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Abstract: After decades of research, there is still no solution for indoor localization like the GNSS
(Global Navigation Satellite System) solution for outdoor environments. The major reasons for
this phenomenon are the complex spatial topology and RF transmission environment. To deal with
these problems, an indoor scene constrained method for localization is proposed in this paper,
which is inspired by the visual cognition ability of the human brain and the progress in the computer
vision field regarding high-level image understanding. Furthermore, a multi-sensor fusion method is
implemented on a commercial smartphone including cameras, WiFi and inertial sensors. Compared to
former research, the camera on a smartphone is used to “see” which scene the user is in. With this
information, a particle filter algorithm constrained by scene information is adopted to determine the
final location. For indoor scene recognition, we take advantage of deep learning that has been proven
to be highly effective in the computer vision community. For particle filter, both WiFi and magnetic
field signals are used to update the weights of particles. Similar to other fingerprinting localization
methods, there are two stages in the proposed system, offline training and online localization.
In the offline stage, an indoor scene model is trained by Caffe (one of the most popular open source
frameworks for deep learning) and a fingerprint database is constructed by user trajectories in
different scenes. To reduce the volume requirement of training data for deep learning, a fine-tuned
method is adopted for model training. In the online stage, a camera in a smartphone is used to
recognize the initial scene. Then a particle filter algorithm is used to fuse the sensor data and
determine the final location. To prove the effectiveness of the proposed method, an Android
client and a web server are implemented. The Android client is used to collect data and locate
a user. The web server is developed for indoor scene model training and communication with
an Android client. To evaluate the performance, comparison experiments are conducted and the
results demonstrate that a positioning accuracy of 1.32 m at 95% is achievable with the proposed
solution. Both positioning accuracy and robustness are enhanced compared to approaches without
scene constraint including commercial products such as IndoorAtlas.

Keywords: indoor scene recognition; deep learning; indoor localization; WiFi; magnetic field strength;
particle filter; smartphone

1. Introduction

After decades of research, there are still no pervasive products for indoor localization while the
demand for indoor localization-based service is increasing rapidly in smart cities [1]. Recent years
have witnessed a lot of work on indoor localization. Most of them try to provide a widely used
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scheme for indoor localization and achieve satisfying performance like GPS in outdoor environments.
Among these [2–6], fingerprinting-based methods are the most popular due to their effectiveness and
independence of infrastructure. Generally, fingerprinting-based methods include Wi-Fi and magnetic
fingerprinting. Both of them are based on an assumption that each location has a unique signal feature.
The system of fingerprinting localization is usually divided into two phases: offline training and online
processing. In the offline phase, Wi-Fi-received signal strength (RSS) or magnetic field strength (MFS) at
different reference points are collected to build a radio map. In the online phase, users can sample RSS
or MFS data at their positions and search similar signal patterns in the database. The corresponding
location with the most similar pattern is considered as a positioning result.

However, although this kind of scheme is easy to be established and can achieve fine performance
in the first few months, it still is unable to become a wildly used solution in the location-based service
(LBS) market due to these challenges: (a) Data collection is labor-intensive and time-consuming.
Surveyors need to collect enough signal samples at every reference point to build the fingerprint
database. (b) Database maintenance is difficult, since signal patterns change over time and are
vulnerable to environmental changes. In order to guarantee the accuracy of the indoor localization
system, fingerprint database updating is required in an appropriate time interval, which is difficult
and time-consuming. (c) Ambiguities in positioning results for the reason that different locations may
have same signal patterns, especially for magnetic fingerprints. In most of the time, single source of
signal is not enough to guarantee the accuracy of positioning result. (d) Low efficiency in fingerprint
database matching. When the positioning area is considerable wide, the fingerprint database may be
too large to give a positioning result in real-time on commercial smartphones.

To overcome the drawbacks of traditional fingerprinting-based indoor localization, researchers
have proposed a large body of solutions. Among these solutions, a calibration-free mechanism
which leverages motion information of users has been formed [4–7]. Whereas, the accuracy and
robustness of these systems are not enough for wide use due to the complexity and diversity of
indoor environments. To solve these problems, this paper presents a scheme which fully utilizes
built-in sensors on a smartphone, including camera, accelerometer, gyroscope, compass, magnetometer
and WiFi. Inertial sensors such as accelerometer, gyroscope and compass are used to record users’
trajectories by pedestrian dead-reckoning (PDR). Every trajectory is construct by a step vector and
every step consist of heading, WiFi RSS vector and magnetic field strength (MFS) vector. These steps
are used to replace reference points in former fingerprinting-based systems. That is to say, in the
proposed system, a fingerprint database can be built by walking trajectories of a user. A surveyor is
not required to stay and wait at a reference point to collect signal samples. In this way, difficulties
in database construction and maintenance are greatly decreased. Furthermore, inspired by our own
spatial cognition experience in indoor environments, the “eye” (camera) of a smartphone is used to
“see” the scene around a user. This procedure will give a priori information for localization. With scene
information constrained, the searching range of fingerprint database is narrowed down and signal
ambiguities are remarkably decreased as a result. To utilize scene information, every trajectory will
be attached with a scene label in the database construction phase. To recognize a scene, an indoor
scene model will be trained via fine-tuned deep convolutional neural networks (CNNs). The training
data is captured by the camera on a smartphone. In the positioning phase, scene recognition will be
first conducted. Then, a matching procedure will be carried out to narrow the fingerprint database to
a small area (only contain fingerprints in that scene). Finally, a user’s location will be estimated by
a particle filter algorithm which fuses WiFi and MFS signals.

The main contributions of this paper can be concluded as follows.

(1) To imitate the visual cognition ability of human, a scene recognition module implemented with
deep learning is adopted to improve the accuracy and robustness of infrastructure-free indoor
localization system.

(2) A practical indoor localization scheme is designed which digging the full potential of built-in
sensors on a smartphone. Particle filter algorithm is used in sensor data fusion.
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(3) The database construction in this paper is labor-saving and easily to be extended as
a crowdsourcing solution for the reason that data is automatically collected while users’ walking.

(4) The proposed system is implemented on Android platform and performance is evaluated in
a challenging indoor environment which includes several glass walls and a patio.

The rest of this paper is organized as follows. Related works are reviewed in Section 2. System
architecture and methodology in proposed system are demonstrated in Section 3. Experiments and
performance evaluations are presented in Section 4. Sections 5 and 6 are discussion and conclusion of
the whole work and give suggestions in future research.

2. Related Work

The literature on fingerprinting-based indoor localization is long and rich. He et al. [8]
overviews recent advances on WiFi fingerprinting localization. The survey includes two aspects.
One is how to make use of signal patterns, user collaboration and motion sensors. Another is
how to reduce labor-intensive database construction, maintain a fingerprint database and calibrate
heterogeneous devices. Moreover, Yang et al. [9] supplies a comprehensive literature review on how
mobility information enhances smartphone-based indoor localization. These studies indicate that
sensor-fusion-based methods are main trends of future pervasive indoor localization services.

Earlier work for sensor-fusion-based indoor localization method can go back to [7],
which utilizes commercial smartphones only. Although this system provides a reliable step detection
and heading estimation algorithm, it requires users to provide initial location on an indoor map.
LiFS systems [5] need little intervention to be deployed since mapping between fingerprint space
and stress-free floor plan is created. In this process, mobility information is used to transform
a floor plan to a stress-free floor plan and signal patterns are used to extract indoor space features
including corridor and room. A more flexible deployment was proposed by Zheng et al. [10], which is
a self-deployable system depending on trajectories recorded by guiders. In this system, followers can
be navigated to their destination by recorded trajectories. Other similar studies also include [11–14].
Chen et al. [11] combined WiFi, pedestrian dead-reckoning (PDR) and landmarks with a Kalman filter
algorithm. Liu et al. [12] employed spatial correlation extracted from user’s motion. Chen et al. [13]
adopted a maximum likelihood-based fusion algorithm to process WiFi and PDR information. While
Shu et al. [14] use local disturbances of a geomagnetic field as features and incorporate WiFi signals to
achieve a relatively high accuracy.

In the computer vision community, scene recognition has attracted lots of attention for it is a highly
valuable perceptual ability of indoor mobile robots. Previous studies relate to indoor scene recognition
including [15–22]. In [22], local and global information are combined to extract indoor scene prototype.
In terms of practical training for deep CNNs, references [23–27] give different architectures for different
vision tasks. Generally, with a large enough dataset, increasing the capacity of network can improve
recognizing accuracy. Krizhevsky et al. [27] designed an eight-layer network to classify 1000 classes in
ImageNet with a low error rate. Girshick et al. [23] proposed R-CNN (regions with CNN features) to
improve object detection performance and achieved a remarkable enhancement. He et al. [24] allowed
CNNs input arbitrary-size images with a spatial pyramid pooling strategy. References [25,26] devoted
to understand features in hidden layers. Zhou et al. [25] showed that object detectors emerged inside
CNNs trained for scene recognition. Yosinski et al. [26] studied how features in different layers affect
the results of transfer learning based on a deep CNN. Considering recognition accuracy and efficiency,
an eight-layer architecture is appropriate for our task.

Compared with previous schemes, this paper combines not only WiFi, PDR and geomagnetic
features but also cameras to implement a high performance indoor localization system. The camera
is adopted to extract the whole semantic information of locating area which noted as indoor scenes.
Ref. [28] also combined an optical camera on a smartphone. However, the use of visual information
in that work is different from the proposed system. They extracted SIFT features to calculate image
matching factors along with orientation sensors. While this paper adopts deep CNNs to recognize
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indoor scenes without any feature extraction which needs high-cost computation. To evaluate the
performance, fingerprint database construction in this paper is similar to a trajectory-based system
which is quite popular in both academia [4–7,10] and industry [29]. The major difference between the
proposed system and other trajectory-based systems is that they have not taken visual information
into account in localization process. For human experience, visual ability is important for us to locate
ourselves and navigate. Applying this useful information to localization systems is helpful to improve
the performance. In the proposed system, image data are simultansously collected with other sensors
such as WiFi, magnetometer, accelerometer, gyroscope and compass. Trajectories are collected and
organized with scene labels. These scene labels can be used to give a boundary of fingerprint database
in the localization phase.

Compared to other indoor scene recognition approaches, scene definitions in this paper are
different since the aim of the proposed system is to accurately locate a user. Indoor scenes are labeled
combined with localization areas in this paper. While other approaches label them based on their
functionalities, such as corridor, bookstore, bedroom, library, gym and so on. In this system, not only
category of a scene can be recognized, but also a specific one can be located. Regarding recognition
methods of indoor scenes, deep learning is taken into account in this paper. Compered to [22],
deep learning is more simplified since it is not necessary to define local or global features. The outputs
of hidden layers can be regarded as features which are computed by feedforward neural networks.
However, since deep learning is a data-hungry method, transfer learning can be adopted to overcome
deficits of training data. In [15], Oquab et al. transferred image representations learned with CNNs
on ImageNet dataset to other vision tasks. Besides, Espinace et al. [21] has proven that contextual
relations of objects and scenes can facilitate indoor scene recognition. Therefore, a fine-tuned CNN
is adopted to train the indoor scene recognition model in this paper, which is based on a pre-trained
model with a large-scale dataset for object recognition [30]. In this way, even without a considerable
dataset, an indoor scene model can still be trained to recognize a scene with high accuracy.

3. System Overview and Methods

In this section, an overview of the system is presented. Then, key modules and important
algorithms are described, which include data acquisition, fingerprints processing, scene model training
and location estimation.

3.1. System Overview

The architecture of the proposed system is shown as Figure 1. The whole procedure is similar to
traditional fingerprinting localization schemes which contain two phases: offline training and online
localization. In the offline phase, not only a fingerprint database should be built, but also an indoor
scene recognition model will be trained through deep convolutional neural networks. In the online
phase, scene recognition will be executed before location estimation to give a constraint for localization.
We define scene labels in areas where it is hard to discriminate WiFi signal patterns or magnetic signal
patterns. For instance, WiFi fingerprinting often fails to locate a user correctly in an open area such as
a patio or a wide hall. While magnetic fingerprinting usually confuses locations for the reason that
there are only three dimensions for magnetic measurements from the magnetometer in smartphones.
More specifically, in the offline phase, the modules in the proposed system include data acquisition,
fingerprint processing and indoor scene model training. In the online phase, the system includes scene
recognition, location space narrowing and location estimation.

3.2. Data Acquisition and Fingerprints Processing

In this part, details of data acquisition and fingerprint processing are described. Both of these
procedures are implemented on a smartphone.
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3.2.1. Data Acquisition 

In the stage of data acquisition, images are automatically captured along with the WiFi received 
signal strength indicator (RSSI) and magnetic field strength (MFS). In the meantime, a step detection 
module following [7] will be activated and heading of every step will be recorded. The illustration of 
data acquisition while walking is shown as Figure 2.  

 
Figure 2. Data acquisition procedure while walking. Note that, WiFi RSSI vector is not required in 
every step, for its sampling frequency is slower than other sensors. If WiFi is not available, it will be 
set to null in a step vector. 

Figure 1. System architecture. MFS, RSSI and TPs refer to convolutional neural networks, magnetic
field strength, received signal strength indicator and transition points, respectively.

3.2.1. Data Acquisition

In the stage of data acquisition, images are automatically captured along with the WiFi received
signal strength indicator (RSSI) and magnetic field strength (MFS). In the meantime, a step detection
module following [7] will be activated and heading of every step will be recorded. The illustration of
data acquisition while walking is shown as Figure 2.

Sensors 2017, 17, 2847  5 of 20 

 

 

Figure 1. System architecture. MFS, RSSI and TPs refer to convolutional neural networks, magnetic 
field strength, received signal strength indicator and transition points, respectively. 

3.2.1. Data Acquisition 

In the stage of data acquisition, images are automatically captured along with the WiFi received 
signal strength indicator (RSSI) and magnetic field strength (MFS). In the meantime, a step detection 
module following [7] will be activated and heading of every step will be recorded. The illustration of 
data acquisition while walking is shown as Figure 2.  

 
Figure 2. Data acquisition procedure while walking. Note that, WiFi RSSI vector is not required in 
every step, for its sampling frequency is slower than other sensors. If WiFi is not available, it will be 
set to null in a step vector. 

Figure 2. Data acquisition procedure while walking. Note that, WiFi RSSI vector is not required in
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When a step has been detected in a scene, the position of that point can be computed as:{
xi+1 = xi + stepLength ∗ cos(ri)

yi+1 = yi + stepLength ∗ sin(ri)
(1)

where ri is the heading of stepi and stepLength can be predicted by an empirical model using
Equation (2) proposed by [31].

stepLength =

(
0.7 + a(H − 1.75) +

b ∗ (StepFrequency− 1.79) ∗ H
1.75

)
∗ c (2)

a, b and c are model parameters for each person and can be calibrated by pre-training.
WiFi and MFS data are stored as vectors which are step-indexed. However, the sampling

rate of WiFi is slower than other sensors. Thus, it is not necessary to wait for WiFi data at each
step. In other words, if WiFi is not available, set it to null in this step. Since MFS data provided by
a smartphone (Android) are raw data (in µT) for each of the three coordinate axes which are shown as
Figure 3. The value of each axis is influenced by orientation of a smartphone. So we compute the sum
of the three-dimensional raw measurements to represent the MFS.

M =
√

mx2 + my2 + mz2 (3)

To guarantee the quality of data, we hold the smartphone in a fixed orientation as far as possible,
such as ‘in front of chest with 60◦’.
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To combine scene information with location appropriately, we introduce the definition of transition
points (TPs). Most of the transition points are in the boundary of scenes. In the data collection process,
transition points are stop stations for scene label change. In most cases, TPs are start points or end
points of indoor scenes. As shown in Table 1, (x0, y0) is a start point of Scene S1, while (x1, y1) is
a start point of Scene S2 as well as end point of Scene S1, etc. For other data in the table, where k1,
k2, . . . , k(n−1) are numbers of steps detected in a scene, while r1, vrssi 1 and vmfs 1 are headings, vector
of RSSI and vector of MFS at every step, respectively. A scene label can be seen as an attribute for TPs
and steps.

Table 1. Information of data storage.

Scene Labels TPs 1 Steps Heading WiFi RSSI MFS 1

S1 (x0, y0) k1 (r1, r2, ..., rk1) (vrssi 1, vrssi 2, ..., vrssi k1) (vmfs 1, vmfs 2, ..., vmfs k1)
S2 (x1, y1) k2 (r1, r2, ..., rk2) (vrssi 1, vrssi 2, ..., vrssi k2) (vmfs 1, vmfs 2, ..., vmfs k2)
. . . . . . . . . . . . . . . . . .

Sn−1 (xn, yn) kn−1 (r1, r2, ..., rkn−1) (vrssi 1, vrssi 2, ..., vrssi kn−1) (vmfs 1, vmfs 2, ..., vmfs kn−1)
1 TPs and MFS indicate transition points and magnetic field strength.

Since deep learning is a kind of data-hungry method, a crowdsourcing method is designed to
enlarge the training dataset. Images captured in the online phase also will be saved to server. Based on
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our recognition task, 20 different scene labels are defined which cover two floors in our laboratory.
Examples of these scenes in the third floor of our lab are shown as Figure 4. The whole scene labels
will be demonstrated in experiments. There are two guidelines for us to define indoor scenes.

• Firstly, locations with the same scene label must have same semantic significance. For instance,
as shown in Figure 4, point 3 belongs to room 313 while point 4 belongs to patio, it is obvious
they are in different scenes.

• Secondly, locations with the same semantic significance but in sensitive areas are preferrentially
separated into different scenes. The sensitive areas here are more likely to achieve high error rate
in the positioning phase. For instance, magnetic fingerprinting methods are difficult to distinguish
locations at each side of a glass wall or door. As illustrated in Figure 4, the wall between room 313
and patio is a glass one. So the corridor inside room 313 and the corridor on the left of patio are
defined as two different scenes to distinguish locations such as point 3 and point 4 even better.
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3.2.2. Fingerprints Processing

The final database of fingerprints contains two parts, one is TP-indexed, and the other is
step-indexed. As described in the previous section, when walking around in a scene, WiFi RSSI
and MFS are collected and organized by step. In order to improve the localization accuracy at start
points, a user should stop at TPs to collect WiFi signal for at least 30 samples. Therefore, TPs can be seen
as robust reference points and used as initial points for pedestrian dead-reckoning (PDR). As illustrated
in Figure 5a, we defined nine scenes in the third floor of a laboratory, and the corresponding number of
transition points is ten. Thus, we have ten stable reference points in this floor, and other locations are
indexed by detected steps. In Figure 5b, change of MFS in a corridor (S9) is illustrated. It has shown that
magnetic signal pattern is distinguishable in a five-step range, and it will be used to compute DTW
distance in localization process.
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3.3. Indoor Scene Model Training

In this section, fundamentals of a deep convolutional neural network is described, as well as
a fine-tuning method for the indoor scene model with our own dataset. The training is implemented
on the server side with GPU. Although methods for training a deep model on mobile devices have
been proposed by some researchers [32,33], the capability of a modern smartphone is still not sufficient
for this large computation requirement. In this paper, we use Caffe [34], an open source framework of
deep learning, to implement model training and scene recognition. This framework is widely used in
the computer vision community, and lots of trained Caffe models for different tasks with all kinds of
architectures and datasets are provided in Caffe Model Zoo [35].

3.3.1. Deep Convolutional Neural Networks (CNNs)

As illustrated in Figure 6, the architecture of CNNs used in the proposed scheme is similar to
CaffeNet [36], which is modified from AlexNet [27] and provided by Berkeley AI Research (BAIR).
As we can see, this network consist of five convolutional layers (conv1, conv2, conv3, conv4, conv5)
and three fully connected layers (fc6, fc7, fc8), which conv1, conv2 and conv5 are followed with pooling
layers (pool1, pool2, pool5) as well as normalization (norm1, norm2, norm5). Note that the outputs of
fc8 are 1000, which indicates the number of classes that need to be predicted for ImageNet datasets.
For our task, there are 20 scenes in our dataset. Therefore, the output of fc8 is 20 in our networks.
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AlexNet with two differences: (1) training without the relighting data-augmentation; (2) pooling is
switched to be done in front of normalization. CaffeNet is the base network for the proposed indoor
scene model training.
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For more details, specification of CaffeNet is given as Table 2. A convolution computation [37]
can be denoted as Equation (4), where I is a two dimensional image as input, and K is
a two-dimensional kernel.

S(i, j) = (I, K)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n) (4)

g(G, V, s) =
∂

∂Ki,jk,l
J(V, K) = ∑

m,n
Gi,m,nVj,(m−1)·s+k,(n−1)·s+l (5)

In the training process, derivations with respect to the weights in kernel need to be computed.
To do so, we can use a function as (5), where s stands for stride in convolution, V is multichannel
image, G is a tensor which computed by cost function J. The last layer of CaffeNet is a loss layer,
which utilize SoftmaxWithLoss denoted as (6), which zj stands for jth category in a recognition task.

l̃ = −log

(
ezy

∑m
j=1 ezj

)
= log

(
m

∑
j=1

ezj

)
− zy (6)

Table 2. Specification of CaffeNet.

Layers Kernel Size Stride Pad Output

conv1 11 4 0 96
pool1 3 3 0 96
con2 5 1 2 256
pool2 3 2 0 256
conv3 3 1 1 384
conv4 3 1 1 384
conv5 3 1 1 256
pool5 3 2 0 256

fc6 / / / 4096
fc7 / / / 4096
fc8 / / / 20

3.3.2. Fine-Tuned Deep CNNs for Indoor Scenes Recognition

As mentioned before, deep learning needs large amounts of training data, which is difficult for
a specific vision task like ours. However, for the representation power of CNNs, trained model based
on ImageNet, which is a large-scale object dataset, can be used as initial value in our training process.
Since high level features are already learned in hidden layers, it is not necessary to train our model
from scratch. The fine-tuning process based on our dataset is shown in Figure 7. Features learned from
ImageNet are used to be transferred to our classification task.

As demonstrated in Figure 7, outputs of the final layer are redefined to fit the categories of indoor
scenes in our task. After getting the pre-trained network on ImageNet, we fine-tune parameters in
the internal layers (conv1–fc7) to decrease the loss computed by the last layer (fc_new). Fine-tuning
is a back propagation process which updates weights of parameters in hidden layers to decrease
the loss. The most important tip for fine-tuning is the initial learning rate which need to be small to
avoid over-fitting.



Sensors 2017, 17, 2847 10 of 20

Sensors 2017, 17, 2847  10 of 20 

 

 
Figure 7. Fine-tuning a pre-trained network for indoor scene recognition. The outputs of final fully-
connected layer for indoor scene task are 20 instead of 1000 in CaffeNet. 

3.4. Location Estimation 

In the online phase of the proposed system, locations can be estimated by three steps: current 
scene recognition, localization space narrowing and final localization estimation.  

3.4.1. Indoor Scene Recognition 

After training the indoor scene classifier, it will be deployed on a web server which can 
communicate with smartphones and receive recognition requests from clients. In our case, images 
from smartphones are captured automatically without special requirement for users, such as stop 
walking and deliberate focus on the current scene. 

Before recognizing, preprocessing is needed to make test images meet the requirements of 
CaffeNet. The default configuration of CaffeNet is like this: format of image is BGR, pixel values start 
in the range of [0, 255] and subtract the mean pixel values of training data from them. The results 
present as top-5 probabilities with scene names, and we take top-1 as a result of scene recognition. 
However, it is a big challenge to allow image capturing to run all the time for it is extremely power-
consuming. Thus, detection of proper time for capturing is needed. To solve this problem, we utilize 
TPs to detect potential scene change (Algorithm 1). k-Nearest Neighbor (kNN) algorithm is adopted 
during this process. Note that, the result of scene change detection is not the only activator for image 
capturing. It can also be activated by user input when necessary. 

Algorithm 1. Ttransition Point Detection. 
Input: Samples of WiFi RSSI 

Output: TP’s postion 
Begin: minimum distance equals infinite, nearest TP equals TP1 

1: for every TP fingerprint in database do 
2:     while n < number of APs scanned do 
3:         compare mac address of every AP with TP fingerprint 
4:         if mac address is matched 
5:             number of matched APs ++ 
6:         end if 
7:     end while 
8:     if number of matched APs > 3 
9:         compute signal distance between samples and TP 
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3.4. Location Estimation

In the online phase of the proposed system, locations can be estimated by three steps: current
scene recognition, localization space narrowing and final localization estimation.

3.4.1. Indoor Scene Recognition

After training the indoor scene classifier, it will be deployed on a web server which can
communicate with smartphones and receive recognition requests from clients. In our case, images
from smartphones are captured automatically without special requirement for users, such as stop
walking and deliberate focus on the current scene.

Before recognizing, preprocessing is needed to make test images meet the requirements of
CaffeNet. The default configuration of CaffeNet is like this: format of image is BGR, pixel values start in
the range of [0, 255] and subtract the mean pixel values of training data from them. The results present
as top-5 probabilities with scene names, and we take top-1 as a result of scene recognition. However,
it is a big challenge to allow image capturing to run all the time for it is extremely power-consuming.
Thus, detection of proper time for capturing is needed. To solve this problem, we utilize TPs to detect
potential scene change (Algorithm 1). k-Nearest Neighbor (kNN) algorithm is adopted during this
process. Note that, the result of scene change detection is not the only activator for image capturing.
It can also be activated by user input when necessary.

3.4.2. Space Narrowing and Localization

In this part, a fusion-based method is adopted to estimate user’s location. As described previously,
all of the TPs or steps in a fingerprint database that have an attribute of an indoor scene. After the
current scene is recognized, we use this attribute to reduce searching space of locations. In other words,
users can be located in a sub-fingerprint database. Thus, localization error will decrease in sensitive
areas which are hard to distinguish in other indoor localization systems.

The process of localization is shown in Figure 8. When the app starts, it will lock-on to a transition
point and start recognition. After the current scene is detected, the fingerprint database is narrowed to
this scene. Then, particle filter is used in this sub-fingerprints database. The transition point locked-on
is regarded as a start point to spread particles. When a step is detected, the position of each particle
is updated by corresponding step length and heading. And each particle is weighted by WiFi signal
distance and magnetic dynamic time warping (DTW) distance. The final result is computed by the
centroid of weighted particles. In this work, results of particle filter are constrained in a recognized
scene. When the scene is changed, it will be locked-on to a new transition point.
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Algorithm 1. Ttransition Point Detection.

Input: Samples of WiFi RSSI
Output: TP’s postion
Begin: minimum distance equals infinite, nearest TP equals TP1

1: for every TP fingerprint in database do
2: while n < number of APs scanned do
3: compare mac address of every AP with TP fingerprint
4: if mac address is matched
5: number of matched APs ++
6: end if
7: end while
8: if number of matched APs > 3
9: compute signal distance between samples and TP

10: if distance < minimum distance
11: update the minimum distance
12: update nearest TP
13: end if
14: end if
15: end for
16: compare scene label of nearest TP to current scene
17: if not matched
18: return ture
19: else return flase
20: end if
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Figure 8. Procedures of localization estimation. Lock-on to a transition point is needed when the
localization start. The detection of transition point utilize a k-NN algorithm.

For magnetic signal, two different places may have the same value since MFS is scalar. As can be
seen in Figure 5b, MFS sequences are stable and distinguishable. Hence, MFS sequences are taken into
account to measure similarities between samples and magnetic fingerprints. We use DTW to compute
the similarity of two MFS sequences. DTW is a widely used algorithm in speech recognition which
measures similarity between two different waveforms regardless of different speech speeds. Hence,
different walking speed of users can be ignored by using the DTW algorithm in this case. However,
it is better that length of MFS sequence is not too long or too short considering computation cost and
accuracy. In the proposed system, a five-steps length is appropriate for localization considering balance
of computation and accuracy. Figure 5b also has shown that a five-step length has good identifiability.
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For WiFi signal, we compute the distance between scanned measurements and fingerprints by
Equation (7).

Dwi f i =
1
n

n

∑
i=1

∣∣∣rssis
i − rssi f

i

∣∣∣ (7)

where Dwi f i denotes distance of two RSSI vectors, rssis
i and rssi f

i are RSSI of ith AP from scanned
measurements and database, respectively.

Then, fusion weight of each particle can be updated by Equation (8), where k1 and k2 denote
tunable parameters, Di

mag and Di
wi f i represent DTW distance and WiFi signal distance respectively.

weighti = e
Di

mag
k1 ·e

Di
wi f i
k2 (8)

Due to the noise of the WiFi signal, we set magnetic signal with higher weight than WiFi. In some
detected steps, WiFi signal may be absent for the reason that the WiFi sampling rate is slower than
other sensors. In that case, we only assign weight via magnetic signals.

4. Performance Evaluation

In this section, experiments of key modules in the proposed system are conducted. We test
the accuracy of localization in a complicated indoor environment which contains glass walls and
a rectangle patio between the second and third floors. Comparisons with two state-of-art schemes
are also conducted. One is based on trajectories which combine PDR, WiFi and Magnetic. The other
is IndoorAtlas [29], which is a commercial indoor localization platform based on a hybrid method,
which combines PDR, WiFi, Magnetic, iBeacon and waypoints.

4.1. Experiment Setup

The experiments were conducted on the second and third floors of a laboratory building,
with a 57.5 m × 41.5 m floor area. In order to verify the effectiveness of the proposed system, areas
that may be easy to be confused in other indoor localization system were taken into account in
our experiments, such as hall, patio area and corridors on either side of a glass wall, etc. We test
202 points covering the main paths which users visit often. As shown in Figure 9, 109 test points
belong to the second floor and 93 test points belong to the third floor. The ground truth is measured by
a laser distance meter with a 1.5 mm precision. To evaluate the performance of the proposed system,
data collection and localization modules were implemented on an Android platform (version 6.0) and
tested with Huawei Honor 8. The interface of application is shown in Figure 10.

The procedure of data collection has been mentioned in Section 3.2. In this experiment, only RSSIs
stronger than −96 dBm are considered. Image data are collected in daytime and during a normal
walking speed. The resolution of images are set to 240× 320 which balances the quality and processing
overheads. In this experiment, the number of indoor scenes are 20 and corresponding transition points
are 24. Figure 11 shows the distribution of these scenes and transition points. The rule for us to divide
these scenes is based on their semantic meanings and whether they are sensitive areas for localization.
An example of different semantic meanings is that S7 is a corridor in front of a computer room and S4 is
a corridor in a patio’s left side. An example of sensitive areas is that S3, S4, S5 and S6 are all around the
patio, however, position errors occurred frequently in these areas due to their low signal discrimination.
Without scene constraints, positioning results may bounce between these scenes. This phenomenon is
particularly evident with IndoorAtlas and other signal-based methods. Examples of image details in
these scenes can be found in Figure 4. For indoor scene recognition model, it was trained on a PC with
an NVIDIA Titan X Graphic Card to get a fast training speed. To be noted that, other graphic cards or
only with CPU are also supported. The architecture of the network is given in Section 3.3.
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Figure 10. Interface of the proposed system on an Android phone. Before data recording start,
we need to switch off the positioning mode, choose a current scene label and pick a start point on the
map. Then, after switching on the scan mode, data recording will be activated.
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In the training process, we gained a 97.5% accuracy after 6000 iterations on our own dataset, 
which includes 4800 images in total. Among them, 200 are used for training and 40 are used for 
validation in each scene. The changing trends of accuracy while training is displayed in Figure 12. As 
it can be seen, the speed of convergence is extremely fast. Testing of the trained model was also 
conducted in a test dataset. The report accuracy is 89.8% as shown in Table 3. It is important to be 
noted that in order to verify the generalization ability of this model, some bad-quality images are 
used in the test process. Figure 13 shows a recognition result on a web server. Both pictures were 
taken with a smartphone in room 313 of our lab. The first one was well-taken while the second one 
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4.2. Performance of Indoor Scene Recognition

Training a deep learning model from scratch is time-consuming and the volume of data is hard to
be satisfied. Nevertheless, we can still use our own dataset, a relatively small one, to train an effective
model for our task. In this experiment, a trained model published by other researchers in Caffe Model
Zoo [35] was utilized as initialization in the training process. The specification of this network is
provided in Section 3.3.1. Weights of parameters in our model were adapted to fit the training data by
back-propagation computing.

In the training process, we gained a 97.5% accuracy after 6000 iterations on our own dataset, which
includes 4800 images in total. Among them, 200 are used for training and 40 are used for validation in
each scene. The changing trends of accuracy while training is displayed in Figure 12. As it can be seen,
the speed of convergence is extremely fast. Testing of the trained model was also conducted in a test
dataset. The report accuracy is 89.8% as shown in Table 3. It is important to be noted that in order to
verify the generalization ability of this model, some bad-quality images are used in the test process.
Figure 13 shows a recognition result on a web server. Both pictures were taken with a smartphone in
room 313 of our lab. The first one was well-taken while the second one was heavily blurred for it was
taken while walking. Even so, the top-1 result is correct and only it will be considered.
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Table 3. Score of model for indoor scene recognition.

Model Iterations Time Cost Top-1 (val) Top-1 (Test)

CaffeNet 6000 23′39′′ 97.5% 89.8%
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Figure 13. An example of indoor scene recognition with a bad-quality image. Both images were taken
in room 313 of our lab. The second one is taken while a walking. The correct probabilities of these
images are around 93.37% and 38.23% respectively.

4.3. Localization Results and Analysis

In this part, comparisons of localization results will be demonstrated. We compared our results
with two different schemes: (1) a trajectory-based method which involves fusion with PDR, WiFi and
magnetic; (2) IndoorAtlas which is a commercial hybrid scheme with PDR, WiFi, magnetic, iBeacon
and waypoints.

Before localization, a fingerprint database needs to be built. In the proposed system, we recorded
data by scenes while walking normally. The start point of a walking path needs to be a transition
point (TP). As depicted in Figure 14, the path segments between different TPs (such as A2–B2, B2–C2,
B2–D2 and so on) are recorded with scene labels (S19 and S18, etc.). The fingerprints at TPs are recorded
by standing still and collecting at least 30 samples. The data format has been discussed in previous
sections. For every path segment, step vectors are utilized to organize the fingerprint data. Every step
must have a MFS (magnetic field strength) vector and may have a RSSI vector for the sample rate of
WiFi is slower than the magnetometer. Headings also are stored in step vectors. Step length in this
experiment is 0.66 m which is determined by an offline training.

As mentioned previously, after a scene image is captured by a smartphone, it will be sent to
a server for recognizing and the result will be sent back to the smartphone immediately. In our
fingerprint database, trajectory segments in a scene can be considered as a sub-fingerprint database
which could be indexed by a scene label. After a scene is recognized, the system will estimate
locations with corresponding sub-fingerprint database. The start point is determined by transition
points. In fact, there are two scenarios in which the detection of transition point needs to be executed.
The first one is when the app starts, we need to lock-on the user to a transition point as a starting point.
The other is when the scene is changed, it is also necessary to determine the transition point to reset
the start point for PDR to avoid accumulative error.
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Figure 14. Paths to collect data for localization. (a) A2–N2 are TPs on the second floor and (b) A3–J3 are
TPs on the third floor. In test phase, every path segments between two transition points were repeated
at least three times.

In order to evaluate the performance of the proposed system, experiments of positioning without
scene information were conducted. The first comparison is trajectory-based and involves fusion with
multiple sensors such as IMU, WiFi and magnetometer. For comparison purposes, the storage format
and collecting method of trajectories are similar to the proposed system. However, it does not contain
any scene information. The second comparison is IndoorAtlas. The surveying method of IndoorAtlas
is also by recording data while walking. As illustrated in Figure 15, mapping tool of IndoorAtlas
requires users to define some waypoints for correction in the surveying phase. When a user arrives
at a waypoint, a check-in operation needs to be carried out to tell the actual position of the user.
The coverage of mapping is demonstrated with blue color in Figure 15. It covers all test points in this
comparison experiment.
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Table 4 summarizes the error statistics of these three systems. The mean error of our system
is 0.53 m which is better than the trajectory-based method without indoor scene and IndoorAtlas.
The 95% accuracy in our system is 1.32 m which also has a significant advantage compared to others.
The empirical cumulative distribution functions (CDFs) of these three systems are illustrated as
Figure 16. With the constraint of indoor scene, the proposed system decreases the accumulative error
of PDR, which is the main error source in trajectory-based systems. Moreover, it can also distinguish
areas which have similar signal patterns, such as near a glass wall, patio etc. This is the reason
why the proposed system can achieve higher accuracy than IndoorAtlas. Compared to our system,
IndoorAtlas also defined waypoints to decrease the error of PDR which is similar to transition points
in the proposed system. However, it fails to distinguish most of the positions in scenes S7 and S4

(Figure 11), since there is a glass wall between these two scenes. However, with the indoor scene
recognition model, positions in these two scenes can be easily distinguished since sub-fingerprint
databases corresponding to different scenes that are built in this paper.

Table 4. Comparison of error statistics.

Method Mean Error Variance 95% Accuracy

PDR + WiFi + Magnetic 1 2.36 m 2.84 5.93 m
IndoorAtlas (Hybird platform) 1.08 m 2.69 3.01 m

PDR + WiFi + Magnetic + Indoor Scene 2 0.53 m 0.16 1.32 m
1 Trajectory-based method without indoor scene; 2 The proposed system.
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5. Discussion

In this paper, we presented a multi-sensor fusion approach for indoor localization with scene
constraint. A deep-learning method was adopted to recognize the current scene of the user.
A recognition accuracy of 89.8% was achieved with our solution. A particle filter algorithm was
then developed with constraints of scenes. Experimental results demonstrated that the positioning
accuracy of our solution was 1.32 m at 95%, while that for the commercial product IndoorAtlas
was 3.01 m in the same experimental environments. It is obvious that our solution outperformed
conventional solutions without scene constraints. It is important to note that scene recognition cannot
work well in dark environments or other bad visual conditions. Our system allows the user to switch
the scene recognition module on or off to make sure it can be used in different kinds of environments.

Our solution has great potential to extend to a crowdsourcing-based method considering
the data acquisition scheme. The trajectories from different users can be used to update and
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enlarge our fingerprint database, and images captured in the online phase will also be saved in
our server for future model training since the volume of training dataset is important for deep neural
networks. In the future, the problems that we need to solve for crowdsourcing trajectories are device
heterogeneity and data integration. For indoor scene recognition models, a more efficient network
architecture and more complicated environments need to be considered in future work.

6. Conclusions

In this paper, a scene-constrained indoor localization scheme has been proposed. The results and
comparisons have shown that this scheme has a competitive performance compared to most current
systems. We solved indoor localization problems especially in complicated indoor environments.
Most systems fail to give a high positioning accuracy with easy deployment. In our system, we do not
need to extract features in images compared to other vision-based methods. Deep learning methods
only need to assign labeled training data to a pre-defined network; it will learn features automatically.

We are confident that the multi-sensor-fusion-based method may become the “killer” scheme
for indoor localization systems without additional infrastructures. Based on the-state-of-art study
of indoor localization, to the best of our knowledge, this work is the first to adopt deep learning to
extract high level semantic information for indoor localization. This method is similar to human brain’s
cognitive mode and has great potential in future research.
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