A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades
Abstract
:1. Introduction
2. Experiment
2.1. Introduction
2.2. Reported Failure Modes
3. Results
3.1. Data Pre-Processing
3.2. Unsupervised Pattern Recognition
3.2.1. K-Means Clustering
3.2.2. Feature Selection
3.2.3. Optimal Number of Clusters
3.2.4. Clustering Results
3.2.5. AE Source Classification
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Walford, C.A. Wind turbine reliability: Understanding and minimizing wind turbine operation and maintenance costs. Energy 2006. [Google Scholar] [CrossRef]
- Larsen, F.M.; Sorensen, T. New lightning qualification test procedure for large wind turbine blades. In Proceedings of the International Conference on Lightning and Static Electricity, Blackpool, UK, 16–19 September 2003. [Google Scholar]
- Jensen, F.M.; Puri, A.S.; Dear, J.P.; Branner, K.; Morris, A. Investigating the impact of non-linear geometrical effects on wind turbine blades-Part 1: Current status of design and test methods and future challenges in design optimization. Wind Energy 2011, 14, 239–254. [Google Scholar] [CrossRef]
- Woo, S.C.; Kim, T.W. High strain-rate failure in carbon/Kevlar hybrid woven composites via a novel SHPB-AE coupled test. Compos. Part B 2016, 97, 317–328. [Google Scholar] [CrossRef]
- De Rosa, I.M.; Santulli, C.; Sarasini, F. Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: A literature review. Compos. Part A 2009. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.; Kim, S. Interfacial properties and microfailure degradation mechanisms of bioabsorbable fibers/poly-l-lactide composites using micromechanical test and nondestructive acoustic emission. Compos. Sci. Technol. 2003, 63, 403–419. [Google Scholar] [CrossRef]
- Ni, Q.Q.; Iwamoto, M. Wavelet transform of acoustic emission signals in failure of model composites. Eng. Fract. Mech. 2002, 69, 717–728. [Google Scholar] [CrossRef]
- Gutkin, R.; Green, C.J.; Vangrattanachai, S.; Pinho, S.T.; Robinson, P.; Curtis, P.T. On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses. Mech. Syst. Signal Process. 2011, 25, 1393–1407. [Google Scholar] [CrossRef]
- Suziki, M.; Nakanishi, H.; Iwamoto, M.; Jinen, E. Application of static fracture mechanisms to fatigue fracture behaviour of class A-SMC composite. In Proceedings of the 4th Japan-US Conference on composite materials, Washington, DC, USA, 27–29 June 1988. [Google Scholar]
- Ramirez-Jimenez, C.R.; Papadakis, N.; Reynolds, N.; Gan, T.H.; Purnell, P.; Pharaoh, M. Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event. Compos. Sci. Technol. 2004, 64, 1819–1827. [Google Scholar] [CrossRef]
- Doan, D.D.; Ramasso, E.; Placet, V.; Zhang, S.; Boubakar, L.; Zerhouni, N. An unsupervised pattern recognition approach for AE data originating from fatigue tests on polymer-composite materials. Mechanical Syst. Signal Process. 2015, 64, 465–478. [Google Scholar] [CrossRef]
- Tang, J.; Soua, S.; Mares, C.; Gan, T.-H. An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades. Renew. Energy 2016, 99, 170–179. [Google Scholar] [CrossRef]
- Al-Khudairi, O.; Hadavinia, H.; Little, C.; Gillmore, G.; Greaves, P.; Dyer, K. Full-scale fatigue testing of a wind turbine blade in flapwise direction and examining the effect of crack propagation on the blade performance. Materials 2017, 10, 1152. [Google Scholar] [CrossRef] [PubMed]
- Arrigan, J.; Pakrashi, V.; Basu, B.; Nagarajaiah, S. Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers. Struct. Control Health Monit. 2011, 18, 840–851. [Google Scholar] [CrossRef]
- Vallen, H. AE testing fundamentals, equipment, applications. J. Non-destr. Test. 2002, 7, 1–30. [Google Scholar]
- The MathWorks, Inc. Statistics and Machine Learning Toolbox, R2017a, The MathWorks, Inc.: Natick, MA, USA, 2017.
- Li, L.; Lomov, S.V.; Yan, X.; Carvelli, V. Cluster analysis of acoustic emission signals for 2D and 3D woven glass/epoxy composites. Compos. Struct. 2014, 116, 286–299. [Google Scholar] [CrossRef]
- Crivelli, D.; Guagliano, M.; Monici, A. Development of an artificial neural network processing technique for the analysis of damage evolution in pultruded composites with acoustic emission. Compos. Part B 2014, 56, 948–959. [Google Scholar] [CrossRef]
- Desgraupes, B. Clustering Indices; University of Paris Ouest-Lab Modal’X: Paris, France, 2013. [Google Scholar]
Failure Modes | Frequency Range (kHz) | |||
---|---|---|---|---|
Glass/Polyester [9] | Glass/Polypropylene [10] | Carbon/Epoxy [7] | Carbon/Epoxy [8] | |
Matrix cracking | 30–150 | × | <100 | 0–50 |
Delamination | × | × | × | 50–150 |
Debonding | 180–290 | 100 | 200–300 | 200–300 |
Fiber breakage | 300–400 | 450–550 | 400–450 | 400–500 |
Fiber pull out | 180–290 | 200–300 | × | 500–600 |
Features | DB Index | ||
---|---|---|---|
2 Clusters | 3 Clusters | 4 Clusters | |
Peak Amplitude (A) | 0.0373 | 0.0553 | 0.0812 |
Duration (D) | 0.0168 | 0.0312 | 0.0256 |
Rise Time (RT) | 0.0158 | 0.0299 | 0.0194 |
Counts (CNTS) | 0.0171 | 0.0220 | 0.0378 |
MARSE | 0.0138 | 0.0138 | 0.0122 |
Frequency Centroid (FC) | 0.0446 | 0.0510 | 0.0485 |
Average Frequency (AF) | 0.0686 | 0.1013 | 0.0937 |
Cluster | Number of Events |
---|---|
1 | 44,542 |
2 | 8083 |
3 | 19,531 |
4 | 1577 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Soua, S.; Mares, C.; Gan, T.-H. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades. Sensors 2017, 17, 2507. https://doi.org/10.3390/s17112507
Tang J, Soua S, Mares C, Gan T-H. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades. Sensors. 2017; 17(11):2507. https://doi.org/10.3390/s17112507
Chicago/Turabian StyleTang, Jialin, Slim Soua, Cristinel Mares, and Tat-Hean Gan. 2017. "A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades" Sensors 17, no. 11: 2507. https://doi.org/10.3390/s17112507
APA StyleTang, J., Soua, S., Mares, C., & Gan, T. -H. (2017). A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades. Sensors, 17(11), 2507. https://doi.org/10.3390/s17112507