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Abstract: Direct measurements of external forces acting on a structure are infeasible in many cases. 

The Augmented Kalman Filter (AKF) has several attractive features that can be utilized to solve the 

inverse problem of identifying applied forces, as it requires the dynamic model and the measured 

responses of structure at only a few locations. But, the AKF intrinsically suffers from numerical 

instabilities when accelerations, which are the most common response measurements in structural 

dynamics, are the only measured responses. Although displacement measurements can be used to 

overcome the instability issue, the absolute displacement measurements are challenging and 

expensive for full-scale dynamic structures. In this paper, a reliable model-based data fusion 

approach to reconstruct dynamic forces applied to structures using heterogeneous structural 

measurements (i.e., strains and accelerations) in combination with AKF is investigated. The way of 

incorporating multi-sensor measurements in the AKF is formulated. Then the formulation is 

implemented and validated through numerical examples considering possible uncertainties in 

numerical modeling and sensor measurement. A planar truss example was chosen to clearly 

explain the formulation, while the method and formulation are applicable to other structures as 

well.  

Keywords: force estimation; heterogeneous sensor network; Kalman filtering; multi-metric 

measurements; structural dynamics 

 

1. Introduction 

Many engineering structures are subjected to various natural and man-made dynamic loads, 

including wind, earthquake, traffic, machine vibrations, and tidal loads. The structures can be 

damaged severely when the applied loads are stronger than the structural capacities. Even for 

seemingly small level loads, their continuing and long-term application may cause gradual 

degradation of the structural performances over time, such as fatigue problems, so identifying the 

time histories of applied forces to structures can significantly improve their design and effectively 

protect them against damaging loading events. However, direct measurements of applied forces are 

impossible in practice or very difficult and costly for dynamic structures. Even if structural 

responses (e.g., acceleration, velocity, displacement, or strain) are measured at the locations where 

the forces are applied, capturing the external forces from the measured responses is not possible. 

Even in the case that transducers are available for force measurements, when the structure is large 

such as long span bridges, towers, and skyscrapers, or when the spatial distribution of loading is 

complex, covering the entire structure at the locations where forces would be applied is a 

challenging task. Therefore, indirect methods for force identification have been investigated to 

overcome such limitations [1–3]. 
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Input force identification is the procedure to determine the loads applied to the structure using 

its measured responses. In other words, the goal is to find the inputs to the system using the known 

or measured outputs. Theoretically, having the frequency response functions (FRF) matrix together 

with the measured responses, it is possible to estimate the applied forces by inverting the FRF 

matrix. However, a unique solution is usually not available, because of the rank deficiency in the 

FRF matrix. The FRF-based input estimation is an ill-posed problem in general, so the presence of 

noise and small deviations will cause significant errors that are far from reality [4–7]. To overcome 

this issue for FRF-based methods, additional information, e.g., spatial distribution of loads, must be 

needed to have a unique solution [8,9]. Classical time and frequency domain methods for input 

identification also suffer from the requirement of needing an exact model, which is not possible in 

practice [10]. 

A variety of the load reconstruction approaches have been developed for specific force patterns; 

including impulsive load estimation for composite structures [6,11], harmonic force estimation in 

rotating machinery [12], and moving load identification in bridge and railway systems [13,14]. A 

sum of weighted accelerations technique (SWAT) is a well-known method for reconstructing 

impulsive loads from measured responses. In this method, measured accelerations are scaled by 

effective weights, which are the coefficients of equivalent mass at each acceleration location, to 

estimate the applied loading. This method is only suitable for systems with free boundary conditions 

[15,16]. For impact estimation of nonlinear structures, artificial neural network-based methods are 

known to improve the quality of the load estimation [17,18]. Such methods, unlike those based on 

convolution relation, can construct the nonlinear relationship between inputs and outputs. 

However, the mathematical model and algorithm used in this method has to be trained carefully by 

applying known forces to the structure; which is a critical limitation when applying it to large 

structures that have complex load patterns and distributions. A Bayesian inference-based 

regularization method has been proposed to identify the excitation forces [19]; they have estimated 

the low frequency components with good accuracy but the results for higher frequencies are not 

given.  

In contrast to the force identification methods in frequency domain methods based on the fast 

Fourier transform, time domain methods were developed [20–22]. These methods in general consist 

of two main steps. First, using an operation matrix, the sequences of inputs are mapped to the 

outputs. In the second step, ill-posed inverse problem is solved with a regularization method. 

However when the size of operation matrix increases the force identification becomes highly 

difficult to solve. To overcome the problem of large operation matrix, sequential deconvolution 

input reconstruction (SDR) method was proposed [23]. Extensive parametric study of sequential 

deconvolution for input reconstruction was conducted [24] and it was concluded that the method 

can identify the inputs accurately in a moderately noisy environment. 

Techniques based of the Kalman Filtering (KF) method have proven to be effective in 

identification of different types of loadings [25]. As a recursive linear state estimator, the Kalman 

Filter can provide statistically optimal estimates of the state, even with uncertainties in modeling 

and measurements, in the sense that the error covariance matrix is minimized. It has application in 

many areas, including navigation, object tracking, economics, signal processing, etc. [26]. The 

Kalman Filter was initially developed for linear systems. But if states are described by nonlinear 

equations or the observation relation is nonlinear, the extended Kalman Filter approaches have been 

explored [27–29]. To accommodate the non-gaussian noise and nonlinear dynamical system, 

Ensemble Kalman Filter (EnKF), which can be considered as a variant of interacting particle systems 

or particle filtering, has been developed using non-parametric approach [30]. However, in certain 

cases EnKF has poor performance [31,32]. For example, EnKF has difficulties to handle highly 

non-Gaussian posterior pdfs [33]. 

The Kalman filtering variants have been used for response identification at unmeasured 

locations [34–36], parameter identification, and damage detection [29]. A Kalman Filter approach in 

conjunction with a recursive least-square algorithm has been developed for force excitation 

estimations [6,25]. But this method requires data vectors that contain displacement measurements at 
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all degree of freedoms which is not possible in most of the practical applications. Deconvolution 

Kalman Filter (DKF) is recently introduced and estimates the input forces using an augmented state 

space system and Kalman filtering [37]. Augmented state space system is formed from combination 

of state space matrices from an auto regressive moving average (ARMA) and the mechanical system 

response modeling. Kalman filter-based approach is used to estimate external forces and torques for 

a serial-chain robotic manipulator [38]. In this case, dynamic model of the robot and available motor 

signals such as current, angles, and speed are used and there is no need for additional sensing. In 

lead-through programming (LTP), which is a fast approach for teaching a trajectory by physical 

interaction with robot, it is possible to use a sensor-less method based on Kalman filter using the 

generalized momentum formulation [39]. The quality of estimated torque relies on dynamic model 

of robot and the friction model.  

Another variant of force identification using Kalman filter is to incorporate the unknown forces 

into state vectors and estimate the unknown forces as part of the states; this method is called 

Augmented Kalman Filter (AKF) [40]. In the original approach to use the AKF, acceleration 

responses are used in the measurement update of the Kalman Filter for force estimation. Stability 

issues of the AKF method have been investigated when accelerations are the only measured 

responses [41]. Because the error covariance matrix of AKF has the simple form of Riccati equations, 

it is discussed based on analytical arguments that estimations based solely on acceleration 

measurement are inherently unstable. To overcome the instability of input estimation from 

measured accelerations, dummy measurement method is suggested [41]. But if there are slowly 

varying low-frequency forces, the method will not be able to trace them. The other source of 

numerical instabilities in force estimation is when there are more sensors than the order of 

reduced-order dynamic model; reduced order models are frequently used since limited number of 

vibration modes dominate the response of a structure subjected to dynamic loading [37]. 

Furthermore, joint input-state estimation was applied in structural dynamics response and input 

estimation when accelerations are measured [42] and was further extended to account for unknown 

stochastic excitations [43]. To resolves the numerical issues related to the rank deficiency and 

un-observability of the AKF, dual Kalman filter approach for joint input-state estimation was 

proposed [44] and experimentally validated [45]. The mentioned limitations of AKF are solved 

through successive structure of dual Kalman filter.  

Acceleration responses are usually the easiest and cheapest to measure and have been widely 

used in structural system identification and response and force estimations. However, their 

performance is not satisfactory in the low frequency range [46]. On the other hand, strain 

measurements work perfectly at low frequencies and show direct relations to stress, hence failure 

and fatigue [47]. Force identification relying solely on acceleration response measurements suffer 

from deficiencies such as instability, inaccuracy, and even possibly misleading results. Incorporation 

of displacement measurement is one remedy for the problem but it is expensive and complicated.  

In this paper, a multi-metric approach is investigated to improve the stability and accuracy of 

the force estimation using the AKF method. It is shown how the stability issue of the AKF can be 

addressed and force estimation accuracy in both low- and high-frequency range can be enhanced by 

combined use of multi-metric measurements, i.e., strain and acceleration responses measured at 

limited locations of the structure, in the measurement update stage of the Kalman filter. The efficacy 

of the proposed method is numerically validated using a planar truss bridge structure model. The 

force estimation performances of the multi-metric method are compared with the applied reference 

loads under various modeling and loading conditions, considering nonzero-mean loads, and 

measurement noises. The proposed method is schematically shown in Figure 1. 
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Figure 1. Schematic of proposed model-based heterogeneous data fusion for reliable force 

estimation. 

2. Augmented Kalman Filter A 

As a recursive linear state estimator, the Kalman filter provides statistically optimal estimates of 

the states in a way that minimizes the mean of the squared error, assuming the system behaves 

linearly and potential process noise and measurement noise are zero-mean Gaussian stochastic 

process. The states are predicted using a system (i.e., numerical model of a structure) and the 

predictions are updated using observations in a minimum-variance unbiased sense. This section 

describes the conventional Kalman filter for response estimation and its extended approach, i.e., 

augmented Kalman filter (AKF), for estimating both structural responses and input forces [40]. 

Furthermore, the stability issue of the AKF is discussed.  

2.1. State Space Model 

Dynamic behavior of a linear mechanical system is described by a second order differential 

equation of motion: 

𝑀�̈�(𝑡) + C�̇�(𝑡) + 𝐾𝑢(𝑡) = 𝑆𝑓𝑓(𝑡), (1) 

where 𝑀𝑛×𝑛 , C𝑛×𝑛 , and 𝐾𝑛×𝑛  are mass, damping, and stiffness matrices and 𝑆𝑓𝑛×𝑛𝑓
 is a force 

selection matrix. “n” is the number of degrees of freedom and “𝑛𝑓 ≤ 𝑛” is the number of degrees of 

freedom which the force is applied to. The state space formulation of the above equation of motion 

in continuous domain is [48]: 

�̇�(𝑡) = 𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑓(𝑡), (2) 

where the subscript “c” stands for the continuous case:  

𝑥(𝑡) = {
𝑢(𝑡)

�̇�(𝑡)
} ;  𝐴𝑐 = [

0 𝐼
−𝑀−1𝐾 −𝑀−1C

] ; 𝐵𝑐 = [
0

𝑀−1𝑆𝑓
],  

in the above equations 𝑥2𝑛×1 is the state vector. A set of equations, in addition to those describing 

the dynamics of the system, defined to describe the measured or observed values in term of the 

system states: 

𝑦(𝑡) = 𝐻𝑐𝑥(𝑡) + 𝐷𝑐𝑓(𝑡), (3) 

the state Equation (2) together with the measurement Equation (3) form the continuous state space 

model of the system.  

The discrete time form of the state space model is defined as: 
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𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑓𝑘, (4) 

𝑦𝑘 = 𝐻𝑥𝑘 + 𝐷𝑓𝑘, (5) 

where: 

𝐴 = 𝑒𝐴𝑐Δ𝑡, (6) 

𝐵 = ∫ 𝑒𝐴𝑐τ𝑑𝜏𝐵𝑐

Δ𝑡

0

= 𝐴𝑐
−1(𝐴 − 𝐼)𝐵𝑐 (7) 

𝐻 = 𝐻𝑐, 𝐷 = 𝐷𝑐. (8) 

The Kalman filter estimates the states in a recursive optimal manner from the state space 

formulation considering presence of uncertainties, either process errors (𝑤𝑘) or measurement noises 

(𝑣𝑘): 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑓𝑘 + 𝑤𝑘 (9) 

𝑦𝑘 = 𝐻𝑥𝑘 + 𝐷𝑓𝑘 + 𝑣𝑘 (10) 

2.2. Kalman Filter 

Kalman filter has two main steps, i.e., time update and measurement update equations [27]: 

Time update: 
�̂�𝑘+1|𝑘 = 𝐴�̂�𝑘|𝑘 + 𝐵𝑓𝑘−1 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄, 

(11) 

Measurement update:  

𝐾𝑘|𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇(𝐻𝑃𝑘|𝑘−1𝐻

𝑇 + 𝑅)
−1

 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘|𝑘(𝑦𝑘|𝑘 −𝐻�̂�𝑘|𝑘−1) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘|𝑘𝐻)𝑃𝑘|𝑘−1, 

(12) 

where, 𝑄 and 𝑅 are process (modeling) error and measurement noise covariance matrices, which 

are assumed to be known, constant, and independent of time and represented by E{𝑤𝑖𝑤𝑗
𝑇} = 𝑄𝛿𝑖𝑗 

and E{𝑣𝑖𝑣𝑗
𝑇} = 𝑅𝛿𝑖𝑗, respectively; where 𝛿𝑖𝑗 is the Kronecker delta. For given covariance matrices 

𝑄𝑐 and 𝑅𝑐 for continuous system, the discrete 𝑄 and 𝑅 can be obtained as below:  

𝑄 = ∫ 𝑒𝐴𝑐τ𝑄𝑐𝑒
𝐴𝑐
𝑇τ𝑑𝜏

Δ𝑡

0

 

𝑅 =  𝑅𝑐/Δ𝑡 

(13) 

and their order of magnitude is determined by the order of magnitude of state vector and signal to 

noise ratio of sensors [40]. For more detail on the terms used in Kalman filter, see [27]. 

2.3. Augmented Kalman Filter (AKF) 

Conventional formulation of the Kalman filter described above in (11) and (12) can provide 

optimized estimates of the structural responses as the states (i.e., displacements and velocities) with 

given information of input forces (f). However, the input forces are rarely known in reality, so 

additional methods are needed to estimate the input forces [6,25].  

The Augmented Kalman Filter (AKF) approaches use the augmented state vector that includes 

the input force, and then estimates structural responses as well as the input forces together as the 

part of the states. In order to build the full system equations for the AKF, an input force model 

should be required. A random walk model is a general approach for the input force model, the state 

equation for the random walk model in continuous domain is defined: 
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�̇� = 0 + 𝜂, (14) 

where 𝜂 is the input force model noise on the derivative of the force parameter, implying that the 

force derivative or force increment is a completely random process.  

Its discrete version is known as a Martingale process as below: 

𝑓𝑘+1 = 𝑓𝑘 + 𝜂𝑘 (15) 

The original state vector is then extended to include the input force. Augmented state equation 

in continuous time form is: 

{
�̇�(𝑡)

�̇�(𝑡)
} = 𝐴𝑎𝑐 {

𝑥(𝑡)
𝑓(𝑡)

} + {
𝑤
𝜂} (16) 

𝐴𝑎𝑐 = [
𝐴𝑐 𝐵𝑐
0 0

] (17) 

In the above equation, 𝐴𝑎𝑐, is system matrix for augmented formulation in continuous form. 

Observation equation is: 

𝑦 = 𝐻𝑎𝑐 {
𝑥(𝑡)
𝑓(𝑡)

} + 𝑣 (18) 

𝐻𝑎𝑐 = [𝐻 𝐷] (19) 

In discrete form, the augmented state vector and the state equation are: 

𝑋𝑘
𝑎 = {

𝑋𝑘
𝑓𝑘
}
(𝑛𝑠+𝑛𝑝)×1

 (20) 

In the above equation 𝑛𝑠 and 𝑛𝑝 are number of states and inputs, respectively: 

𝑋𝑘+1
𝑎  = 𝐴𝑎𝑋𝑘

𝑎 + 𝜁𝑘 

𝐴𝑎 = [
𝐴 𝐵
0 𝐼

] 
(21) 

Observation equation becomes: 

𝑦𝑘  = 𝐻𝑎𝑋𝑘
𝑎 + 𝑣𝑘 (22) 

𝐻𝑎 = [𝐻 𝐷] (23) 

matrices 𝐻 and 𝐷 are given in Equation (30). 

Then the time and measurement update equations in the KF method become [40]: 

Measurement update: 

𝐿𝑘 = 𝑃𝑘|𝑘−1𝐻𝑎
𝑇(𝐻𝑎𝑃𝑘|𝑘−1𝐻𝑎

𝑇 + 𝑅 )
−1

 

�̂�𝑘|𝑘
𝑎 = �̂�𝑘|𝑘−1

𝑎 + 𝐿𝑘(𝑦𝑘 − 𝐻𝑎�̂�𝑘|𝑘−1
𝑎 ) 

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐿𝑘𝐻𝑎𝑃𝑘|𝑘−1 

(24) 

Time update: 

�̂�𝑘+1|𝑘
𝑎 = 𝐴𝑎�̂�𝑘|𝑘

𝑎  

𝑃𝑘+1|𝑘 = 𝐴𝑎 𝑃𝑘|𝑘𝐴𝑎 
𝑇 + 𝑄𝑎 

(25) 

In augmented Kalman filtering, since the force vector is included in state vector, the modeling 

error covariance matrix 𝑄, together with regularization matrix (𝑆) which is the covariance matrix of 

input noise,  𝜂, form the augmented covariance matrix 𝑄𝑎 : 

𝑄𝑎 = [
𝑄 0
0 𝑆

] (26) 

To elaborate the observation (measurement) matrix 𝐻𝑎𝑐 in augmented state space form, shown 

in the Equation (22), the following general relation between the measurement and structural 

responses is considered: 
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𝑦(𝑡) = 𝑆𝑎�̈�(𝑡) + 𝑆𝑣�̇�(𝑡) + 𝑆𝑑𝑢(𝑡) (27) 

𝑆𝑎 , 𝑆𝑣 , and 𝑆𝑑   are “𝑛𝑑 × 𝑛” selection matrices corresponding to acceleration, velocity, and 

displacement state, respectively. “𝑛𝑑” is the number of measurements and “𝑛” is the number of 

degrees of freedoms. 

We have: 
�̈�(𝑡) = −𝑀−1𝐶 �̇�(𝑡) − 𝑀−1𝐾𝑢(𝑡) + 𝑀−1𝑆𝑓𝑓(𝑡) 

𝑦(𝑡) = 𝑆𝑎{−𝑀
−1𝐶�̇�(𝑡) − 𝑀−1𝐾𝑢(𝑡) + 𝑀−1𝑆𝑓𝑓(𝑡)} + 𝑆𝑣�̇�(𝑡) + 𝑆𝑑𝑢(𝑡) 

𝑦(𝑡) = (𝑆𝑣 − 𝑆𝑎𝑀
−1𝐶)�̇�(𝑡) + (𝑆𝑑 − 𝑆𝑎𝑀

−1𝐾)𝑢(𝑡) + 𝑆𝑎𝑀
−1𝑆𝑓𝑓(𝑡) 

⇒ 𝐻 = 𝐻𝑐 = [ 𝑆𝑑 − 𝑆𝑎𝑀
−1𝐾 , 𝑆𝑣 − 𝑆𝑎𝑀

−1𝐶 ], 𝐷 = 𝐷𝑐 = 𝑆𝑎𝑀
−1𝑆𝑓 

  

(28) 

When strain is measured, the strains can be formulated as the linear combination of 

displacement states, then the general relation Equation (27) can be rewritten as: 

𝑦(𝑡) = 𝑆𝑎�̈�(𝑡) + 𝑆𝑣�̇�(𝑡) + 𝑆𝑑𝑢(𝑡) + 𝑆𝑠𝑢(𝑡) (29) 

where 𝑆𝑠 is the strain selection matrix. Therefore, if strain measurements are considered, then (28) 

becomes: 

𝐻 = 𝐻𝑐 = [ 𝑆𝑠 + 𝑆𝑑 − 𝑆𝑎𝑀
−1𝐾 , 𝑆𝑣 − 𝑆𝑎𝑀

−1𝐶 ], 𝐷 = 𝐷𝑐 = 𝑆𝑎𝑀
−1𝑆𝑓 (30) 

2.4. AKF Update via Multi-Metric Observation 

Multi-metric approaches combining specialized metrics have tremendous potential to enhance 

the quality of the obtained information, providing a comprehensive way to take the respective 

advantages and to overcome the weakness of such single-metric methods [49,50]. Civil structures are 

exposed to both low- and high-frequency force excitations; therefore, the Multi-metric approach 

investigated here can improve the AKF accuracy for estimating broadband force excitations.  

In addition, the Multi-metric method can contribute to solving the stability issue of the AKF. 

Naets et al., (2015) analytically pointed out the stability problem of the AKF using the 

Popov-Belevitch-Hautus (PBH) criterion. Particularly, when acceleration measurements are only 

used in the measurement update, the AKF intrinsically suffers from the instability issue [41].  

Based on the PBH criterion, a system is detectable if and only if the PBH matrix (given below) 

has full column rank for all the eigenvalues, s, or the undetectable modes have an eigenvalue with a 

negative real part, i.e., are stable [41]:  

𝑃𝐵𝐻 = [
𝑠𝐼 − 𝐴𝑎𝑐
𝐻𝑎𝑐

] (31) 

In the above equation, to test the detectability, it suffices to check the rank of matrix for the 

eigenvalues of the augmented system which consist of eigenvalues of the dynamic system and zeros 

accounted for the unknown forces [31]. Expanding PBH using (17) and (19) it would be easier to 

investigate stability for different measurements: 

𝑃𝐵𝐻 = [

 𝑠𝐼  −𝐼  0
 𝑀−1𝐾  𝑠𝐼 + 𝑀−1C  −𝑀−1𝑆𝑓
 0  0  𝑠𝐼

𝑆𝑠 + 𝑆𝑑 − 𝑆𝑎𝑀
−1𝐾  𝑆𝑣 − 𝑆𝑎𝑀

−1𝐶   𝑆𝑎𝑀
−1𝑆𝑓

] (32) 

In the case when acceleration only is measured in all DOFs, 𝑆𝑠 = 𝑆𝑑 = 𝑆𝑣 = 0 and 𝑆𝑎 = 𝐼, then 

in the PBH matrix, the first and last columns are linearly dependent at s = 0, as shown in Equation 

(33). Therefore, the system is not observable when acceleration measurements only are used. The 

same problem occurs, when velocity only is measured:  

𝑃𝐵𝐻 = [

0  −𝐼 0
𝑀−1𝐾  𝑀−1C −𝑀−1𝑆𝑓
0  0 0

−𝑀−1𝐾 −𝑀−1𝐶  𝑀−1𝑆𝑓

] (33) 
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Another reason to consider zero eigenvalue, i.e., s = 0, to check the detectability is to account for 

possible uncertainties available in the systems, numerical modeling, and response measurements. 

For real dynamic systems, the case having zero eigenvalue do not exist. But such uncertainties can 

result in zero eigenvalue in the observation. Thus, detectability of the system should be ensured for 

all eigenvalues, including zero eigenvalue.  

In the case of displacement measurements available, regardless of whether full or partial 

displacement measurements are used, the system is detectable in the presence of system damping 

[41]. However, measuring absolute displacements in the field is a challenging task for full-scale civil 

structures.  

For the case where strain measurements are used, considering the observation matrix which 

contains the strain selection matrix, see Equation (30), the same argument made for displacement 

measurements hold and the system would be detectable in the presence of damping even for partial 

strain measurements. When accelerations together with strains are measured, i.e., the Multi-metric 

observation, 𝑆𝑠 ≠ 0, 𝑆𝑑 = 𝑆𝑣 = 0  and 𝑆𝑎 ≠ 0; then the PBH matrix becomes:  

𝑃𝐵𝐻 = [

𝑠𝐼  −𝐼  0
𝑀−1𝐾  𝑠𝐼 + 𝑀−1C  −𝑀−1𝑆𝑓
0  0  𝑠𝐼

𝑆𝑠 − 𝑆𝑎𝑀
−1𝐾 −𝑆𝑎𝑀

−1𝐶  𝑆𝑎𝑀
−1𝑆𝑓

] (34) 

Even if accelerations and strains for all DOFs are not measured, in presence of damping the 

non-observable modes would be stable and therefore detectability of the system is satisfied. Instead 

of using acceleration and strain measurements, one potential solution may be using acceleration 

measurements to estimate velocity and displacement via numerical integration. This may seem a 

straightforward and easy task but indeed it is not. Especially it is very difficult to handle nonzero 

direct current (DC) value or low frequency components even in numerical simulation (see pages 51–

55 in [51]). In practice, accelerometers are not sensitive to very low frequency and they can’t measure 

static forces. Moreover, data acquisition (DAQ) systems have some drift and it is complicated to 

separate such effects from low frequency forces. Therefore, integrating acceleration numerically 

does not provide us with the correct estimate of velocity and displacement. 

2.5. Strain Selection Matrix for Planar Truss 

Structural deformations of many civil structures can be reasonable assumed to be small, 

compared with the size of the structure, during their operation. Exploiting this small deflection 

assumption, it is possible to linearly relate the strains to the displacements (states) with high 

accuracy. To obtain the linear relation between strains and displacements in a planar truss structure, 

a general deflection of part of the truss is shown in Figure 2 (left). To see how the strains can be 

estimated from displacements using a linear relation, it would be simpler if the deformed shape is 

translated such that one of the shifted nodes coincide with its initial position, that is shifting i’ to i 

(right in Figure 2). 

Considering the geometrical relation, when the deformation is small, using Equation (35) strain 

is estimated from the states linearly: 

∆≈ (𝐷2𝑗−1 − 𝐷2𝑖−1) cos(𝜃) + (𝐷2𝑗 − 𝐷2𝑖) sin(𝜃) (35) 

In matrix form: 

𝜀 =
∆

𝐿
= [0 ⋯

−cos(𝜃)

𝐿

− sin(𝜃)

𝐿
⋯

+cos(𝜃)

𝐿

+ sin(𝜃)

𝐿
⋯ 0]

{
 
 
 
 

 
 
 
 
𝐷1
⋮

𝐷2𝑖−1
𝐷2𝑖
⋮

𝐷2𝑗−1
𝐷2𝑗
⋮
𝐷2𝑁 }

 
 
 
 

 
 
 
 

= 𝑆𝑠𝑢(𝑡) (36) 
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To better understand the selection matrices  𝑆𝑎, 𝑆𝑣,  𝑆𝑑 , 𝑆𝑠 , and 𝑆𝑓  consider the simple 

one-dimensional lumped mass 4-DOF system shown in Figure 3: 

 

Figure 2. General exaggerated deformation of part of the truss structure (Left)—translated deformed 

shape to coincide the node “i” with its initial undeformed shape (Right). 

 

Figure 3. Four Degree of Freedom system with one excitation on the 2nd DOF. 

A force (f) is applied on the 2nd mass (DOF) and the acceleration of the 1st, 2nd, and 4th DOF 

are measured, and the strain between the 2nd and 3rd and between 3rd and 4th DOF (masses) are 

measured. In the observation (measurement) vector, the first row has information of acceleration of 

first mass; second row has information of acceleration of second mass; third row has information of 

acceleration of fourth mass; fourth row has the strain between 2nd and 3rd DOF and the fourth row 

has the information of the strain between 3rd and 4th DOF: 

𝑺𝑎 =

[
 
 
 
 
1
0
0
0
0

0
1
0
0
0

0
0
0
0
0

0
0
1
0
0

 

]
 
 
 
 

, 𝑺𝑑 = 𝑺𝑣 =

[
 
 
 
 
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

 

]
 
 
 
 

, 𝑺𝑠 =

[
 
 
 
 
0
0
0
0
0

0
0
0
1
0

0
0
0
−1
1

0
0
0
0
−1

 

]
 
 
 
 

, 𝑺𝑝 = [ 

0
1
0
0

] 
 

2.6. Strain Selection Matrix for Planar Truss 

In Finite Element Methods for solid mechanics, strain and nodal point displacements are related 

via the following equation:  

{𝜀} = 𝑇𝑁{𝑢} = 𝑆𝑠𝑢(𝑡) (37) 

The product of differentiation matrix operator T, and shape function matrix N is called 

displacement differentiation matrix. The differentiation matrix operator for different solid 

mechanics elements such as beams, plates and shells can be found in solid mechanics finite element 

methods books. For example see Chapters 2 and 3 in [52].  

3. Simulations and Results 
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Responses of a planar steel truss structure model (see Figure 4) with 18 joints and 34 members 

are simulated using the fourth order Runge-Kuta method [53]. The time step for response simulation 

is 1/4096 s. Quality of the simulation is validated by calculating the multiple coherence function [54] 

shown in Figure 5. The coherence function is a scalar value between zero and one; in which one 

indicates the outputs are fully due to the inputs. At resonance, there are some drops; which are 

partly due to small numerical errors in solving the equation of motion and mainly due to spectral 

leakage and biased and random errors of spectral estimations (see [51] pp. 205–240), because finite 

amount of data is used to do so. The structure with its node and element numbers is depicted in 

Figure 4, and the properties of the elements are given in Table 1. A modal damping ratio of 0.7% was 

considered for all the modes of the structure. In Figure 4, red bold arrows show the applied force 

locations in the structure; four different excitations are simultaneously applied to the system. 

H16,16—Frequency Response Function (FRF) of the system between measured DOF “16” and 

excitation at DOF “16”, called point FRF—is shown with a dotted line in Figure 6. DOF “16” is 

vertical direction of joint 8. This system is used for response simulations. To have realistic situation 

for force estimation, the same system used for simulation is not used in the Kalman Filter. This is 

done because a perfect model of the structure almost never happens. A slightly different model 

which is 5% stiffer is used representing a modeling error (5%). The point FRF (H16,16) of this stiffer 

model used in K-F is shown by red solid line in Figure 6.  

 

Figure 4. The model of the truss used for simulation—Blue italic numbers show the member number 

and the black ones indicate the node numbers. There are eighteen nodes and 34 members; Red bold 

arrows show where the simultaneous excitations are applied. 

Table 1. Properties of the truss structure. 

Elements 
Young Modulus 

(Pa) 

Cross Section Area 

(cm2) 

Density 

Kg/m3 

1, 6, 10, 14, 18, 23, 27, 31, 34 200 × 109 15 7800 

2, 3, 4, 7, 8, 11, 12, 15, 16, 20, 21, 24, 25, 28, 29, 

32, 33 
200 × 109 9.75 7800 

5, 9, 13, 17, 19, 22, 26, 30 200 × 109 4.75 7800 

Several simulations are conducted with different combinations of responses, such as 

accelerations, displacements, and strains for estimation of the applied forces using the augmented 

Kalman filter method. For simulating the strain, 𝑆𝑖𝑗(𝑡), which is the strain of the link with the end 

nodes “i” and “j”, the following formula is used: 

𝑆𝑖𝑗(𝑡)

=
√[(𝑋𝑖 + 𝐷2𝑖−1) − (𝑋𝑗 + 𝐷2𝑗−1)]

2
+ [(𝑌𝑖 + 𝐷2𝑖) − (𝑌𝑗 + 𝐷2𝑗)]

2
−√(𝑋𝑖 − 𝑋𝑗)

2 + (𝑌𝑖 − 𝑌𝑗)
2

√(𝑋𝑖 − 𝑋𝑗)
2 + (𝑌𝑖 − 𝑌𝑗)

2
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Figure 5. Multiple coherence function is always between zero and one. One indicates all the 

measured output is due to the considered inputs while zero means other factors (noises, 

unconsidered input, etc.) have caused the output(s). 

 

Figure 6. Dotted black: FRF of the system that is used for simulation of response; Solid red line: FRF 

of the perturbed system, to represent modeling error (5%) used for input estimation. 

In Figure 7 typical accelerations and strains responses from the numerical simulations, when 

the system is subjected to the combination of different forces simultaneously applied to the 

structure, are shown. In the right of Figure 7, low-frequency variations can be clearly observed in the 

strain data due to very low frequency excitations applied to the system, but not in acceleration data; 

which are intrinsic characteristics of acceleration and strain measurements.  

 

 

Figure 7. Simulated acceleration (Left) in vertical direction at Node “8” and strain (Right) in the 

member “22” when the forces shown in Figure 11 (dotted black) are applied to the structure 

simultaneously. Low frequencies (almost DC components) are seen in the strain measurements. 
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If there are forces with zero mean value and no (or very small) measurement noise or modeling 

error, it is possible to estimate the inputs using only acceleration. However, if different combinations 

of loading are applied and some of them have non-zero mean values then acceleration-based 

estimation is misleading. Different combinations of responses are simulated to use for force 

estimation: 

Case 1 

- Only acceleration measurements are used. 

- System is subjected to random excitations (vertical direction at joints “4”, “8”, and “12”) and 

impulse applied in the vertical direction of joint “6”.  

- Regarding presence of noise and modeling errors, two cases are considered: i) without 

modeling error and measurement noise and ii) with modeling error (5%) and measurement 

noise (2%). 

Case 2 

- Another case that only acceleration measurements are used. 

- But, different forces are simultaneously applied at four nodes in vertical direction. Random 

(vertical direction of Joint “4”), impulsive (vertical direction of Joint “6”), random + low 

varying high amplitude (vertical direction of Joint “8”), noise + ramp shape (vertical 

direction of Joint “12”). 

- Whether errors are available or not, two cases are considered: (i) without modeling error 

and measurement noise and (ii) with them where the results are again unstable as in case 1 

when noise was considered. 

Case 3 

- The case that only strain measurements are used. 

- Loading condition is the same as Case 2  

- Modeling errors and measurement noises are considered.  

Case 4 

- The case that both acceleration and strain measurements are used. 

- Loading condition is the same as Case 2  

- Modeling errors and measurement noises are considered.  

3.1. Case 1: Acceleration Measurements Only—Random and Impulsive Excitation 

3.1.1. No Modeling and Error, No Measurement Noise 

The model shown in Figure 4 is subjected to random excitations and impulse. Uncorrelated 

random forces are exciting the structure in the vertical direction at nodes 4, 8, and 12 and impulsive 

force is applied at node 6 also in the vertical direction. The applied forces are shown with dotted 

black lines in Figure 8. Acceleration responses are simulated and measured in vertical direction at 

nodes 2, 4, 5, 6, 7, 8, 9, 12, 14, 15 and in horizontal direction at nodes 4, 5, 8, and 9.  

Using the accelerations and AKF algorithm, without considering measurement noise and 

modeling errors, the applied forces are estimated. The results are shown in Figure 8. In Figure 9, the 

estimated loads are shown for a smaller time interval to see the accuracy of estimation. 



Sensors 2017, 17, 2656  13 of 25 

 

 

Figure 8. System is subjected to three uncorrelated random noise in vertical directions at nodes 4, 8, 

and 12 and impulse applied at node 6 (vertical). Excitations are estimated by AKF only using the 

accelerations; neither modeling nor measurement error is considered. 

 
Figure 9. Estimated and applied forces shown for smaller time interval: detail of Figure 8.  

It is seen that it is possible to estimate the excitation(s) using only acceleration measurements 

provided that: 

1) there is no measurement noise and modeling error, and  

2) the structure is subjected to random zero mean and impulsive forces, Then, even when 

forces are applied simultaneously at different locations of the structure, it is possible to 

estimate the input loading reliably. However, assuming no measurement errors and no 

discrepancy between the dynamic response of model and the real structure is too far from 

reality. 
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3.1.2. Modeling Error (5%) and Measurement Noise (2%) 

In practice it is not possible to have an exact model, nor is it possible to have noise free 

measurements, so we have considered such uncertainties for force estimation. The results are shown 

in Figure 10. It is seen that the estimation becomes unstable; which is attributed to the fact that the 

AKF to use only acceleration data in the measurement update stage is not detectable as described in 

the Section 2.4. For undetectable systems, the states cannot be reliably estimated with the observed 

information. Such instability issues have been reported in other papers as well [40,41]. 

Therefore, when the structure is subjected to multiple zero mean random and impulsive forces, 

only acceleration measurements can be misleading to estimate the applied forces if there are 

measurement noises or modeling errors. Since such uncertainties are inevitable in almost all 

real-world situations, we can conclude that only acceleration measurements will end in erroneous 

force approximation. 

 

Figure 10. Same loading as in Figure 8, but in this case both the measurement noises (2%) and 

modelling errors (5%) are present. 

3.2. Case 2: Acceleration Measurements Only—Presence of Low Varying and Non-Zero Mean Excitations 

3.2.1. No Modeling and Error, No Measurement Noise 

The measurement configuration is same as “case 1” but the excitations are different statistically; 

that is in addition to random and impulsive load applied in vertical direction of nodes 4 and 6, 

respectively, low varying plus random excitation and ramp shape plus random excitation are 

applied to the nodes 8 and 12. The applied forces are shown with dotted black lines and estimated 

forces by the AKF are shown with red solid lines in Figure 11. Even without considering any 

additional uncertainties, such as measurement noise and modelling error, it is seen that only 

acceleration measurements are not effective in estimating low-frequency (at node 8) and 

nonzero-mean excitation (at node 12); also, zero mean random (at node 4) and impulsive load (at 

node 6). Estimations by AKF are highly biased in the presence of nonzero low varying forces. This 

instability in the presence of nonzero mean low varying excitations can be attributed to the rigid 

body modes as was discussed in the case of eigenvalues equal to zero in Section 2.4. 

Power spectrums of estimated and applied forces at two locations are given in Figure 12. It is 

seen, even though no modeling error or measurement noises are considered, using acceleration only 

the low frequency components cannot be captured.  
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When there are nonzero low varying forces applied to the structure, it is not possible to obtain 

good estimates of applied forces based on only acceleration measurements even if there is no 

measurement noise nor modeling error. Specifically, low frequencies cannot be captured in this case. 

 
Figure 11. System is subjected simultaneously to four different forces where some of them have 

nonzero mean and low frequency and high amplitude. No error (modeling and measurement error) 

is added and excitation is estimated by AKF only using the accelerations. Even without added 

uncertainties relying solely on acceleration will fail to estimate the inputs. 

 

 

Figure 12. Frequency contents of applied and estimated forces at nodes 4 and 12 for “case 2”. 

3.2.2. Modeling Error (5%) and Measurement Noise (2%) 

The results for the acceleration only case when modeling error and measurement noises are 

present are shown in Figure 13. As expected, the estimation fails to approximate the excitations.  

As expected, in the presence of nonzero low varying forces and modeling errors and 

measurement noises there will be large deviations in the estimated excitations.  
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Figure 13. Same as Case 2 but there is modeling error (5%) and measurement noise (2%). 

3.3. Case 3: Only Strains Are Measured—Modeling Error (5%) and Measurement Noise (2%) 

Only strain measurements would be attractive to consider; for this case of force reconstruction 

based only on strain measurements, Strain of members 4, 5, 9, 12, 13, 16, 21, 24, and 26 are simulated. 

The results of estimated forces are shown in Figure 14. 

 
Figure 14. System is simultaneously subjected to four different forces shown with dotted black; 

Modeling (5%) and measurement error (2% of rms of the random signal) is added and excitation is 

estimated by AKF using the strain measurements with single acceleration measurement. 

Again, the results shown in Figure 14 are plotted for shorter time interval and are given in 

Figure 15.  

0 2 4
-400

-200

0

200

400

Time (s)

F
o

rc
e

 (
N

)

Force at Node 4 (ver.)

0 2 4
-1000

0

1000

2000

Time (s)

F
o

rc
e

 (
N

)

Force at Node 6 (ver.)

 

 

0 2 4
-2000

0

2000

4000

Time (s)

F
o

rc
e

 (
N

)

Force at Node 8 (ver.)

0 2 4
-1000

0

1000

2000

Time (s)

F
o

rc
e

 (
N

)

Force at Node 12 (ver.)

Meas. Noise= 2% Only Strain Meas.

Estimated

Applied



Sensors 2017, 17, 2656  17 of 25 

 

 

Figure 15. The results shown in Figure 14 are re-plotted for shorter time intervals to see the quality of 

estimation. 

In the case of only strain measurements, it is possible to capture the low variations of the force 

even when both measurement noises and modeling errors are present. However, in high frequencies 

the variations are not captured reasonably. 

3.4. Case 4: Strain and Acceleration—Modeling Error (5%) and Measurement Noise (2%) 

Since strain measurements are simpler and more accessible than displacement measurements, a 

combination of acceleration and strain measurements for force estimation using AKF are 

investigated. The linear estimation of strains based on displacements is given in Equation (35)  for 

planar truss structure. 

The applied forces to the system are same as “case 2”. Modeling error and measurement noises 

are considered. The accelerations are measured in vertical directions at nodes 4, 6, 8, and 12 and in 

the horizontal direction at node 6; Strains are measured in members 5, 9, 13, and 26. To see the 

quality of the estimated forces, the results shown in Figure 16 are plotted for shorter time interval 

and are given in Figure 17.  
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Figure 16. System is simultaneously subjected to four different forces shown with dotted black; 

Modeling and measurement error (2% of rms of the random signal) is added and excitation is 

estimated by AKF using the accelerations and strain measurements. 

 

Figure 17. The results shown in Figure 16 are re-plotted for shorter time intervals to see how the 

estimation follows the applied forces in more detail. 

It is seen that in the multi-metric case, i.e., deploying strain and acceleration measurements 

together, the best results are achieved in low-frequency as well as high-frequency and the estimation 

is stable. Frequency content of estimated and applied forces at nodes 4 and 12 are shown in Figure 

18.  

  

Figure 18. Frequency content of applied and estimated forces at Nodes 4 and 12 for “case 3”. 

The results of the above-mentioned cases are summarized in Table 2. For the sake of 

conciseness, the cases when there is no measurement noise and modelling errors were not discussed 

for only strain measurements (case 3) and multi-metric measurements (case 4).  
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Table 2. Results summary for different cases. The symbols are: Yes (√), No (⨉), and Not Applicable (-). 

Configurations and 

Frequency Ranges 

Random and Impulsive Excitation 
Random and Impulsive Excitations + Low Varying 

and Non-Zero Mean Excitations 

No Measurement Noise 

& No Modelling Error 

2% Measurement Noise 

& 5% Modelling Error 

No Measurement Noise 

& No Modelling Error 

2% Measurement Noise 

& 5% Modelling Error 

Acc. 

Low 

Frequency 
- - ⨉ ⨉ 

High 

Frequency 
√ ⨉ ⨉ ⨉ 

strain 

Low 

Frequency 
- - √ √ 

High 

Frequency 
⨉ ⨉ ⨉ ⨉ 

Acc. + 

strain 

Low 

Frequency 
- - √ √ 

High 

Frequency 
√ √ √ √ 

3.5. Comparison of Different Types of Measurements 

For the purpose of comparing the quality of input estimation based on different types of 

responses or their combinations, the root mean square of the difference between estimated and 

applied force vectors is calculated using Equation (38) and is plotted in Figure 19:  

𝑅𝑀𝑆 𝑒𝑟𝑟𝑜𝑟 = √
1

𝑁𝑙
∑(𝐹(𝑖) − �̂�(𝑖))

2

𝑁𝑙

𝑖=1

 (38) 

in the above formula, 𝑁𝑙 is number of samples in the force vector, 𝐹 is the applied (reference) force 

and �̂� is the estimated force.  

NOTE: It is also possible to use other measures to check the quality of input estimation; for 

example, one possible way is to compare norm of the estimated vector to the norm of reference 

vector divided by the norm of reference vector: 

𝑒𝑟𝑟𝑜𝑟 = 100 ×
‖𝐹‖ − ‖�̂�‖

‖�̂�‖
 (39) 

but in this case if low frequency estimation or the trend of estimation has good accuracy, then by 

increasing the amplitude of low varying excitation the RMS error will be reduced. In this case, the 

quality of estimation depends on the magnitude low frequency components and is misleading. 

Therefore, we have selected former formula in order to check the quality of estimations.  

It is seen that in the case of multiple loads simultaneously applied to the system where some of 

them have low varying nonzero mean components, then if only accelerations are measured then the 

error of estimation is very high compared to the case of only strain measurements. The best result is 

obtained when multi-metric measurements, strain and acceleration, is used.  
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Figure 19. RMS error between the estimated and applied forces for different types of measurements.  

3.6. Effect of Different Configurations for Strain and Acceleration Measurements 

Four different strain and acceleration arrangements to measure the responses of the structure 

are considered (Figure 20). The quality of input force estimations for the applied forces described in 

“case 2”, when modeling errors and measurement noises are present, are compared and plotted in 

Figure 21. 

  
(a) (b) 

  
(c) (d) 

Figure 20. Four different strain and acceleration measurement configurations; Acceleration 

measurement shown by red arrow and strain measurement shown by blue rectangle. (a) Set 1; (b) Set 

2; (c) Set 3; (d) Set 4. 
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Figure 21. RMS error of estimated and applied forces for different strain gauges and accelerometer 

configurations on the truss structure, in presence of modeling error and measurement noises. 

Applied forces are dotted black line in Figure 11. 

Measurement configuration (a) was used for force estimation and the results are shown in case 

4. Using a different measurement configuration (b) shown in Figure20, the same input forces applied 

to the structure in case 4 are estimated for the purpose of Multi-metric measurement configuration 

and the results are shown in Figure 22 and for smaller time interval in Figure23.  

 

Figure 22. Same as Figure 16 but the measurement configuration is different. Sensor arrangement is 

shown in Figure 20b. 
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Figure 23. The results shown in Figure 22 are re-plotted for shorter time intervals to see the quality of 

estimation. 

It is seen that the results in the former sensor configuration (set “a”) for the strain and 

acceleration is better particularly the estimated force at Node 12. Generally, having sensors closer to 

the input locations increases the quality and accuracy of estimation [18,41]. It is observed that for the 

current formulation, using multi-metric measurements solves the stability issue. But if accurate 

estimation of excitation for a certain location is desired, there should be a measurement point close 

to that location. 

4. Discussion and Conclusions 

In this study, incorporation of strain measurements together with acceleration measurements in 

AKF process has been explored to provide a reliable and accurate force identification scheme for 

dynamic structures. Incorporating Multi-metric observations in AKF has been formulated and the 

method has been numerically validated using a planar truss structure simultaneously subjected to 

various types of forces. The proposed Multi-metric AKF approach showed significant improvements 

both in reliability and accuracy of dynamic force estimations under uncertain numerical modeling 

and measuring environment.  

When only acceleration measurements, which are cheap and easy-to-obtain in practice, were 

used, AKF was found to be reliable just for the cases where none of the measurement noises, 

modeling errors, low frequency and nonzero forces are present (see Table 2). Use of displacement 

measurements resolves the stability issues, but are expensive and difficult to deploy in practice. On 

the other hand, strain measurements are easier and more practical in many cases. As a remedy to the 

inaccuracy and instability with the force estimation problem, AKF to use both acceleration and strain 

measurements was formulated. And its efficacy was validated using numerical simulation of a truss 

structure subjected to broad band excitations. To have more realistic simulation, measurement 

noises (2%) and modeling error (5%) were considered in AKF. additionally, it was observed that 

using only strain measurements for AKF can estimate the low-varying components of excitation 

with good accuracy but not for the high-frequency components. The results for different 

measurement configurations and for different cases were summarized in Table 2. In the future, 

researching the optimization of measurement configuration will be carried out and experiments on 

the proposed multi-metric approach for AKF will be conducted both in lab- and field-scale testbeds 

to further examine its performance.  
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