according to
the manufacturer’s instructions, using the Biopac Acknowledge 4.2.0 software (Biopac System, Inc.).
Figure 1 shows the overall experimental procedures.

2.2. Feature Preparation

2.2.1. Heart-Rate Variability (HRV)

An HRV analysis was performed using the PPG signal of each subject. We assumed that the
frequency range of the motion artifact was less than 0.1 Hz, the frequency range of the respiration
was 0.15 Hz to 0.4 Hz, and the frequency range of the heartbeat was around 1 Hz [16]. Therefore,
we applied a band-pass filter (0.5 Hz to 4 Hz) to remove unnecessary signals and enhance the heartbeat.



Sensors 2017, 17, 2435 5 of 18

After that, a peak-detection algorithm [31] was used to calculate the intervals between the PPG
peaks. The difference in the detected peaks is referred to as the normal-to-normal (NN) interval and
indicates heartbeat fluctuation [16,32,33]. We divided the HRV features into three parts: time-domain,
frequency-domain, and nonlinear measures. The time-domain measures quantify changes in the NN
interval through statistical methods and can indicate the overall change of the heartbeat in the time
domain. Time-domain features were composed of HRavg, NNavg, SDNN, SDSD, RMSSD, pNN20,
and pNN50, defined in Table 1.

Table 1. All features calculated from measured physiological signals (PPG, EDA and SKT).

Measure Description Section

PPG

HRavg Average heart rate

Time-domain measures

NNavg Average NN intervals

SDNN Standard deviation of NN intervals

SDSD Standard deviation of difference between adjacent NN intervals

RMSSD Square root of the mean of the sum of the squares of the difference between
adjacent NN intervals

pNN20 (Number of pairs of adjacent NN intervals differing by more than 20
ms)/(total number of NN intervals)

pNN50 (Number of pairs of adjacent NN intervals differing by more than 50
ms)/(total number of NN intervals)

LFnormal Average of normalized low-frequency component (0.04–0.15 Hz) power
Frequency-domain

measures
HFnormal Average of normalized high-frequency component (0.15–0.4 Hz) power

LF/HF Ratio between averages of low-frequency and high-frequency powers

ApEn (2, 0.2) Approximate entropy of NN intervals (m = 2 r = 0.2 × SDNN)

Nonlinear measures

SampEn (2, 0.2) Sample entropy of NN intervals (m = 2 r = 0.2 × SDNN)

SD1 Standard deviation of data perpendicular to the axis of line-of-identity in
Poincaré plot

SD2 Standard deviation of data along the axis of line-of-identity in Poincaré plot

SD1/SD2 Ratio between SD1 and SD2

EDA

SCavg Average of total skin conductance (SC) signal SC measure

SCLavg Average of total SC level (SCL) signal
SCL measures

SCLslope Difference between maximum SCL and minimum SCL

SCRavg Average of total SC response (SCR) signal

SCR measuresSCRmax Maximum SCR signal

SCRpeak Number of peaks in the SCR signal

SKT

SKTavg Average of total SKT signal

SKT measuresSKTslope Difference between maximum SKT and minimum SKT

SKTstd Standard deviation of total SKT signal

Frequency-domain measures can be obtained from the power spectrum calculated from the
NN tachogram. The NN tachogram can be obtained by interpolating the unevenly sampled NN
intervals [17]. The power-spectrum density (PSD) of the NN tachogram was made using autoregressive
(AR) spectrum modeling in this study [34]. Eventually, the low-frequency (LF) and high-frequency
(HF) powers can be obtained by calculating the area under the curve from 0.04 to 0.15 Hz and from
0.15 to 0.4 Hz, respectively. Frequency-domain features consisted of LFnormal, HFnormal, and LF/HF,
as exhibited in Table 1.

Lastly, nonlinear measures are as follows: approximate entropy (ApEn) [35], sample entropy
(SampEn) [36], SD1, SD2, and SD1/SD2 [37]. ApEn can indicate the irregularity or complexity of the
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NN interval, and depends on the embedded dimension of vector m and threshold r. SampEn is an
algorithm compensating for the disadvantages of ApEn. Because ApEn inherently contains a bias with
regard to regularity, the regularity will be proportionated to the number of self-matches.

However, since SampEn does not include a self-match process, it is relatively trouble-free and
stable. Therefore, the result of SampEn analysis is much more robust than the result of ApEn
analysis [35]. Poincaré analysis is used to quantify self-similarity and evaluate the dynamics of
a system—a Poincaré plot is a graph in which each NN interval is plotted against the next NN
interval; a detailed calculation process was indicated in [37]. SD1 is the standard deviation of the
data perpendicular to the axis of line-of-identity. SD2 is the standard deviation of the data along the
axis of line-of-identity. Figure 2 shows the overall HRV analysis methods. All indicators of HRV was
calculated by our own analysis system written in MATLAB.
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2.2.2. Skin Conductance (SC)

The SC signal indicates the electrodermal activity (EDA) measured by a non-invasive electrode
on the skin. The SC signal consists of two types of signals: slow-varying tonic activity and fast-varying
phasic activity.

They are called skin-conductance level (SCL) and skin-conductance response (SCR), respectively.
SCL is a baseline level; it changes in the absence of any environmental events. On the other hand,
SCR changes when environmental events occur. Furthermore, it is also known that changes in SCR
are associated with activity of the sudomotor nerves related to the sweat glands [18]. In this context,
we applied the decomposition algorithm, which is a deconvolution algorithm [38], to divide the SC
signal into SCL and SCR. Several features are related to the SC, and we utilized the following features in
our analysis: SCavg, SCLavg, SCLslope, SCRmax, and SCRpeak (Table 1). The decomposition procedure
was performed using the Ledalab 3.4.9 toolbox written in MATLAB [39]. Figure 3 shows a simple
flowchart of SC decomposition.
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2.2.3. Skin Temperature (SKT)

It is known that continuous stress can trigger an increase in body temperature by affecting
the ANS [18]. Furthermore, the activity of sympathetic nerves improves exercise performance and
increases the body temperature [40]. We selected SKT features, e.g., SKTavg, SKTslope, and SKTstd as
shown in Table 1.

2.3. Kernel-Based Extreme-Learning Machine (K-ELM)

In general, the weights and hidden-layer biases of traditional neural networks can be obtained
using an optimization process based on iterative processes to find optimal parameters [27]. Obtaining
appropriate parameters during the training period takes a long time because of the iterative process.
However, an extreme-learning machine (ELM), based on single-hidden- layer feedforward neural
networks (SLFNs), randomly generates the input weights and hidden-layer biases [28]. Therefore,
the computation time for the training period is extremely fast and the classification accuracy is
also improved.

Assuming that M class numbers, N arbitrary distinct input samples{
(xi, ti)

∣∣xi ∈ RN , ti ∈ RD, i = 1, . . . , N
}

, and the number of hidden nodes L are given, the standard
SLFNs is mathematically described as follows:

L

∑
j=1

β j
Thj(xi) = h(xi)B = ti

T(i = 1, . . . N), β j ∈ RM (1)

where B = [β1, β2 . . . βL]
T ∈ RL×M is the weight matrix connecting the output node and the ith

hidden node. The hidden-layer output row vector is h(xi) = [h1(xi), h2(xi), . . . , hL(xi)] ∈ RL with
respect to the input vector x, and the superscript T denotes the transpose operator. One of typical
hidden-layer component hj(xi) is described as follow:

hj(xi) =
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(
wj
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min
B∈RL×M

||HB− T||2 (3)

where:

H =

 h(x1)
...

h(xN)

 =

 h1(x1) · · · hL(x1)
...

. . .
...

h1(xN) · · · hL(xN)


N×L

and T =

 t1
T

...
tN

T


N×M

. (4)

H is the hidden-layer output matrix with respect to input data xi (i = 1, . . . , N) and T is the target
value matrix with the number of classes M. To obtain the weight-matrix estimate B̂ with the minimum
training error, the minimum-norm least-squares (MNLS) method was used. The solution is described
as follows:

B̂ =
(

HTH
)−1

HTT = HT
(

HHT
)−1

T = H†T, (5)

where H† is the Moore-Penrose generalized inverse of matrix H. There are many methods to calculate
H†, e.g., the iterative method, orthogonal projection method, and singular value decomposition [40].
In this study, we used the ridge regression theory, adding a regularization coefficient C to the diagonal
of HTH (or HHT). It tends to have better generalization performance and stability. For solving the
problem, the optimal solution in (3) can be changed as follow:

min
B∈RL×M

C
2
||HB− T||2 + 1

2
||B||2. (6)

Eventually, the estimated weighted matrix B̂ can be calculated as follow:

B̂ = HT(
1
C

I + HHT)−1T, (7)

where I is the identity matrix. The solution of the output function fL(x) for x can be obtained as follows:

fL(x) = h(x)HT
(

1
C

I + HHT
)−1

T. (8)

Given that hidden-layer vector h(x) is unknown, the kernel matrix of the ELM based on Mercer’s
condition is described as follows:

Ω = HHT : Ωij = h(xi) · h
(
xj
)
= k

(
xi, xj

)
. (9)

where a dot (·) denotes the inner product. Lastly, the output function of K-ELM is represented
as follows:

fL(x) = [k(x, x1), . . . , k(x, xN)]

(
1
C

I + Ω

)−1
T. (10)

In this paper, we used the radial basis function (RBF) kernel (k(x, x′) = exp (−γ||x− x′||2)).

2.4. Cross-Validation

We acquired three physiological signals (PPG, EDA, and SKT) from the participants in each session.
Before applying the preprocessing methods, we eliminated the first 35-s period of the measured
signal to exclude unstable signals. We divided the processed signals into 6-s intervals (epochs),
so that the total number of epochs in the mental tasks was 170 (34 epochs × 5 sessions) per subject.
Then, the features in Table 1 were utilized as the input data of K-ELM. To evaluate the classifier,
we conducted a leave-one-out cross-validation (LOOCV) with one observation as test data and the
remaining observations as a training data set. In other words, 170 (34 epochs × 5 sessions) procedures
were repeated by changing the training data set and the test data for each subject.
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2.5. Statistical Test

We performed a one-way analysis of variance (ANOVA) with Tukey’s HSD (honestly significant
difference) test and post hoc test to compare the features of physiological signals measured in each
stress sessions (MIS-S, MOS-S and SES-S). In general, one-way ANOVA is a statistical tool to analyze
whether mean differences between three or more independent groups are statistically significant or
not. In this study, since features of three groups were calculated from physiological signals measured
in three independent stress experiments, the groups can be independent each other. Furthermore,
F-value of one-way ANOVA can be calculated by dividing the difference of groups into difference
within groups. Therefore, the large F-value can indicate that the groups can be well distinguished.
In the opposite case, the distinction between groups is ambiguous.

Tukey’s HSD is an approach dealing with the multiple comparison problem. Although the results
of one-way ANOVA are statistically significant (p < 0.05), it is difficult to select the accurate hypothesis
due to multiple comparison problem. Therefore, post hoc test step is essential. In general, Tukey’s
HSD is only applicable for pairwise comparison and the number of observation should be same.

3. Evaluation

In this section, we exhibit the results of our experiments including the classification performance.
Firstly, we show the questionnaire scores related to each session. Secondly, we exhibit not only the
performance of the proposed classifier but also the effect of each feature type. Lastly, we show the
results of self-organizing mapping (SOM), which is unsupervised learning that imitates visual cortex
neurons. Using this mapping, we can see the clusters of artificial neurons, which can identify the
relationships among the input data [41].

3.1. Correlations between Stress Levels and VR Videos

Table 2 represents the questionnaire scores for the three stress-inducing sessions. The highest STAI
Y-1 questionnaire score is 80. For VAS, the highest score is 10. In both scales, the higher score is related
to a more stressful state for the subject. Therefore, the STAI Y-1 and VAS scores in each session were
associated with the stress levels that the subtraction task with VR environments was trying to induce.

Table 2. Questionnaire score for three different mental tasks.

Subject Age Sex
MIS-S MOS-S SES-S

STAI VAS STAI VAS STAI VAS

BJY 32 M 34 2 48 4 58 10
KKH 25 M 25 2 60 6 67 8
NES 25 F 25 2 48 6 65 10
KSH 28 M 28 2 64 8 71 6
LJK 30 M 30 2 52 4 68 6
LSW 25 F 25 2 68 8 71 6
KHJ 24 F 24 2 72 8 72 10
SHL 31 M 31 2 53 6 71 10

KMH 25 F 25 2 71 6 69 6
JHR 33 F 33 2 40 4 60 6
JHM 26 F 26 2 57 6 67 8
JSH 26 M 26 2 54 6 74 8
Avg 27.5 27.7 2.1 57.3 5.8 67.8 8

3.2. Classification Performance

We implemented the K-ELM classifier with four different conditions: HRV + K-ELM, SC + K-ELM,
SKT + K-ELM, and integrated features (IT) + K-ELM. IT combines the HRV, SC, and SKT features,
as shown in Table 1. That is, four classification types were performed.
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It should be noted that the classification performance depends on the selected parameters.
In particular, the K-ELM performance was associated with the regularization coefficient (C) and
the kernel size (γ) of the RBF kernel in (8) [42]. In this study, we set the regularization coefficient
C = {10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104, 105, 106} and kernel size
γ = {10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104, 105, 106} to analyze the effects
of the parameters.

Figure 4 indicates the mean accuracies according to the various regularization coefficients C
and kernel sizes γ. The K-ELM parameters (C and γ) showing the maximum accuracy could be
considered as the optimal parameters for classifying the stress levels. As shown in Figure 4, the optimal
parameter values varied according to the types of features. The results showed that the optimal
parameters (C, γ) were (102, 10−3), (103, 10), (104, 10), and (107, 10−1) in HRV + K-ELM, SC + K-ELM,
SKT + K-ELM, and IT + K-ELM, respectively. Using these optimal parameters, we conducted the
stress-level classification. Tables 3–6 describe the averaged classification results for each classifier
condition (HRV + K-ELM, SC + K-ELM, SKT + K-ELM, and IT + K-ELM).Sensors 2017, 17, 2435  10 of 17 

 

 

Figure 4. Variation of averaged accuracy with respect to the regularization coefficient and kernel size: 
(a) HRV + K-ELM; (b) SC + K-ELM; (c) SKT + K-ELM; and (d) IT + K-ELM. 

Table 3. Classification rates of K-ELM with HRV features (HRV + K-ELM). 

 BA-S MIS-S MOS-S SES-S RE-S 

BA-S 97.55% 0.74% 0.49%  0.98% 0.25% 
MIS-S 0.00% 92.40% 3.43%  2.70% 1.47% 
MOS-S 0.00% 3.19% 91.67% 3.43% 1.72% 
SES-S 0.25% 1.72% 4.17%  91.42% 2.45% 
RE-S 1.23% 2.21% 3.19%  3.68% 89.71% 

Table 4. Classification rates of K-ELM with SC features (SC + K-ELM). 

 BA-S MIS-S MOS-S SES-S RE-S 

BA-S 96.32% 1.23% 0.74%  1.23% 0.49% 
MIS-S 1.72% 93.63% 2.70%  1.96% 0.00% 
MOS-S 0.25% 2.45% 94.12% 2.45% 0.74% 
SES-S 0.98% 1.47% 3.68%  90.93% 2.94% 
RE-S 0.25% 0.00% 1.47%  2.94% 95.34% 

Table 5. Classification rates of K-ELM with SKT features (SKT + K-ELM). 

 BA-S MIS-S MOS-S SES-S RE-S 

BA-S 83.09% 7.11% 1.96%  2.70% 5.15% 
MIS-S 4.66% 74.51% 12.50% 5.39% 2.94% 
MOS-S 2.70% 9.31% 72.06% 10.05% 5.88% 
SES-S 1.72% 5.15% 12.25% 73.77% 7.11% 
RE-S 4.66% 3.92% 3.68%  4.41% 83.33% 

  

Figure 4. Variation of averaged accuracy with respect to the regularization coefficient and kernel size:
(a) HRV + K-ELM; (b) SC + K-ELM; (c) SKT + K-ELM; and (d) IT + K-ELM.

Table 3. Classification rates of K-ELM with HRV features (HRV + K-ELM).

BA-S MIS-S MOS-S SES-S RE-S

BA-S 97.55% 0.74% 0.49% 0.98% 0.25%
MIS-S 0.00% 92.40% 3.43% 2.70% 1.47%
MOS-S 0.00% 3.19% 91.67% 3.43% 1.72%
SES-S 0.25% 1.72% 4.17% 91.42% 2.45%
RE-S 1.23% 2.21% 3.19% 3.68% 89.71%
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Table 4. Classification rates of K-ELM with SC features (SC + K-ELM).

BA-S MIS-S MOS-S SES-S RE-S

BA-S 96.32% 1.23% 0.74% 1.23% 0.49%
MIS-S 1.72% 93.63% 2.70% 1.96% 0.00%
MOS-S 0.25% 2.45% 94.12% 2.45% 0.74%
SES-S 0.98% 1.47% 3.68% 90.93% 2.94%
RE-S 0.25% 0.00% 1.47% 2.94% 95.34%

Table 5. Classification rates of K-ELM with SKT features (SKT + K-ELM).

BA-S MIS-S MOS-S SES-S RE-S

BA-S 83.09% 7.11% 1.96% 2.70% 5.15%
MIS-S 4.66% 74.51% 12.50% 5.39% 2.94%
MOS-S 2.70% 9.31% 72.06% 10.05% 5.88%
SES-S 1.72% 5.15% 12.25% 73.77% 7.11%
RE-S 4.66% 3.92% 3.68% 4.41% 83.33%

Table 6. Classification rates of K-ELM with integrated features (IT + K-ELM).

BA-S MIS-S MOS-S SES-S RE-S

BA-S 98.53% 0.98% 0.00% 0.25% 0.25%
MIS-S 0.00% 95.34% 1.72% 1.47% 1.47%
MOS-S 0.00% 2.45% 95.10% 2.21% 0.25%
SES-S 0.00% 0.98% 3.43% 93.38% 2.21%
RE-S 0.25% 1.72% 1.23% 2.70% 94.12%

Consequently, the classification accuracies of IT + K-ELM (Table 6) were generally higher than
the other classification results. Considering that we utilized the same conditions except for the
task-sequence order, it should be noted that we acquired high classification accuracies in both BA-S
and RE-S (Tables 3–6).

To compare the classification performances of the proposed algorithm to the those of other
algorithms, we implemented linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), multi-class support vector machine (mSVM), kernel-based multi-class support vector machine
(K-mSVM) and extreme learning machine (ELM) [27,28,42]. Especially, implemented classification
algorithms have been widely used to classify the biological information in many research fields [24,26].
However, although the deep learning algorithms (e.g., deep believe network (DBN), convolution
neural network (CNN), multilayer perceptron (MLP), etc.) have excellent classification performance,
we excluded them. Since conventional deep learning algorithms require heavy computation, they are
difficult to be implemented in a limited environment such as microprocessor. Figure 5 describes the
computation time, ratio of memory usage and error rate of each implemented classifier. Integrated
feature (IT) was used for the input data and values of Figure 6 were obtained by averaging results of
total 12 subjects. Especially, results of Figure 6b was calculated by dividing each memory usage of
implemented classifier by memory usage of proposed algorithm (IT + K-ELM). It is because that the
absolute value of memory usage depends on the computer performance. All processes were performed
within the MATLAB environment with same condition.
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Figure 5. Evaluation of the proposed algorithm in comparison with results of other algorithm such as
IT + LDA, IT + QDA, IT + mSVM, IT + K-mSVM and IT + ELM. (a) computation time; (b) memory
usage ratio; (c) error rate. The red boundaries in each bar graph indicates the results of the proposed
algorithm (IT + K-ELM).

3.3. Self-Organizing Map (SOM) Analysis

To investigate the organic relationships between the features calculated from the physiological
signals, we applied a self-organizing map (SOM) analysis, which is unsupervised learning, to produce
a two-dimensional map consisting of artificial neurons. In SOM analysis, the artificial neurons compete
amongst themselves. The winning neurons can be determined by the results of the competition. We call
these winning neurons SOM output neurons. These output neurons form the clusters in the map,
and each cluster represents a common input pattern [43].

In this study, we trained the SOM using 2040 epochs (12 subjects × 170 epochs) from all subjects.
Since the SOM input features are generated from all subjects, the clusters consisting of artificial neurons
represent common input-feature patterns, contributing to the stress-level classification. Therefore,
to evaluate the contributions of each feature, we made four different SOMs by changing the input
features, e.g., HRV, SC, SKT, and IT.
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by the completive learning process. (a)-i, (b)-i, (c)-i, and (d)-i represent the neuron map trained by SOM.
(a)-ii, (b)-ii, (c)-ii and (d)-ii represent the clustered neuron map made by the k-means clustering method
(k = 5) using neuron maps. (a) HRV features; (b) SC features; (c) SKT features; and (d) IT features.
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Figure 6(a-i,b-i,c-i,d-i) shows the SOM results for each feature type: ((a) HRV, (b) SC, (c) SKT,
and (d) IT). The blue regions represent that the adjacent neurons are nearby. The red regions indicate
that the adjacent neurons are distant. Furthermore, to investigate whether trained neurons will build
clusters or not, we applied the k-means clustering method, which classifies a given data set using a
fixed number of clusters.

The results of the k-means clustering (k = 5) are described in Figure 6(a-ii,b-ii,c-ii,d-ii). It shows
that the clustered neuron map derived by HRV features (Figure 6(a-ii)) is similar to the clustered neuron
map derived by integrated features (Figure 6(d-ii)), while the other SOM results show different patterns
(Figure 6(b-ii,c-ii)). In addition, it should be noted that the SOM results of HRV or integrated features
(IT) show well-distributed clusters, whereas the other SOM results exhibit more irregular patterns.

3.4. Statistical Results

According to statistical test, seven features such as HRavg, NNavg, pNN50, SCLavg, SCRmax and
SKTavg were significantly different from each other (p-value < 0.05). In particular, there were features
that showed statistically significant differences in all three different signals: PPG (HRavg, NNavg and
pNN50), EDA (SCLavg and SCRmax) and SKT (SKTavg). Considering we acquired great accuracy in most
classification, it may imply that measured three physiological signals in the stress situation sufficiently
reflect the stress state. Furthermore, it could be a possible reason why the proposed method (IT + K-ELM)
had high classification results in Table 6. The averages of F-values for remaining features which were not
significantly different were 10.55 (PPG), 0.77 (EDA) and 2.85 (SKT), respectively. Additionally, the averages
of p-values were lower than 0.19 (PPG), 0.47 (EDA) and 0.49 (SKT), respectively.

4. Discussion

As indicated in Figure 1, we conducted a stress-inducing experiment while simultaneously
measuring several physiological signals (photoplethysmogram (PPG), electrodermal activity (EDA),
and skin temperature (SKT)). Physiological signals are regulated by the autonomic nervous system
(ANS), and physical or mental stress affects the activity of the ANS [3,37]. In addition, there is
evidence that the characteristics of the physiological signal measured before the stress task differ
from that measured after the stress task [13]. Therefore, we can expect that the stress states including
two resting conditions could be well-discriminated by using the physiological signals. Accordingly,
we implemented an automatic classification method to classify the stress levels. The overall feature
preparation and classification processes are described in Figure 7.
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To evaluate the proposed method combining kernel-based extreme learning machine (K-ELM)
with various features, we followed these three steps.

Firstly, we collected data related to the subjective stress levels from the subjects (STAI Y-1 and
VAS). From the results, we confirmed that the subjective stress levels were correlated with the intended
stress levels in our task. For instance, most of the subjects produced low scores on MIS-S and high
scores on SES-S. In other words, our VR experiment could trigger the intended stress levels, and the
physiological signals were measured under the intended stress conditions. Furthermore, we performed
one-way ANOVA followed by the Tukey’s HSD and post-hoc comparisons to evaluate the difference
of STAI-Y1 and VAS scores from three stress stimulation. As a result, the effects of three stress
stimulation are significantly different in the STAI-Y1 (F-value: 172.29, p < 0.01) and VAS (F-value:
274.06, p < 0.01), respectively.

Next, we evaluated the classification accuracies of K-ELM while changing the input features—HRV,
SC, SKT, and integrated feature (IT). In general, the performance of the conventional machine-learning
algorithm was governed by the corresponding parameters [27]. Since the K-ELM performance also
depends on the parameters (kernel size
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Figure 4 shows that the optimal parameters differ depending on the type of input feature. In other
words, different parameters must be used to accurately evaluate the performances in each classification.
Tables 3–6 describe the averaged classification accuracies in HRV + K-ELM, SC + K-ELM, SKT + K-ELM,
and IT + K-ELM, respectively. Except for SKT + K-ELM, the averaged classification rates of each
classifier were more than 90%. In particular, the averaged classification rates of IT + K-ELM were the
best (more than 95%). However, the averaged classification rates of SKT + K-ELM were approximately
77%. This implies that HRV or SC could reflect the stress-related ANS changes while SKT was not
sufficiently able to show that. In fact, this result is consistent with previous studies [18,37].

It should be noted that the IT features showed the best results, which implies that the relationships
among the features are also important for classifying the stress levels. The low classification results of
the SKT feature might be because it is difficult to measure the core body temperature, which depends
on the ANS [20].

It is also noteworthy that we successfully discriminated two resting conditions, i.e., BA-S and RE-S,
even though we provided the same conditions except for the task sequences. There is evidence that it
takes some time for a physiological signal to return to its original state after a stressful condition [13].
Our results could be interpreted in line with this point of view. However, high classification rates
may be due to the sequence of experiments in this study. After each stress-inducing experiment,
all subject had approximately 10 min of rest, but the subjects may not have been completely free from
the effects of stress stimuli from previous session. This could be a limitation of our study. Therefore,
in order to identify only the effect of the intended stress stimuli, it is necessary to design the experiment
more elaborately, and we should use counterbalanced experiment order in future study. Furthermore,
the effect of the previous stimuli on the next session might be more noticeable when a participant
used a VR device for the first time. In general, unfamiliar VR environment may trigger nausea to
beginners as well. Although, all subjects are approximately 25 years of age and very healthy, it might
be difficult to exclude the unwanted additional stress factors. Therefore, it is possible that we have
induced broader concept of stress besides our intended stress.

Figure 5 shows that the proposed method (IT + K-ELM) has the most excellent classification
performance while using the minimum CPU resource allocation and memory usage during
computation. In particular, computation time in Figure 5a depends on the CPU resource allocation and
mathematical complexity. Among them, multi-class support vector machine (mSVM) and kernel-based
multi-class support vector machine (K-mSVM) had taken quite longer computation time compared to
other classifiers such as linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),
ELM and K-ELM. Basically, since the support vector machine (SVM) and kernel-based support vector
machine (K-SVM) are binary classifier, the optimized multi-class solution can be obtained by repeatedly
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calculating the binary classifier problems. For instance, to obtain the k multi-class solution, binary
classifiers should be calculated k(k − 1)/2 times [43]. Therefore, the mSVM and K-mSVM can use
many CPU resources due to iterative process. On the other hand, although computation times of
LDA and QDA are faster than mSVM and K-mSVM, the ratios of memory usage are higher than
mSVM, K-mSVM, ELM and K-ELM as in Figure 5b. Basically, to obtain the discriminant hyperplane,
the solutions of LDA and QDA are derived using the inverse matrix operations as well as eigenvalue
and eigenvector. In particular, this process requires many memory usages [44].

In addition, computation time of ELM is higher than that of K-ELM since the solution of ELM
requires the calculation of the hidden node output matrix H in (8). Therefore, whenever the number
of hidden node increases, the computation time also rises. Instead, K-ELM converts from HHT to
kernel matrix Ω in (10) and the kernel matrix Ω is determined by users. Thus, computation time of
K-ELM can be reduced compared to that of ELM. Figure 5c describes that the proposed method has
very small error rate despite low memory usage and short computation time. Taken together, our
proposed algorithm (IT + K-ELM) is suitable for microprocessors embedded in mobile system and
have excellent performance as well.

Finally, the organic relationships among the features were evaluated using self-organizing maps
(SOMs). The shapes and distributions of the clusters in Figure 6(a-ii,d-ii) look very similar. This
implies that the HRV was a dominant feature in the IT features, and other signals might have played
some supportive roles in our classifications. In particular, the clusters in Figure 6(d-ii) were relatively
well-organized into five clusters around the center of the map, in comparison with the clusters in
Figure 6(a-ii). On the other hand, the shapes of the clusters in Figure 6(b-ii,c-ii) were quite disorganized
and their positions were biased to one side. It implies that the SC and SKT features had an ambiguous
characteristic with respect to stress-level discrimination.

It is also noteworthy that the SOM results were calculated from all subject data without group
distinction. It implies that the clusters trained by the SOM algorithm exhibited characteristics reflecting
the common stress levels of all subjects, and uniformed clusters indicate that the input features
well represented the stress levels. According to our results, the SC and SKT features had high
person-to-person variability, so the classification accuracies might be lower when we used them
separately. When we integrated every feature, the classifier showed better performance, suggesting
that feature integration partially improved the accuracy.

Lastly, we performed the statistical tests such as one-way ANOVA and post hoc test for
investigating effects of each extracted feature in three stress sections (MIS-S, MOS-S and SES-S).
As a result, a few features extracted from each physiological signal were significantly different
(p-value < 0.05). There are features of PPG (HRavg, NNavg and pNN50), EDA (SCLavg and SCRmax)
and SKT (SKTavg). Especially, it is known that HRavg, NNavg and pNN50 can be changed whenever
physiological or psychological changes of human occur [37]. Besides, SCLavg and SCRmax are related
to the ANS activities and the changes in ANS are induced by psychological and physical stress [19].
In this experiment, since we restricted movements of the subjects, the changes in features were only
triggered by stress stimulation.

In statistical analysis, the averages of F-values, except for statistically significant features, were
10.55 (PPG), 0.77 (EDA) and 2.85 (SKT). Especially, the average of F-value in PPG was higher than
results of EDA and SKT. The higher F-value is, the more significant difference between the groups
is. Therefore, the features calculated by PPG have a close relationship with the stress state. As a
result, Figure 6a drawn by features of PPG was relatively well- organized into clusters compared to
Figure 6b,c which were described by EDA and SKT, respectively. Besides, classification rate in Table 3
was higher than those in Tables 4 and 5 since distinction of stress state was well expressed in features
of PPG.
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5. Conclusions

In this study, we designed a stress-inducing task using a VR device and developed a stress-level
classification method using K-ELM and various features. We found that the physiological signals
provided enough information about the stress level that we could classify the stress levels with over
95% accuracy. Our results showed the possibility of stress measurement using physiological signals.
If we can develop a wearable device, which can more conveniently measure the physiological signals,
we may utilize our proposed algorithm for stress monitoring in real-life situations as well.
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