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Abstract: In a surveillance camera environment, the detection of standing-pigs in real-time is
an important issue towards the final goal of 24-h tracking of individual pigs. In this study, we focus
on depth-based detection of standing-pigs with “moving noises”, which appear every night in
a commercial pig farm, but have not been reported yet. We first apply a spatiotemporal interpolation
technique to remove the moving noises occurring in the depth images. Then, we detect the
standing-pigs by utilizing the undefined depth values around them. Our experimental results show
that this method is effective for detecting standing-pigs at night, in terms of both cost-effectiveness
(using a low-cost Kinect depth sensor) and accuracy (i.e., 94.47%), even with severe moving noises
occluding up to half of an input depth image. Furthermore, without any time-consuming technique,
the proposed method can be executed in real-time.
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1. Introduction

The early detection of management problems related to health and welfare is an important aspect
of caring for group-housed livestock. In particular, caring for individual animals is necessary to
minimize the possible damage caused by infectious diseases or other health and welfare problems.
However, it is almost impossible for individual animals to be cared for by a small number of farm
workers who work on a large-scale livestock farm. For example, the pig farm from which we obtained
video monitoring data in Korea had more than 2000 pigs per farm worker.

Several studies using surveillance techniques have recently been conducted to automatically
monitor livestock, in what is known as “precision livestock farming” (PLF) [1]. Several attached
sensors, such as accelerometers, gyro sensors, and radio frequency identification (RFID) tags, are used
to automate the management of livestock farms in examples of PLF [2]. However, such approaches
increase costs, and require additional manual labor for activities such as the attachment and detachment
of sensors to and from individual animals by farm administrators. To circumvent this, studies have
been conducted that analyze data from non-attached (i.e., non-invasive) sensors (such as cameras) [2–5].
In this study, we focus only on video-based pig monitoring applications [6].

In fact, video-based pig monitoring applications have been reported since 1990 [7,8]. However,
because of the practical difficulties (e.g., light fluctuation, shadowing, cluttered background, varying
floor status caused by urine/manure, etc.) presented by commercial farms, even the accurate detection
of pigs in commercial environments has remained a challenging problem until now [9–43]. To consider
these practical difficulties, it is reasonable to employ a topview-based depth sensor. However, the depth
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values obtained from a low-cost sensor such as Microsoft Kinect may be inaccurate for classifying
a weaning pig as standing or lying. Furthermore, in many monitoring applications, the input video
stream data needs to be processed in real-time for an online analysis.

In this study, we propose a low-cost, practical, and real-time method for detecting standing-pigs
at night, with the final goal of achieving 24 h individual pig tracking in a commercial pig farm.
In particular, caring for weaning pigs (25 days old) is the most important issue in pig management,
because of their weak immunity. Therefore, we aim to develop a method for detecting standing-pigs
in a pig pen during a one month period after weaning (i.e., 25 days–55 days old). Compared with
previous work, the contributions of the proposed method can be summarized as follows:

• Standing-pigs are detected at night (i.e., with a light turned off) with a low-cost depth camera. It is
well known that most pigs sleep at night [44–46]. For the purpose of 24 h individual pig tracking,
we only need to detect standing-pigs (i.e., we do not need to detect the majority of lying-pigs at
night). Recently, low-cost depth cameras, such as Microsoft Kinect, have been released, and thus
we can detect standing-pigs using depth information. However, the size of a 20-kg weaning
pig is much smaller than that of a 100-kg adult pig. Furthermore, the accuracy of the depth
data measured from a topview Kinect degrades significantly, because there is a limited distance
(e.g., a maximum range of 4.5 m) and field-of-view (e.g., horizontal degree of 70.6 and vertical
degree of 60) in which depth values are covered. If we install a Kinect at 3.8 m above the floor
to cover the entire area of a pen (i.e., 2.4 m × 2.7 m), thus minimizing the installation cost for
a large-scale farm, then it is difficult to classify a weaning pig as standing or lying. To increase the
accuracy, we consider the undefined depth values around standing-pigs.

• A practical issue caused by moving noises is resolved. For example, in a commercial pig farm
with a harsh environment (i.e., disturbances from dust and dirt), there are many moving noises
(i.e., undefined depth values varying across frames) at night. Because these moving noises occlude
pigs (i.e., even up to half of a scene can be occluded by moving noises), we need to recover the
depth values that are occluded by the moving noises. Because we utilize the undefined depth
values around standing-pigs to increase the detection accuracy, we need to classify undefined
depth values as useful ones (i.e., caused by standing-pigs) and useless ones (i.e., caused by moving
noises). We apply spatial and temporal interpolation techniques to reduce the moving noises.
In addition, we combine the detection results of standing-pigs from the interpolated images and
the undefined depth values around standing-pigs to detect standing-pigs more accurately.

• A real-time solution is proposed. Detecting standing-pigs is a basic low-level vision task for
intermediate-level vision tasks such as tracking and/or high-level vision tasks such as aggressive
analysis. To complete the entire vision tasks in real-time, we need to decrease the computational
workload of the detection task. Without any time-consuming techniques to improve the accuracy
of depth values, we can detect standing-pigs accurately at a processing speed of 494 frames per
second (fps).

The remainder of this paper is structured as follows. Section 2 summarizes topview-based pig
monitoring results, targeted for commercial farms. Section 3 describes the proposed method for
detecting standing-pigs in various noise environments, including with moving noises. The experimental
results are presented in Section 4, and conclusions are presented in Section 5.

2. Background

As explained in Section 1, the accurate detection of pigs in commercial environments has been
a challenging problem since 1990, because of the practical difficulties (e.g., light fluctuation, shadowing,
cluttered background, varying floor status caused by urine/manure, etc.) presented by commercial
farms. Table 1 summarizes the topview-based pig monitoring results introduced recently [9–43].
Two-dimensional gray-scale or color information has been used to detect a single pig in a pen or
a specially built facility (i.e., in “constrained” environments) [9–11]. However, even with advanced
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techniques applied to 2D gray-scale or color information, it remains challenging to detect multiple
pigs accurately in a “commercial” farm environment [12–33]. For example, images from a gray-scale
or RGB camera are affected by various illuminations in a pig pen. Thus, a monitoring system based
on a gray-scale or RGB camera cannot detect objects in low- to no-light conditions. Although some
monitoring results at night have been reported using infrared cameras [34–36], problems caused
by a cluttered background cannot be perfectly solved. Although some researchers have utilized
a thermal camera to resolve the cluttered background problem [37], this is an expensive solution for
large-scale farms.

To solve the cluttered background problem for 2D information, some researchers have utilized
a stereo camera [38]. However, the accuracy measured from a stereo camera is far from a level at which
24 h individual pig tracking is possible, even with many pigs in a pen. Recently, low-cost depth cameras
such as Kinect have been released. Compared with typical stereo-camera-based solutions, a Kinect
can provide more accurate depth information at a much lower cost, without a heavy computational
workload [39–43]. In principle, Kinect cameras can recognize whether pigs are lying or standing
based on the depth data measured. However, a low-cost Kinect camera has a limited distance range
(i.e., up to 4.5 m), and the accuracy of the depth data measured by a Kinect decreases quadratically
as the distance increases [47]. Thus, the accuracy of the depth data measured by a Kinect degrades
significantly when the distance between it and a pig is larger than 3.8 m. Furthermore, the slate-based
floor of a pig pen generates many undefined depth values, because of the field-of-view of the installed
Kinect. A further issue is that a greater number of undefined depth values appear at the top of a depth
image (see Figure 1). Because of the ceiling structure of the pig pen in a commercial farm in which
we installed a Kinect, the Kinect could not be installed at the center of the pig pen. Considering these
difficulties, it is challenging to classify a 20-kg weaning pig as standing or lying using a Kinect camera
installed 3.8 m above the floor. Figure 1 shows the limitations caused by the characteristics of the
Kinect camera and the pig pen.
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Figure 1. Undefined values caused by various factors in the monitoring environment in a commercial farm.

In this study, we consider moving noises at night (see Figure 2) further. In a commercial farm,
we could observe many moving noises every night, and even up to half of a scene was occluded by
moving noises. For 24 h individual pig tracking in a commercial pig farm, we need to resolve this type
of practical problem. To the best of our knowledge, this is the first report on handling these types of
moving noises obtained from a commercial pig farm at night through a Kinect.

A final comment regarding previous research concerns real-time monitoring. Although online
monitoring applications should satisfy the real-time requirement, many previous results did not specify
the processing speed, or could not satisfy the real-time requirement (see Table 1). By carefully balancing
the tradeoff between the computational workload and accuracy, we propose a light-weight detection
method with an acceptable accuracy for the final goal of achieving a real-time “complete” vision
system, consisting of intermediate- and high-level vision tasks, in addition to low-level vision tasks.
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Table 1. Topview-based pig monitoring results (published during 2011–2017) targeted for commercial farms.

Information Camera
Type

No. of Pigs
in a Pen Pig Type

Classification
between

Standing and
Lying Postures

Management
of Moving

Noise

Processing
Speed (fps) Reference

2D

Color 1 Fattening Pig No No Not Specified [9]
Gray-Scale 1 Sow No No 1.0 [10]
Gray-Scale 1 Sow No No 2.0 [11]

Gray-Scale Not
Specified Sow + Piglets No No 4.0 [12]

Color 9 Piglets No No Not Specified [13]
Color 12 Piglets No No 4.5 [14]
Color 11 Fattening Pigs No No 1.0 [15]

Gray-Scale 2–12 Piglets No No Not Specified [16]
Color 7 Not Specified No No Not Specified [17]
Color 7 Not Specified No No Not Specified [18]
Color 7 Not Specified No No Not Specified [19]
Color 17–20 Fattening Pigs No No Not Specified [20]
Color 22 Fattening Pigs No No Not Specified [21]
Color 22 or 23 Fattening Pigs No No Not Specified [22]
Color 22 Fattening Pigs No No Not Specified [23]
Color 29 No No 3.7 [24]
Color 3 Not Specified No No 15.0 [25]
Color 10 Piglets No No Not Specified [26]
Color 10 Piglets No No Not Specified [27]
Color 10 Piglets No No Not Specified [28]
Color 10 Piglets No No Not Specified [29]
Color 10 Piglets No No Not Specified [30]
Color 10 Piglets No No Not Specified [31]
Color 12 Piglets No No 1–15 [32]
Color 22 Piglets No No Not Specified [33]

Infrared 1 Sow No No 8.5 [34]
Infrared ~16 Fattening Pigs No No Not Specified [35]
Infrared 6 or 12 Fattening Pigs No No Not Specified [36]
Thermal 7 Piglets No No Not Specified [37]

3D

Stereo 1 Piglet Not Specified No Not Specified [38]
Depth 1 29–139 kg Pig Not Specified No Not Specified [39]
Depth 1 Sow Yes No Not Specified [40]
Depth 1 Fattening Pig Not Specified No Not Specified [41]
Depth 10 25 or 60 kg Pigs Yes No Not Specified [42]
Depth 22 Piglets Yes No 15.1 [43]

Depth 13 Piglets Yes Yes 494.7 Proposed
Method

3. Proposed Approach

We initially define the terms used in the proposed method, to enhance the readability. Table 2
explains the main terms for each process.
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To detect standing-pigs at night in a pig pen, it is desirable to utilize a depth sensor, such as
a Kinect camera. This allows the sensor to gain depth information on pigs (i.e., the distance from
a pig to the camera) without light influences, such as the light being turned on or off in a pig pen.
However, because much dirt or dust may be generated at night in the pen, many moving noises
appear in a video stream obtained from the depth sensor. These noises make it difficult to detect
standing-pigs due to occlusions on them. Therefore, we propose a method to effectively remove the
noises generated from dirt or dust in the video, and to precisely detect standing-pigs using undefined
depth values (e.g., outlines) of standing-pigs. Figure 3 presents the overview of our detection method
for standing-pigs at night.
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Table 2. Definition of key terms.

Category Definition Explanation

Types of images

Iinput Depth input image
Ibackground Background image
Iinterpolate Image to which spatiotemporal interpolation is applied
Isubtract Image to which background subtraction is applied
Icandidate Image of candidates detected

Iedge Image of candidate edges
Ioutline Image of outlines detected around standing-pigs
Ioverlap Image overlapped between Ioutline and Iedge
Idilate Image to which dilation operator is applied

Icombine Image combining Ioverlap with Idilate
Ioutput Result image of standing-pigs

Types of undefined values

UDFf loor Undefined values caused by slates on the floor
UDFoutline Undefined values for outlines generated around standing-pigs
UDFmoving Undefined values of moving noises in an input image

UDFlimitation
Undefined values of Kinect’s limited distance and

field-of-view

3.1. Noise Removal and Outline Detection

Using depth values from a 3D Kinect camera, information on pigs can be obtained at night without
a light in a pen. However, undefined depth values corresponding to moving noises (i.e., UDFmoving)
emerged in this process due to the dirt or dust generated from pigs, and this disturbs the accurate
detection of pigs. To remove these noises, an interpolation technique using spatiotemporal information
is applied to the input video.
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Initially, an interpolation technique using a 2 × 2 window is applied to a current image,
with two consecutive images (i.e., using temporal information), in Iinput. As shown in Figure 4a,
the 2 × 2 window is used as spatial information. The 2 × 2 window moves within Iinput, and performs
the interpolation on every pixel in Iinput. The interpolation is performed in three cases according to
the pixel attributes in the window. In the first case, if more than two pixels in the 2 × 2 window have
defined depth values such as right of Figure 4a, then an interpolated pixel can be created through
their average calculation. In the second case, if there is only one pixel as a defined depth value in the
window such as left of Figure 4a, then the pixel can be specified as an interpolated pixel. In the third
case, if all pixels in the window are undefined such as middle of Figure 4a, then an interpolated pixel
is assigned as an undefined depth value (i.e., noise pixel). In this procedure, three interpolated pixels
obtained from each image are merged as a definitive interpolated pixel by calculating an average over
them. Note that an undefined depth value is not included in the average calculation. Here, Iinterpolate is
produced by integrating all of the interpolated pixels derived from all pixels in the input image. That is,
UDFmoving can be removed by repeating the interpolation technique for all of the images in Iinput.
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Figure 4. Applying the interpolation technique to remove undefined values in three consecutive images:
(a) an interpolated pixel is produced by averaging over consecutive images except for undefined values,
where moving noises are represented as bold boxes; and (b) Iinterpolate is produced by integrating all
interpolated pixels.

Although most UDFmoving areas usually move fast (see the bold boxes in Figure 4a), there are
relatively slow moving UDFmoving areas in certain consecutive images. In contrast with Figure 4b, some
of these relatively slow UDFmoving areas are not entirely removed by applying one spatiotemporal
interpolation (see Figure 5b). This problem is due to the duplication of coordinates of the noises in
consecutive images, and thus the interpolated pixels at such coordinates are continuously calculated
as an undefined value.
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To resolve this problem, the remaining noises in Iinterpolate can be removed by applying the
interpolation one more time. A pixel in the preceding image is checked at the same coordinate
corresponding to Iinterpolate, and it is mapped into Iinterpolate if it is recognized as a defined depth
value. However, if the pixel has an undefined depth value, this procedure is repeated until the
value at that coordinate is not an undefined depth value. Figure 5 illustrates the problem and its
solution for relatively slow moving noises, which are entirely removed by applying the spatiotemporal
interpolation technique one more time.
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Figure 5. Problem in which noises are not removed with one interpolation and its solution: (a) relatively
slow UDFmoving in consecutive images; and (b) resulting image from applying the interpolation
technique one more time.

Furthermore, depth values are not consistent for all pigs, owing to different growth rates.
For example, even if all of the pigs in a pig pen are weaning pigs (25 days old), a well-grown
pig may often be larger than the others. In the depth image, the larger weaning pig may appear
to be a standing-pig when it is actually sitting on the floor. To resolve this difficulty, we exploit
UDFoutline generated around standing-pigs. Because the distance between a weaning lying-pig and
the floor is small, UDFoutline values are not observed around a lying-pig. However, even for weaning
pigs, UDFoutline values are observed around standing-pigs. Figure 6 shows that standing-pigs have
UDFoutline values, but lying-pigs do not. Note that Figure 6 displays both color and depth images at
daytime, to verify that the undefined outlines are generated around standing-pigs only.

Therefore, UDFoutline can be used as beneficial information to detect standing-pigs, even though
UDFoutline occurs due to the limitation of the Kinect camera in Iinput. However, because UDFoutline
areas have the same values as other undefined values (i.e., 255), these are also removed after the
interpolation technique. Thus, it is necessary to distinguish between UDFoutline and other undefined
values. To distinguish UDFoutline, we exploit the differences between widths of UDFoutline and other
undefined values. For example, most areas with undefined values have widths that are greater
than three, whereas UDFoutline area has widths of less than two. These attributes help to accurately
distinguish UDFoutline from the others. First, 3 × 3 neighboring pixel values are compared to confirm
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whether they are UDFoutline or not. Then, if the total pixels contain fewer than two undefined values,
they are regarded as UDFoutline. Figure 7 shows that fewer than two undefined values in Iinput are
detected as UDFoutline.Sensors 2017, 17, 2757  8 of 19 
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3.2. Detection of Standing-Pigs

After removing UDFmoving using the spatiotemporal interpolation technique, the depth values in
Iinterpolate are subtracted from Ibackground. Because the distance from each pig to the camera is different
depending on the location of the pig, the depth values of pigs obtained from the Kinect camera need
to be subtracted from Ibackground. Ideally, the depth values obtained from a location under the same
condition should be consistent; however, the depth values obtained by a low-cost Kinect are not
consistent. For example, for the same location, different depth values of 76, 112 and 96 are obtained as
time progresses. To solve this inconsistency problem, Ibackground can be generated carefully as follows.
Initially, a depth video in the empty pen is acquired for ten minutes. Then, the spatial interpolation
is applied to Iinput to remove undefined values such as UDFf loor and UDFlimitation. Furthermore,
we compute the most frequent depth values of each pixel in Iinput over ten minutes. However,
for certain pixel locations within a floor, the resulting values may not be similar to those of adjacent
pixels. To resolve this problem, we apply line-filling, which replaces such a value with the average
of the adjacent values in the same row, in order to obtain Ibackground. Figure 8 shows the result of the
background subtraction for depth values in Iinterpolate.

From Isubtract, candidates for standing-pigs are detected by using a thresholding technique for
depth values. By analyzing Isubtract images, we found that the depth values for standing- and lying-pigs
have some overlapping ranges. If the depth values do not overlap, then we can simply set a threshold
to distinguish between standing- and lying-pigs. However, to resolve the overlapping problem,
we generate standing pig candidates Icandidate, and then verify these with the edge information
Iedge from the candidates and the outline information UDFoutline for standing-pigs. First, we can
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obtain Icandidate by detecting candidates in Isubtract that may be considered as standing-pigs by setting
a threshold. In addition, by using the thresholding technique, some undefined values resulting from
limitations of the monitoring environment can be removed. That is, the undefined values such as
UDFf loor and UDFlimitation are removed through the thresholding technique. Figure 9 shows candidates
detected as standing pigs, as well as unnecessary undefined values removed through the thresholding
in Isubtract.
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Based on both Icandidate and Ioutline, if UDFoutline is applied to Icandidate, then standing-pigs in the
pig pen can be identified more accurately. First, the candidates’ edges (i.e., Iedge) can be derived
using a Canny operator. In fact, Ioutline explained in Section 3.1 includes not only UDFoutline, but also
other undefined values. To derive a more accurate set of UDFoutline, the candidates’ edges in Iedge are
overlapped into Ioutline. Then, a dilation operator is applied to the candidates in Icandidate, to eventually
detect them as standing-pigs using the more accurate UDFoutline in Ioutline. Finally, the more accurate
UDFoutline values in Ioverlap are combined with Idilate. In Imerge, standing-pigs can be detected by
calculating an overlapping ratio between the dilated candidates and the more accurate UDFoutline.
In other words, if the boundaries of a dilated candidate overlap with the pixels of the more accurate
UDFoutline by more than 50%, then the candidate can be identified as a standing-pig in Ioutput. Figure 10
summarizes the procedures for detecting standing-pigs using both UDFoutline in Ioutline and candidates
in Icandidate, and Figure 11 shows the detection result for standing-pigs in the pig pen.

Finally, the proposed method is summarized in Algorithm 1, given below.
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Algorithm 1 Standing-pigs detection algorithm

Input: Depth Image
Output: Detected Image
Step 1:

While moving noise remaining
Apply spatiotemporal interpolation;
Subtract Ibackground with Iinterpolate;

Step 2:

If widths of undefined values ≤ 2:
Determine as an outline;
Else:
Determine as a noise and remove it on the area;
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Step 3:

If threshold1 ≤ subtracted pixel value ≤ threshold2:
Determine as candidates for standing-pigs;
Else:
Determine as a noise and remove it on the area;
Detect edges of candidates;

Step 4:

Overlap Iedge into Ioutline;

If outline and edge on the same area:
Determine as an outline;
Else:
Determine as a noise and remove it on the area;

Step 5:

Merge Ioverlap with Icandidate;

If candidate pigs touch outlines:
Detect standing-pigs;
Else:
Determine as a noise and remove it on the area;

4. Experimental Results

4.1. Experimental Environments and Dataset

In our experiment, the proposed method was evaluated using Intel Core i7-7700K 4.20 GHz
(Intel, Santa Clara, CA, USA), 32 GB RAM, Ubuntu 16.04.2 LTS (Canonical Ltd, London, UK),
and OpenCV 3.2 [48] for image processing. We installed a topview Kinect camera (Version 2.0, Microsoft,
Redmond, WA, USA) on a ceiling at a height of 3.8 m in a 2.4 m × 2.7 m pig pen located in Sejong
Metropolitan City, Korea.

In the pig pen, we simultaneously obtained color and depth videos from 13 weaning pigs (i.e., 25 days
old) through the Kinect camera. The color video had a resolution of 960 × 540 and 30 frames per
second (fps), while the depth video had a resolution of 512 × 424 and 30 fps.

As described in Section 3, it was impossible to detect standing-pigs in the color video, because
a light in the pig pen was turned off at night. Therefore, we only exploited the depth video, which
could be used to monitor pigs at night. We used 8 h of depth video, including daytime (07:00, 10:00,
13:00 and 16:00) and nighttime (01:00, 04:00, 19:00 and 22:00), which consisted of 480 depth images
(one image per minute). Because it was highly time consuming to create ground truth data, especially
for nighttime images (i.e., when the light was turned off), we selected one image for each minute as
a representative image. We then applied the proposed method to all the images to detect standing-pigs
in the pen.

4.2. Detection of Standing-Pigs under Moving Noise Environment

Before detecting standing-pigs in the pig pen, we removed moving noises using the spatiotemporal
interpolation technique. As explained in Section 3.1, we sequentially exploited spatial information to
remove the moving noises. Moreover, we used temporal information to remove certain problematic
noises, such as relatively slow moving noises. Then, 480 Iinterpolate images were obtained by applying
the interpolation technique to 1440 Iinput images. From Iinterpolate, we obtained 480 Isubtract images
by using background subtraction with Ibackground, and then obtained Icandidate to detect candidates by
applying the thresholding technique to Isubtract.
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For detecting the candidates, the defined depth values for standing- and lying-pigs in Isubtract
were measured as 9–30 and 4–15, respectively. In fact, the range of depth values for standing- and
lying-pigs overlapped, and a lying-pig in the overlapping interval might be detected as a standing-pig.
However, because our final goal is to implement a 24 h tracking system for pigs in the pen, it is not
a serious problem to detect some lying-pigs as standing-pigs. Thus, we set threshold1 to 9, to detect all
the standing-pigs without missing any. In addition, we set threshold2 to 30 to remove the remaining
undefined values. That is, if the depth values were greater than threshold1, then the depth values
were detected as candidates for standing-pigs. Moreover, if the depth values were greater than
threshold2, then the remaining undefined values were removed. Figure 12 shows differences of
detecting standing-pigs according to threshold1. As shown in Figure 12c,d, all the standing-pigs could
be detected by setting threshold1 to 9.

Sensors 2017, 17, 2757  12 of 19 

 

4.2. Detection of Standing-Pigs under Moving Noise Environment  

Before detecting standing-pigs in the pig pen, we removed moving noises using the 
spatiotemporal interpolation technique. As explained in Section 3.1, we sequentially exploited 
spatial information to remove the moving noises. Moreover, we used temporal information to 
remove certain problematic noises, such as relatively slow moving noises. Then, 480 ܫ௧௧ 
images were obtained by applying the interpolation technique to 1440 ܫ௨௧  images. From ܫ௧௧, we obtained 480 ܫ௦௨௧௧ images by using background subtraction with ܫ௨ௗ, and 
then obtained ܫௗௗ௧ to detect candidates by applying the thresholding technique to ܫ௦௨௧௧.  

For detecting the candidates, the defined depth values for standing- and lying-pigs in ܫ௦௨௧௧ 
were measured as 9–30 and 4–15, respectively. In fact, the range of depth values for standing- and 
lying-pigs overlapped, and a lying-pig in the overlapping interval might be detected as a standing-pig. 
However, because our final goal is to implement a 24 h tracking system for pigs in the pen, it is not 
a serious problem to detect some lying-pigs as standing-pigs. Thus, we set threshold1 to 9, to detect 
all the standing-pigs without missing any. In addition, we set threshold2 to 30 to remove the 
remaining undefined values. That is, if the depth values were greater than threshold1, then the depth 
values were detected as candidates for standing-pigs. Moreover, if the depth values were greater 
than threshold2, then the remaining undefined values were removed. Figure 12 shows differences of 
detecting standing-pigs according to threshold1. As shown in Figure 12c,d, all the standing-pigs 
could be detected by setting threshold1 to 9. 

 
(a) (b) (c) (d) 

Figure 12. Differences of detecting standing-pigs according to threshold1: (a) color image; (b) depth 
image; (c) detection of standing-pigs with threshold1 = 9; and (d) detection of standing-pigs with 
threshold1 = 15. 

To identify the standing-pigs among detected candidates, ܷܨܦ௨௧  in ܫ௨௧  was 
overlapped with edges of the candidates. This was conducted to identify the more accurate ܷܨܦ௨௧ of a standing-pig if the edges in a region of a candidate matched ܷܨܦ௨௧ in ܫ௨௧. If 
the candidates overlapped with the actual ܷܨܦ௨௧, then we finally identified the standing-pigs 
in these regions. Figure 13 displays the results for the detection of standing-pigs during the daytime 
and nighttime.  

Figure 12. Differences of detecting standing-pigs according to threshold1: (a) color image; (b) depth
image; (c) detection of standing-pigs with threshold1 = 9; and (d) detection of standing-pigs with
threshold1 = 15.

To identify the standing-pigs among detected candidates, UDFoutline in Iinput was overlapped with
edges of the candidates. This was conducted to identify the more accurate UDFoutline of a standing-pig
if the edges in a region of a candidate matched UDFoutline in Iinput. If the candidates overlapped with
the actual UDFoutline, then we finally identified the standing-pigs in these regions. Figure 13 displays
the results for the detection of standing-pigs during the daytime and nighttime.

4.3. Evaluation of Detection Performance

To evaluate the detection performance of the proposed method, we compared the number of
standing-pigs detected using our method with that of existing methods for object detection, which
included the Otsu algorithm [49] (i.e., well-known method for object detection) and YOLO9000 [50]
(i.e., a recently-used method for object detection based on deep learning).

In case of the Otsu algorithm, a background image was created by using the average and minimum
values of each pixel in the input images for ten minutes from the empty pig pen. Using the test images,
background subtraction was applied, and then the Otsu algorithm was performed. It is well known
that the background subtraction method using the minimum value can detect typical foregrounds
accurately with a Kinect camera [51]. However, as explained in Sections 2 and 3, there are many
difficulties in detecting standing-pigs after weaning. That is, we confirmed that standing-pigs in the
pen could not be detected at all, because the Otsu algorithm binarized results into undefined and
defined regions such as pigs, floor, and side-walls.

In the case of YOLO9000, we generated a model using the training data, which consisted of 600 depth
images. We set some parameters of YOLO9000 as follows: 0.001 for learning rate, 0.9 for momentum,
0.0005 for decay, leaky ReLU as the activation function, and 10,000 for the epoch. From each test image,
YOLO9000 produced bounding boxes to represent standing-pigs, and the confidence score was calculated
to measure the similarity between the training model and the bounding boxes produced from YOLO9000.
This score was used to detect the target objects (i.e., standing-pigs) among the bounding boxes, by using
a threshold in YOLO9000. We exploited the default threshold of 0.24 to detect standing-pigs in YOLO9000.
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It is well known that YOLO9000 can detect typical foregrounds accurately in real-time [52]. However,
YOLO9000 produced many false-positive and false-negative bounding boxes in detecting standing-pigs.
Figure 14 displays the results of the standing-pigs detection for each method.Sensors 2017, 17, 2757  13 of 19 
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Figure 13. Results of detection of standing-pigs during the daytime and nighttime: (a) detected 
standing-pigs during daytime (13:36:20–13:36:46); and (b) detected standing-pigs during nighttime 
(22:04:23–22:04:49). Because a light was turned off, corresponding color images are not shown 
during nighttime. 

Figure 13. Results of detection of standing-pigs during the daytime and nighttime: (a) detected
standing-pigs during daytime (13:36:20–13:36:46); and (b) detected standing-pigs during nighttime
(22:04:23–22:04:49). Because a light was turned off, corresponding color images are not shown
during nighttime.



Sensors 2017, 17, 2757 14 of 19

Sensors 2017, 17, 2757  14 of 19 

 

4.3. Evaluation of Detection Performance 

To evaluate the detection performance of the proposed method, we compared the number of 
standing-pigs detected using our method with that of existing methods for object detection, which 
included the Otsu algorithm [49] (i.e., well-known method for object detection) and YOLO9000 [50] 
(i.e., a recently-used method for object detection based on deep learning).  

In case of the Otsu algorithm, a background image was created by using the average and 
minimum values of each pixel in the input images for ten minutes from the empty pig pen. Using 
the test images, background subtraction was applied, and then the Otsu algorithm was performed. 
It is well known that the background subtraction method using the minimum value can detect 
typical foregrounds accurately with a Kinect camera [51]. However, as explained in Sections 2 and 3, 
there are many difficulties in detecting standing-pigs after weaning. That is, we confirmed that 
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Figure 14. Results of each method for detecting standing-pigs: (a,b) results during daytime; and
(c,d) results during nighttime. Because the light was turned off, corresponding color images are not
shown during nighttime.

As shown in Figure 14, the Otsu method could not detect standing-pigs at all, and thus we did
not compute the accuracy of the Otsu method. In fact, the Otsu algorithm has been performed using
a histogram distribution to classify as the background, and with the objects in an input image. However,
in our case, the depth values between the background and the objects were similar, and the depth
values of the noises had some differences with the objects. In addition, because the Otsu algorithm
binarized the background and objects as the same group, the pigs could not be detected using the Otsu
algorithm. Meanwhile, YOLO9000 is a recent method for object detection. As YOLO9000 imitates the
process in which the human brain receives visual information, it learns the feature vectors optimized
for training samples by themselves, and improves the performance of object classification by using
these. Therefore, we compared the detection accuracy of the proposed method with that of YOLO9000.

In the experimental results for the proposed method and YOLO9000, we calculated the detection
accuracy for standing-pigs to compare the performance of each method. The detection accuracy was
calculated for each method using the equation below:

Accuracy =

(
1 − FP + FN

TP + FN

)
× 100 (1)

where true positive (TP) is “standing-pigs” identified as “standing-pigs”, true negative (TN) is
“lying-pigs or noises” identified as “not standing-pigs”, false positive (FP) is “lying-pigs or noises”
identified as “standing-pigs”, and false negative (FN) is “standing-pigs” identified as “lying-pigs
or noises”, respectively. In particular, for each standing-pig, if the detected result had more than
50% intersection-over-union (IoU) [53] with the ground truth, then it was regarded as TP. Otherwise,
it was regarded as FN. In Equation (1), the denominator (i.e., TP + FN) represents the number of
standing-pigs, and the numerator (i.e., FP + FN) represents the number of detection failures. That is,
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the accuracy is comprised of how many pigs are failed to be detected as standing- or lying-pigs among
the actual standing-pigs.

Based on the experimental results, the detection accuracies for standing-pigs were measured
as 94.47% (proposed method) and 86.25% (YOLO9000 method) as shown in Table 3. In Table 4,
the number of undefined pixels means the average percentage of undefined pixels from the total
number of pixels of Iinput. Even if this comprised more than 20% of the input image, it was possible to
detect standing-pigs with a higher accuracy using the proposed method. Because we set threshold1
to 9, we could detect all the standing-pigs using the proposed method. As shown in Figure 14c,d,
we could even detect standing-pigs occluded by moving noises, by applying the spatiotemporal
interpolation. Furthermore, all the false standing-pigs detected were lying-pigs (having distance
values overlapped with standing-pigs). On the contrary, with YOLO9000, some of standing-pigs were
missed, and thus 24-h individual pig tracking might not be possible with this method. In addition,
the false standing-pigs detected by YOLO9000 consisted of the floor or moving noises as well as
lying-pigs (see Figure 14).

Table 3. Accuracy of standing-pig detection.

Method Accuracy (%)

Proposed method 94.47
YOLO9000 86.25

Table 4. Results for the detection of standing-pigs during daytime and nighttime.

No. of
Undefined
Pixels (%)

No. of
Standing-Pigs

Proposed Method YOLO9000 [50]

No. of True
Standing-Pigs

Detected

No. of False
Standing-Pigs

Detected

No. of Actual
Standing-Pigs

Detected

No. of False
Standing-Pigs

Detected

01:00 21.06 28 28 0 28 33
04:00 19.80 39 39 3 39 9
07:00 21.52 496 496 21 468 20
10:00 23.95 121 121 5 114 4
13:00 23.75 202 202 15 199 8
16:00 22.83 190 190 12 186 6
19:00 21.73 59 59 2 57 18
22:00 20.51 51 51 5 48 18

Total - 1186 1186 63 1139 116

Furthermore, we measured the execution time of each method, in order to confirm the real-time
performance of standing-pig detection. As a result, the proposed method provided a faster processing
speed in detecting standing-pigs than that of YOLO9000. Table 5 presents the processing speeds
of each method for detecting standing-pigs. As explained in Section 1, our final goal is to develop
a complete monitoring system, including both intermediate- and high-level vision tasks in real-time.
By considering the further procedures in both intermediate- and high-level vision tasks, the detection of
standing-pigs needs to be executed as fast as possible. Without time-consuming techniques (i.e., at least
few seconds are required to process a single depth image to improve inaccurate depth values) such as
in [54,55], it is possible to develop a real-time pig monitoring system including both intermediate- and
high-level vision tasks.

Table 5. Average processing speed for standing-pigs detection.

Method Frames per Second

Proposed method 494.7
YOLO9000 87.0
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5. Conclusions

The automatic detection of standing-pigs in a surveillance camera environment is an important
issue for the efficient management of pig farms. However, standing-pigs could not be detected
accurately at night on a commercial pig farm, even using a depth camera, owing to moving noises.

In this study, we focused on detecting standing-pigs in real-time in a moving noise environment to
analyze individual pigs with the ultimate goal of 24-h continuous monitoring. That is, we proposed
a method to detect standing-pigs at night without any time-consuming techniques. In the preprocessing
step, the noise in the depth image was removed by applying a spatiotemporal interpolation technique,
to alleviate the limitations of a low-cost depth camera such as Kinect. Then, we detected the standing-
pigs by carefully generating a background image and then applying a background subtraction
technique. In particular, we utilized undefined outline information (i.e., the undefined depth values
around standing-pigs) to detect standing-pigs in a moving noise environment.

Based on the experimental results for 480 video images (including 1186 standing-pigs) over
eight hours (i.e., obtained during 01:00–10:00 and 13:00–22:00 in intervals of three hours), we could
correctly detect all 1186 standing-pigs (while the ground truth-based accuracy was 94.47%) in real-time.
As a future work, we will use the infrared information obtained from a Kinect sensor to improve the
detection accuracy further. In addition, we will also consider the case of monitoring a large pig room
by using multiple Kinect sensors. By extending this study, we will develop a real-time 24-h individual
pig tracking system for the final goal of individual pig care.
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