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Abstract: In this paper, we present an interaction force estimation method that uses visual information
rather than that of a force sensor. Specifically, we propose a novel deep learning-based method
utilizing only sequential images for estimating the interaction force against a target object, where the
shape of the object is changed by an external force. The force applied to the target can be estimated
by means of the visual shape changes. However, the shape differences in the images are not very
clear. To address this problem, we formulate a recurrent neural network-based deep model with
fully-connected layers, which models complex temporal dynamics from the visual representations.
Extensive evaluations show that the proposed learning models successfully estimate the interaction
forces using only the corresponding sequential images, in particular in the case of three objects made
of different materials, a sponge, a PET bottle, a human arm, and a tube. The forces predicted by the
proposed method are very similar to those measured by force sensors.
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1. Introduction

Human sensations during interaction with the physical world through tools or the skin are rich
and varied. A person feels physical properties, such as strength, force, texture, and temperature, when
holding objects in their hand or pressing them. This information is used when a person handles,
grasps, and picks up various types of objects. For example, when picking up a variety of rigid
objects, such as paper cups or glass cups, a person recognizes the physical properties of the object and
handles the object according to that information. Another example is that surgeons feel the interaction
force when they palpate organs during medical examinations, and pull thread using forceps during
endoscopic surgery.

Recently, with the development of the robot industry, it has become important to use this
information to help robots interact with the physical environment by sensing the properties of objects
during their interaction. Service robots located in a human environment should be able to perform
dexterous manipulation tasks in various conditions. Several studies have shown the interaction
between a robot and its physical environment by sensing the physical properties, such as force [1–3],
texture [4–6], and object shape [7], using various sensors. In particular, the main physical property that
a robot grasping and interacting with objects needs to sense is the interaction force. For measuring
this interaction force during the robot’s interaction with the environment, a tactile sensor [8,9] is used
to sense a small force, such as a human skin sensation, and a force/torque sensor [10,11] to sense
a larger force, such as a human kinesthetic force. Operations involving picking up an object by hand
require a richer tactile and kinesthetic sense than that which the current systems provide in order to
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achieve human-level performance [12]. Furthermore, the physical sensors developed thus far have
limitations in terms of their implementation, such as high cost or difficulty in attaching them to a real
physical robot and other systems. In the case of a surgical robot, to measure the interaction force of
forceps, various types of sensor, such as capacitive [13], piezoresistive [14], optoelectric [15,16], and
strain gauge sensors [17], are used. However, a commercially available surgical robot is controlled
remotely without haptic feedback, because it is difficult to attach a force measurement sensor to the
forceps due to limited space, safe packaging, warm gas sterilization, and error-inducing EMI from
electrocautery. Therefore, surgeons estimate the interaction force through a monitor when using this
type of robot.

To reduce these constraints, many studies have been conducted on sensing interaction force
without using a force/torque or tactile sensor. Geravand et al. [18] proposed a signal-based approach
to whole body collision detection, robot reaction, and human-robot collaboration that is applied in
the case of industrial manipulators with a closed control architecture by using the motor position,
velocity, and motor currents, and without the use of additional sensors. Mattioli and Vendittelli [19]
suggested a method for reconstructing interaction forces and localizing the contact point for humanoids
under a static hypothesis based on the joint torque. Li and Hannaford [20] suggested a method for
sensorless gripping force estimation of forceps with an encoder and joint torque sensing, based on the
characteristics of elongated cable-driven surgical instruments.

Recently, an interaction force estimation technique without a force sensor was developed based
on a depth camera or a camera and joint torque. Margrini et al. [21] developed a comprehensive
approach using an RGB-D camera and joint torque for detecting, estimating, and handling dynamic
force interactions that may occur at any point along the robot structure, to achieve an effective physical
human-robot collaboration. As the use of deep learning technology is widespread in various research
domains, it has been used to study the recognition of physical properties when a robot interacts with
a physical object. Aviles et al. [22,23] showed a method of applied force estimation that uses a stereo
camera in a surgical robotic system. A three-dimensional (3D) artificial heart surface is reconstructed
from the projections of homologue points on the left and right lattices defined for each stereo-pair
image, and supervised learning is applied to estimate the applied force and provide the surgeon with
a suitable representation of it. In addition to robotics research, image-related research studies have
also been conducted to predict interaction force through visual information. Zhu et al. [24] suggested
a method of inferring interaction forces between a human body and a real-world object from video
clips; however, they took into account physical quantities generated from 3D modeling. Pham et al. [25]
showed a method for estimating contact forces during hand-object interactions that relies solely on
visual input provided by images captured by a single RGB-D camera of a manipulated object with
known geometrical and physical properties. Fermuller et al. [26] predicted actions in dexterous hand
motions by using deep learning methods. Their method predicts different manipulation actions on the
same object, such as “squeezing”, “flipping”, etc., by analyzing images. They also predicted the forces
on the finger tips using the network. They predicted the force variations, but the absolute value of the
force was not successfully estimated.

The objective of this study was to investigate the possibility of sensing the interaction force using
a single camera, without using a physical tactile or force/torque sensor. A camera is a type of touchless
sensor. Thus, no abrasion issues caused by long-term usage are involved, as compared to touchable
sensors, e.g., tactile sensors. For this purpose, we propose that recurrent neural networks (RNNs)
with fully-connected (FC) units are applicable to visual time-series modeling for force estimation
and that learned temporal models can provide accurate force estimation by using sequential images,
without requiring the use of physical force sensors. Specifically, the proposed end-to-end deep
learning method allows the mapping of models from image pixels to an interaction force to be
learned using long short-term memory (LSTM) [27]. The main contribution of this paper is that
it presents the first investigation of the possibility that long-range learning deep models can infer
interaction forces from the data of a vision sensor without requiring the use of physical force sensors.
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Unlike previous studies [21–25], in our study we used only 2D sequential images, not 3D models, for
calculating the graphical models in order to measure the physical interactions between the objects.
However, the proposed method involves deeper neural networks for learning straightforwardly the
interaction forces between objects from 2D images. We performed comprehensive evaluations on
three different materials (a sponge, PET bottle, and a living organism, an arm) and, in addition, we
experimented with various condition changes of light and poses using a tube object, to demonstrate that
the proposed method is capable of estimating the precise interaction force from the visual information.

This rest of this paper is organized as follows: In Section 2, we describe the RNNs on which the
force estimation method is based. In Section 3, we describe the basic configuration of the proposed
model architecture. In Section 4, we describe the database collection method and the experimental
results, and present the discussion. We finally draw our conclusion and note the scope of further study
in Section 5.

2. Recurrent Neural Network: Long Short-Term Memory

The RNN was basically designed to process time-series data [28–30] in applications such as
speech and text recognition. For this purpose, it uses the internal memory to process arbitrary
sequences. The convolutional neural network (CNN) [31], however, has been studied for processing
fixed-size images and is a type of feed-forward neural network. Recently, the RNN has achieved
good performance in various sequential data-based applications, but the problem of the vanishing
and exploding gradient remains unresolved [32], which makes learning long-term dynamics difficult.
To overcome this problem, LSTM [27] was proposed, which incorporates memory units and gate
functions: a forget gate ft to control how much information from the past hidden state ht−1 is preserved,
an input gate it to control how much the current input xt updates the memory cell ct, an output gate ot

to control how much information of the memory is fed to the output, and an input modulation gate gt

to modulate the current input and the past hidden state before updating the memory cell. The memory
cell ct preserves the state captured by the load cell of a sequence and updates the current hidden state
unit with the output gate. The LSTM updates for the time step t given inputs, such as xt, ht−1, and
ct−1. The corresponding equations are:

it = σ(Wxixt + Whiht−1 + bi), (1)

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
, (2)

ot = σ(Wxoxt + Whoht−1 + bo), (3)

gt = tanh(Wxcxt + Whcht−1 + bc), (4)

ct = ft � ct−1 + it � gt, (5)

ht = ot � tanh(ct), (6)

where σ(x) = (1 + e−x)
−1 is the sigmoid activation, tanh(x) = ex−e−x

ex+e−x = 2σ(2x)− 1, and � denotes
element-wise multiplication. All the weights, W, and biases, b, of the network are learnt jointly on
training data. In this study, we aimed to investigate the possibility of predicting the interaction force
using only sequential images. We propose an LSTM-based deep learning architecture for this challenge.

3. Proposed Deep Learning Model Architecture

In this section, we propose a novel deep learning framework for estimating the interaction forces
using only sequential images. It should be noted that we do not use a physical force sensor and
additional depth sensors to collect additional measurements. The main learning task is the prediction
of a single static value, the interaction force, at a specific moment, from the sequential visual inputs.
The motivation to develop the proposed method is as follows. Humans, when in contact with an object,
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can infer how the forces applied to it interact with each other by observing the change in the shape of
the object. This is largely because they have already gained sufficient experience of interaction forces
during their life. From this viewpoint, we propose a vision-based interaction force estimator that uses
the deep learning method. The overall view of the proposed LSTM-based framework is shown in
Figure 1. It contains two parts: the LSTM part models the relationship between the image and the
interaction force using the total N sequential images and the FC layer part learns the processing model
from the LSTM output to obtain an accurate estimation of the interaction force in a straightforward
manner. The temporal aspect of the proposed method is important. In general, the situation of
loading and unloading have an effect on the relationship between contact forces and indentation.
This hysteresis damping generates different contact forces at the same deformation [33]. Due to the
hysteresis, the force is measured differently at the same deformation according to the loading and
unloading conditions.
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Figure 1. Architecture of the proposed long short-term memory (LSTM) model for estimating
interaction force using only sequential images. Two layer-based LSTMs are used for accurate sequential
learning and the N sequential outputs of the LSTMs are processed to estimate the interaction force
through two stacked fully connected layers.

To avoid the obstacles of background clutter simply, we crop only the center region from an input
image and normalize it to a fixed resolution image W × H, where W is the width and H is the height,
with a single gray channel. We directly convert the gray image into a visual input vector x ∈ <W×H

and the total N sequential normalized images are passed into an LSTM sequence learning module.
The proposed model stacks one more LSTM on another to gain more accurate results, because the
recent deep model for object recognition [34] suggests that deeper layers usually lead to more accurate
classification results. We apply a late-fusion method to merge the N step LSTM output for generating
the input of the FC layers. It should be noted that the proposed method predicts the final static output,
e.g., the interaction force value, with the sequential inputs. In this respect, to achieve better results, we
add up two FC layers with N LSTM outputs. The basic assumption of the proposed method is that, if
sufficient preceding input data exists, the most accurate result can be predicted using FC layers in the
final time step. In RNNs, arbitrary input and output sizes are commonly handled, but, in this method,
we take a fixed-size input for predicting the interaction force at the end of the network operation.
Our main task is not to process arbitrary sizes of inputs and outputs, but to predict a single value using
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the sequential inputs. In this case, we can easily train the network with fixed-size inputs, because we
can remove the uncertainty regarding the sizes of inputs and outputs in the training stage. We handle
the sequential inputs with LSTM modules. For the first N time steps, the LSTM processes the total N
inputs. Since FC layers need fixed-length input from LSTMs, until N time steps are executed, there are
no prediction results.

The predicted interaction force, y = flstm(x), x = {x1, x2, . . . , xN}, is computed by taking the
mean square error (MSE). The difference between the target and the estimated value is minimized
based on MSE criteria. It is represented as:

L(ỹ, y) =
1
N

N

∑
i=1

(ỹi − yi)
2 (7)

where ỹ and y are the predicted interaction force and the ground-truth, respectively.

4. Experimental Results and Discussion

In this section, we first describe the new database collected for the interaction force estimation
and the experimental settings for evaluating the proposed network architecture, and then we compare
the estimated results of the proposed method and the ground truth (GT) captured by the load cell
(model BCL-1L, CAS) for three different material-based objects: a sponge, PET bottle, and human arm.
We also present additional experiments conducted using a tube under the different conditions such as
illumination changes and posed load cell movements, to better analyze the proposed method.

4.1. Datasets and Implementation Details

Interaction force measurement instrument: To facilitate the proposed method, we constructed new
datasets by capturing sequential images using a 149 Hz camera (Cameleon3, CM3-U3-13Y3C-CS,
Pointgrey). At the same time as taking an image, we measured and recorded the interaction force in
each image using a load cell. As shown in Figure 2, in the experimental interaction force measurement
system a rod that interacts with the load cell allows the device to touch the interaction object. The load
cell is fixed to the translation stage, the movement of which is limited to the z-direction, to measure the
interaction force. The database was created by moving the translation stage to the arbitrary length of
motion in the experimental device shown in Figure 2 and recording the image and force at that time.
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Training, validation, and test protocols: To build the training and test protocols, we collected
approximately 6000 sequential images using an RGB camera and the corresponding interaction forces
captured by the load cell in the z direction. Example images, comprising 1280 × 1024 resolution-based
images with RGB color, are shown in Figure 3. We collected the images of objects constructed from three
different materials, a sponge, PET bottle, and human arm, for the training and test sets. One image set
consists of four contacts with the material; a total of 14 sets were collected for each material. To evaluate
the proposed method, we basically used the repeated random sub-sampling validation protocol [35]
with 14 image sets. An advantage of this method is that the proportion of training and test split is not
dependent on the number of the image sets. We wanted to secure a sufficient number of test images
(e.g., four sets with approximately 1900 images) for confirming the accuracy of the proposed method.
First, we randomly selected four sets as the test set from the 14 sets, and the other 10 sets were used
as the training set. We also split the training images into training and validation sets for avoiding
overfitting. Further, we randomly selected two sets from the 10 training sets as the validation set.
We used the validation set that the training algorithm does not observe and the test set is not used in
any way to make choices about the model and its hyperparameters. The validation set is only used for
guiding the selection of the hyperparameters [36]. After hyperparameter optimization is complete, the
generalization error could be estimated using the test set. Using this procedure, we have five different
training, validation, and test sets. The final test error is estimated by taking the average test error
across five trials using five different selected training, validation, and test sets. Table 1 describes the
image numbers for the three different material-based objects.
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Figure 3. Experimental conditions with the load cell at the z axis movable translation. Test objects are
(a) a sponge; (b) a PET bottle; and (c) a human arm.

Table 1. The collected sequential images in which each set consists of four touches with approximately
470 sequential images.

Sponge PET Bottle Human Arm

Total number of Image 6651 (14 sets) 6568 (14 sets) 6624 (14 sets)

Network implementation: Our implementation for estimating the interaction force is illustrated
in Figure 1. The network structure comprises two stacked LSTM layers and two dense FC layers.
From this network, we finally estimate the interaction force using mean square error (MSE) as the
network loss. The sequential input images are cropped and normalized from 1280 × 1024 pixel-based
images to 20 × 20 pixel-based gray images. Examples of the collected images are shown in Figure 4.
Histogram equalization is used as the preprocessing procedure for compensating the illumination
changes. The cropped input image is changed to a 400-dimensional input vector for the network.
For building the precise estimator, we use the 40 time step for the LSTM inputs. The number of the
weight parameters for the two stacked LSTMs are 10 and 5, respectively, and the two FC layers consist
of 10 and 10 weight parameters, respectively. Between the FC layers, there is a dropout unit, the value
of which is 90%. The basic architecture of the proposed method is summarized in Table 2. We initialize
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the weights randomly and train all network weights from scratch. We use an Adagrad optimizer
for fast calculation, and the models are trained with a mini-batch size of 100 on four TitanX GPUs.
The learning rate is 0.1 and the final models are trained for up to 2500 epochs.Sensors 2017, 17, 2455 7 of 15 
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Figure 4. One cycle of the cropped contact images. The first row shows images of the sponge, the second
row images of the PET bottle, and the final row images of the human arm.

Table 2. Network architecture of the proposed method.

Force Estimation Model

Layer Name Layer Description
Input Input 20 × 20 gray image

LSTM layer 1 Time step = 40, Input = 4000, Output = 10
LSTM layer 2 Time step = 40, Input = 10, Output = 5

Element-wise Mean -
FC layer 1 10-fully connected, ELU (α = 1.0)
Dropout Keep prop = 0.9

FC layer 2 10-fully connected, ELU (α = 1.0)
Linear Regression Mean Squared Error

4.2. Investigation of Different Material-Based Objects

In this section, we describe three different experiments conducted for validating that the proposed
method is effective. We trained the proposed RNN models independently using the target training set
and conducted a test with the corresponding test set.

4.2.1. Material 1: Sponge

We first evaluated the proposed network using the sponge dataset, because, as shown in Figure 4,
the shape changes of the sponge according to the force are more apparent than those of the other
materials. It should be noted that, since a sponge is highly elastic, it has the characteristic that
a relatively broad neighboring area is pushed down together with the point at which the force is applied.
As can be seen in the performance comparison in Table 3, the average MSE and peak signal-to-noise
(PSNR) range from 0.0021 to 0.0039 and from 24.32 dB to 26.86 dB, respectively. The average difference
between the estimated force and the ground-truth is small. A healthy person can easily sense the
changes in the force with the index finger when the interaction force changes by 10% as compared
to the previous one at a force range of 0.5–200 N [37,38]. For example, the start force against the
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index finger is 10 N and the difference is greater than 1 N at the subsequent time; the person can feel
the force change intuitively. This threshold is increased to 15–27% under a 0.5 N force perception.
Therefore, normally persons cannot recognize the difference between the interaction force estimated
by the proposed method and the real value captured by the load cell.

Figure 5 shows the detailed performance comparisons from the first test set to the final one.
In each test set, the maximum interaction forces have values varying from −1 N to −3.5 N.
However, the proposed method can successfully estimate the interaction forces using only images.
In summary, we conclude that the proposed deep learning network can estimate the interaction force
using as input the apparent change in the sequential images.
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Figure 5. An example of the four evaluations from (a–d) for sponge dataset. The red dotted lines and
the blue lines show the force estimated by the proposed method and the ground truth captured by the
load cell, respectively.

Table 3. Comparison of performances of the proposed method and the ground truth in the sponge
test dataset.

Test Set Average MSE Average PSNR (dB)

1 0.0021 26.86
2 0.0039 24.32
3 0.0030 25.76
4 0.0035 24.52

4.2.2. Material 2: PET Bottle

Next, we evaluated the proposed method using the PET bottle test set. Unlike the sponge, the
PET bottle is not flat, but it has a unique shape. As shown in Figure 4, the image changes of the PET
bottle due to the interaction force are quite different from those of the sponge. This is largely because
the PET bottle has various curvatures as compared with the sponge, which resembles a square box.
The performance difference between the materials, sponge and PET bottle, can be seen clearly in Table 4
as compared with Table 3. The average MSE and PSNR range from 0.018 to 0.042 and from 13.83 dB to
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17.56 dB, respectively, and these results are not good as compared with the results of the sponge test
sets. However, as shown in Figure 6, the proposed method accurately estimates the interaction force
using only images, except for the peak of the interaction force. It should be noted that the first two
maximum peaks in Figure 6d are not relatively accurately estimated. This is largely because the image
changes of the pressed object, i.e., the PET bottle, are not clearly visible as a result of self-occlusion.
However, in the other cases, the estimated forces are very similar to the ground-truth.
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Figure 6. An example of the four evaluations from (a–d) for the PET bottle dataset. The red dotted lines
and the blue lines show the force estimated by the proposed method and the ground truth captured by
the load cell, respectively.

Table 4. Comparison of the performances of the proposed method and the ground truth in the PET
bottle test dataset.

Test Set Average MSE Average PSNR (dB)

1 0.040 14.02
2 0.018 17.56
3 0.025 16.09
4 0.042 13.83

4.2.3. Material 3: Human Arm

This experiment was conducted to validate the proposed method using the human arm test
set in order to evaluate complex situations. As shown in Table 5, our proposed method shows
good performances in general for the human arm test set. For example, the average MSE and
PSNR values range from 0.007 to 0.014 and from 18.74 dB to 22.17 dB, respectively. Figure 7c
shows the best performances; all the forces are relatively well estimated by the proposed method.
However, Figure 7a,b,d show atypical patterns for the human arm as compared with the other materials.
This is largely because the human arm is a living tissue and the resilience of the arm can be changed by
the muscle. When we captured images for the database, the subject tried not to move the muscles, but
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it is not possible to keep the arm motionless, unlike general objects such as a sponge and PET bottle.
Therefore, there are some differences in the third touch in Figure 7a and the first touch in Figure 7b.Sensors 2017, 17, 2455 10 of 15 
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Figure 7. An example of the four evaluations from (a–d) for the human arm dataset. The red dotted
lines and the blue lines show the force estimated by the proposed method and the ground truth
captured by the load cell, respectively.

Table 5. Comparison of performances of the proposed method and the ground truth in the human arm
test dataset.

Test Set Average MSE Average PSNR (dB)

1 0.014 18.74
2 0.009 20.96
3 0.007 22.17
4 0.012 20.50

4.2.4. Discussion

Now we compare the characteristics of the three different materials in detail. First, Table 6 shows
the average MSE and PSNR across the three test materials. The best prediction accuracy is achieved
by the sponge material, because the appearance of the object is changed by the external force more
than that of the other materials and this is the key point for image-based interaction force estimation.
However, the experiments using the PET bottle show the lowest accuracy, because some self-occlusion
issues occurred. As shown in Figure 8b, the difference between the images when the maximum force or
the minimum force was applied is not significant. Figure 8a,b shows the image differences according
to the minimum and maximum forces. However, it should be noted that the average MSE for the PET
bottle is only 0.031 and this accuracy in the image-based interaction force estimation is not low as
compared with that of human force perception [37,38]. From these results, we can conclude that the
proposed method yields a good accuracy for predicting the interaction force using only images.
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taking sequential images with a tube under the various environment changes, such as varying 
illumination and the posed load cell (or a different poking angle). The number of images is described 
in Table 7, and example images are shown in Figure 10. The cropped images under the different 
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Figure 8. Example images when the minimum or maximum interaction force is applied. From left to
right, (a) sponge; (b) PET bottle; and (c) human arm images are shown.

Table 6. Comparison of average performances for the three materials.

Material Average MSE Average PSNR (dB)

Sponge 0.0032 25.37
PET bottle 0.031 15.37

Human arm 0.010 20.59

Figure 9 shows the differences in training loss in the training stages for the three different materials.
It should be noted that the loss in the PET bottle training does not easily drop off when learning the
network models as compared to that of the other objects. As from the results in Table 5, we can infer
from these results that training the model for the PET bottle is not easy; however, after 500 epochs,
the variance in the loss decreases rapidly.
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4.3. Investigation of Different Variations

In this section, we present an evaluation of the performance changes of the proposed method
according to the various external variations. For this experiment, we collected additional images using
a tube. Unlike the experiments previously described, the experiment protocol here involves taking
sequential images with a tube under the various environment changes, such as varying illumination
and the posed load cell (or a different poking angle). The number of images is described in Table 7,
and example images are shown in Figure 10. The cropped images under the different illumination
conditions are also shown in the second row of Figure 11. The last row of Figure 11 shows the
five-degree posed load cell used to apply a force on the material. In this evaluation protocol, we
train a deep learning model using a normal set, a light change set, and a pose change training set
(32 set = 8 set × 3 variation) simultaneously. We evaluate the performances of the proposed method by
using the test sets.
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Table 8 shows the accuracy of the proposed method according to the variations. In the case of
the normal condition, the average MSE is 0.015 and it is relatively similar to the result of the human
arm. However, the test results of the light and pose changes show average MSEs of 0.037 and 0.019,
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respectively. This result shows that the proposed method is robust to 5 degree pose variation but
it is relatively weak for the light changes. One reason for this result is that the ratio of the training
images, which is normal illumination, is larger than the light change training image, because the
light condition of the pose change set is identical to that of the normal condition. Moreover, when
the ceiling fluorescent lamp is turned off (e.g., light change set), the texture on the tube is not clearly
visible. It leads to relatively degraded performance, because the proposed method depends on the
visual information and produces the estimated results. However, note that the 0.037 average MSE is
not a poor result compared with the result of the PET bottle. Overall, we validate the performances of
the proposed method under the various conditions and conclude that the proposed method performs
reasonably well for the different variations, such as light and pose changes.

Table 7. The number of images collected from a tube material under the different conditions.

Normal Light Change Pose Change

Total number of Image 6086 (14 sets) 6085 (14 sets) 6096 (14 sets)

Table 8. Comparison of performances of the proposed method and the ground truth under the various
conditions such as light and pose changes.

Test Set
Normal Light Change Pose Change

Average
MSE

Average
PSNR (dB)

Average
MSE

Average
PSNR (dB)

Average
MSE

Average
PSNR (dB)

1 0.017 18.06 0.030 15.46 0.027 15.99
2 0.019 17.85 0.037 14.48 0.015 18.25
3 0.017 17.81 0.037 14.80 0.017 17.88
4 0.010 20.06 0.044 13.73 0.017 18.36

Average 0.015 18.44 0.037 14.62 0.019 17.62

5. Conclusions

In this paper, we proposed an interaction force estimation method that uses a vision sensor and
does not require a force sensor. We proposed a deep learning method based only on sequential images
for estimating the interaction force. We measured the force and recorded the images of three objects at
the time when the touch occurred, by using the device described in this paper and a load cell, which
moved only in the direction of pressing, where deformation occurs. We formulated an RNN-based deep
model with fully connected layers for applying the database that we created. Extensive evaluations
showed that the proposed learning models successfully estimate the interaction forces using only
the corresponding sequential images for four different deformable object materials, a sponge, a PET
bottle, an arm, and a tube. Our future plans include the development of a three-axis force estimation
model that does not require an additional force sensor, but rather uses a vision sensor attached to the
robot’s hand.
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