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Abstract: Impairments in gait occur after alcohol consumption, and, if detected in real-time,
could guide the delivery of “just-in-time” injury prevention interventions. We aimed to identify the
salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical
drinking environment. We recruited 10 young adults with a history of heavy drinking to test our
research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m.,
they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line
walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency
of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using
a sliding window technique, including energy, mean, and standard deviation. Using an artificial
neural network (ANN), we performed regression analysis to define a model determining association
between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the
results tested and validated using the rest of the samples. We evaluated different training algorithms
for the neural network and the result showed that a Bayesian regularization neural network (BRNN)
was the most efficient and accurate. Analyses support the use of the tandem gait task paired with
our approach to reliably estimate BAC based on gait features. Results from this work could be
useful in designing effective prevention interventions to reduce risky behaviors during periods of
alcohol consumption.

Keywords: neural network; Bayesian regularization neural network (BRNN); blood alcohol content
(BAC); feature extraction; Gait analysis

1. Introduction

Acute alcohol intoxication is associated with numerous health risks. For example, impaired
driving due to alcohol was implicated in 31% of the 33,000 deaths from motor vehicle accidents in the
USA in 2014 [1]. These consequences largely stem from alcohol’s impairing effects on psychomotor
performance [2]. Compounding this risk are impaired decision-making [3] and lack of awareness
of the degree of alcohol-related impairment during drinking episodes [4]. Strategies to measure
alcohol-related psychomotor impairments and provide real-time feedback to individuals could deter
involvement in activities that require psychomotor function (i.e., driving), thus reducing likelihood of
injury [5].

One measure of psychomotor performance that is sensitive to alcohol is walking (gait).
Gait requires coordination of multiple sensory and motor systems. Research in a controlled laboratory
setting has shown that alcohol affects both postural stability [6] and gait [7]. Although law enforcement
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professionals have used subjective performance on a heel-to-toe tandem gait task as a field sobriety
test for years, there is no current process to objectively measure aspects of gait during drinking
occasions. The rapid growth of smartphone ownership [8] suggests that these devices could be useful
to objectively measure gait impairment during drinking episodes. Although a couple of small field
studies have used smartphone accelerometers and gyroscopes to detect gait abnormalities during
alcohol consumption [9,10], none has determined the association of gait features with blood alcohol
content (BAC) levels.

The purpose of this work was to identify the features of movement patterns (gait) that can be
measured through a smartphone’s 3-axis accelerometer and gyroscope that could be used for estimating
the BAC level in a typical drinking environment. To accomplish this aim, we designed an iPhone
app (DrinkTRAC) to collect smartphone sensor-based data on gait (3-axis accelerometer, gyroscope,
magnetometer) and ecological momentary assessment (EMA) measures of self-reported number of
drinks consumed each hour, from 8 p.m. to 12 a.m., during weekend evenings (Fridays and Saturdays).
We did not collect detailed data on drinking in the hours prior to 7 p.m. start (1 h prior to 8 p.m.),
which could have under-estimated BAC in some cases. However, based on prior research in a similar
cohort of young adults [11], we found that less than 15% of drinking occasions start before 7 p.m.
We enrolled 10 young adults with a history of heavy drinking in a repeated-measures study to provide
smartphone sensor and self-report data over a period of four consecutive weeks. We used a Bayesian
regularized neural network (BRNN) to perform regression analysis to estimate BAC. Results from this
work could be useful in designing effective prevention interventions to reduce risky behaviors during
periods of alcohol intoxication.

In this paper, we propose a novel approach for analyzing the movement patterns of people and
develop a supervised learning model to associate their gait anomalies with BAC levels. The gait
features are captured using smartphone-based inertial measurements, using accelerometer, gyroscope,
and magnetometer sensors. By exploring the aspects of gait and extracting their salient features,
we input them to a supervised machine learning technique. Thus, the primary goal of this work
is to develop and implement a gait analyzing system, using the inertial sensors of smartphones
inside a user’s pocket, while simultaneously capturing their movement pattern for the detection
of alcohol-induced changes in gait patterns. The results of this work provide us with an in-depth
understanding of the spatiotemporal properties of human gait that are affected by alcohol. In summary,
the contributions of the paper are:

• Exploring and identifying gait properties and extracting some features from gait signals measured
by smartphone sensors that could estimate BAC values in a typical drinking environment.

• Comparing different machine-learning techniques to predict BAC values.
• Demonstrating the feasibility of smartphone sensors measurements in estimating BAC value.

The rest of the paper is structured as follows: in Section 2, we explain methods to measure alcohol
consumption and the ways in which BAC levels are computed. In Section 3, we describe our method
for collecting data through the smartphone-based application. In Section 4, we explain sensor data
processing for movement pattern analysis and extracting gait features. We also discuss some details
of our network architecture and training procedures. In Section 5, we present the results comparing
different training techniques for the artificial neural network and the process of finding the most
efficient technique. Furthermore, we evaluate two other regression algorithms. In Section 6, we discuss
some related work. Finally, in Section 7, we provide concluding remarks and future directions.

2. Background: Methods to Measure Alcohol Consumption

The ability to accurately measure BAC in the real world is vital for understanding the relationship
between alcohol consumption patterns and the impairments of normal functioning that occur (such as
those related to gait). BACs vary as a function of gender, total amount of alcohol consumed, type of
alcohol, time spent drinking, food consumption, body weight and individual differences in absorption
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and metabolism rates [12]. Available methods to measure BAC outside of healthcare facilities include
self-reporting and non-invasive monitoring methods, i.e., breathalyzers or transdermal alcohol
monitors [13]. Due to limitations in feasibility of measuring in-vivo BACs using monitors, the majority
of scientific literature on alcohol consumption has been based on retrospective self-reports [14]. In 1932,
the first equation to estimate blood-alcohol content from self-reported alcohol consumption was
published [15]. Since then, researchers have identified ways to improve the accuracy of that formula,
such as modifications primarily in how they adjust body weight to account for gender differences in
water content of the body and secondarily, in how the overall dose of alcohol is calculated. One of the
most accurate formulas was created by Matthews and Miller in 1979 [16]:

eBAC =

(
c
2
× GC

weight

)
− (β60× t) (1)

Here, BAC is blood alcohol concentration expressed in g/dL; c is the number of standard drinks
reported; GC is a gender constant (9.0 for women and 7.5 for men); β60 is the metabolism rate of
alcohol per hour (0.017 g/dL); and t is the number of hours spent drinking. This formula was found
to have a significantly stronger intraclass correlation with breath alcohol concentrations (criterion
standard) than did the other equations when measured after an uncontrolled episode of drinking [17].
Still, the accuracy of self-reported eBAC values are dependent on a respondents’ ability to recall the
number of drinks they consumed, knowledge of standardized drink sizes, and the absence of reporting
biases due to minimizing sensitive information [18].

In this study, we chose not to use transdermal alcohol monitors or breathalyzers for several
reasons. First, transdermal alcohol monitors (e.g., WrisTAS, SCRAM) are relatively costly to acquire
and maintain, which can limit their wide use. Second, transdermal alcohol monitors and breathalyzers
involve some burden for participants (e.g., possible minor skin irritation from SCRAM, need to carry
breathalyzer) [19–22]. By comparison, smartphone sensor data can be collected with relatively low
burden unobtrusively on an individual’s personal phone [23]. Third, transdermal alcohol monitors
have been found to be less useful in detecting lower drinking quantities, as compared to self-reports,
and content readings tend to lag behind consumption by up to several hours [23,24].

We used retrospective self-reports and the Matthews and Miller formula to estimate eBAC.
To assist with recall, we asked participants to report their number of drinks per hour. The use
of experience sampling methods to collect self-reports of alcohol use that is more proximal to
drinking occasions can minimize any biases associated with retrospective reporting [25]. To ensure the
standardization of drink amounts, the DrinkTRAC app presented participants with a color picture of
“standard drink” sizes (based on National Institute on Alcohol Abuse and Alcoholism guidelines [26]:
12 oz of beer, 5 oz of wine, 1.5 oz of liquor) and asked: “How many standard drinks did you have in the
past hour?” with a drop-down menu ranging from 0 to 30. In this way, participants reported alcohol
consumption in standard drink units, in order to minimize error in self-report of alcohol consumption.
Self-report of alcohol use using EMA has shown validity [27,28]. To reduce reporting biases, we used a
technology platform to collect sensitive data, which has been shown to be more accurate than in-person
reporting [29].

3. Data Collection

3.1. Smartphone Application (“DrinkTRAC”) for Data Collection

This prospective study recruited a convenience sample of young adults who were identified in
the emergency department (ED) as reporting past hazardous drinking between 19 February and 9 May
2016. All participants completed informed consent protocols prior to study procedures and were
provided with resources for alcohol treatment.



Sensors 2017, 17, 2897 4 of 19

3.2. Participants

Participants were young adults (aged 21–26 years) who presented to an urban ED. A total of
28 medically stable ED patients who were not seeking treatment for substance use, not intoxicated,
and who were going to be discharged to home, were approached by research staff. Among those eligible
to be approached, 23 patients provided consent to complete an alcohol use severity screen. Those who
reported recent hazardous alcohol consumption based on an Alcohol Use Disorder Identification Test
for Consumption (AUDIT-C) score of ≥3 for women or ≥4 for men [30] and who drank primarily on
weekends were eligible for participation. We excluded those who reported any medical condition
that resulted in impaired thinking or memory or gait, those who reported past treatment for alcohol
use disorder, and those without an iOS phone. A total of 10 participants met the study enrollment
criteria and uploaded the DrinkTRAC app to their phone. We instructed participants to refrain from
any non-drinking substance use (excluding cigarette use) during the sampling days. We also informed
participants that they would receive $10 for completing the baseline survey and app-based tasks in the
ED, $10 for completing the exit survey at four weeks, and $1 per completed EMA (up to an additional
$40). Table 1 shows the results for sample descriptive statistics.

Table 1. Sample descriptive statistics.

Characteristics N = 10

Age in years, mean (SD) 23.1 (2.6)
Female, n (%) 7 (70%)
Race, n (%)

African American 2 (20%)
White 6 (60%)
Other 2 (20%)

Hispanic Ethnicity, n (%) 1 (10%)
Education, n (%)

Some college 5 (50%)
College graduate or post-graduate 5 (50%)

Employment, n (%)
For wages 7 (70%)
Student 3 (30%)

Married, n (%) 1 (10%)
Alcohol Use Severity (AUDIT-C score), mean (SD) 5 (1.3)
Weight in pounds, mean (SD) 179 (35)

3.3. Smartphone Application Design

The DrinkTRAC app was developed using Apple’s ResearchKit platform, as it allowed for
convenient and professional-appearing modular builds that incorporated timed psychomotor tasks.
Baseline survey questions included socio-demographic measures and severity of alcohol use. The app
then presented participants with EMA, including two questions (cumulative number of drinks
consumed and perceived intoxication) followed by psychomotor tasks, including a 5-step tandem gait
task. The research associate was present to ensure understanding and to observe compliance with
instructions on the initial trial of the app’s tasks, which were conducted in the ED.

Over four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., participants
were sent an electronic notification to log in to the DrinkTRAC app and complete the EMA. We chose
to sample data on weekend evenings, given that this is a time when young adults typically drink
alcohol [31]. We collected EMAs hourly from 8 p.m. to 12 a.m. on those nights, with an intention of
capturing both the ascending and descending limbs of alcohol intoxication. We used fixed hourly
assessment times, given that they would provide a predictable framework for participants and would
allow us to more easily calculate eBAC changes over the course of the evening. Given the deleterious
effect of alcohol on memory, we chose to collect drinks consumed since last report as opposed to
cumulative drinks over an entire drinking occasion. We designed the tandem gait task to take less
than 45 s to optimize completion and reduce potential for disruptions that could interfere with task



Sensors 2017, 17, 2897 5 of 19

performance. Basic text instructions were given prior to the tandem gait task, and when the task was
completed, participants were presented with a figure of their completion rates for the day.

3.4. Estimated Blood Alcohol Concentration

We calculated eBAC during each hour when data was available using the aforementioned formula,
created by Matthews and Miller [16]. Estimates produced by this formula correlate with breath alcohol
concentration and were found to perform best, relative to estimates from other commonly used eBAC
formulas [17]. When drinks consumed in any prior hours were missing, we assumed no drinks were
consumed during that period. When drinks had been consumed in prior hours, we incorporated those
drinks into BAC calculations (with alcohol clearance taken into account). As shown in related research
using the same data set [32], participants completed 32% of EMA. Higher rates of missing EMA data
occurred later in the evening and over time in the study. Within the 128 completed EMA, we captured
38 unique drinking episodes, with each participant reporting at least three drinking episodes. Almost
half of the EMA (n = 60, 46.9%) were completed either prior to drinking or on non-drinking evenings,
55 EMA (43.0%) were completed on the ascending eBAC limb, and 13 (10.1%) were completed on the
descending eBAC limb. However, there were a number of occasions with missing data on alcohol
consumption in hours prior to a given hour were missing and thus assumed to be zero. This may have
resulted in under-estimations of BAC. On a drinking day, participants reported consuming a mean of
3.6 (SD = 2.2; range: 1–10 drinks). The mean eBAC was 0.04 (SD = 0.05), with a peak of 0.23.

3.5. Inertial Data Acquisition During Tandem Gait Task

In the tandem gait task, participants were instructed to walk in a straight line for five steps.
We advised participants not to continue if they felt that they could not safely walk five steps in a
straight line unassisted. If participants clicked “next”, they were shown a picture of a phone in a front
pocket and told: “Find a place where you can safely walk unassisted for about five steps in a straight
line”, followed by the text: “Put the phone in a pocket or bag and follow the audio instructions. If you
do not have somewhere to put the phone, keep it in your hand”. When the participant clicked “Get
Started”, the app displayed a timer and played an audio recording of a voice counting down from
5 to 1. If the audio option was turned on, participants heard “Walk up to five steps in a straight line,
then stand still”. We recorded the acceleration with gyroscope sensors embedded in the phone to
collect 3-axis acceleration and angular velocity at a sampling frequency of 100 Hz for 30 s. Figure 1a,b
are DrinkTRAC app screen shots of the tandem gait task.

In our experiment, subjects’ movement generates linear acceleration and attitude signals measured
by the smartphone. Raw acceleration data incorporates both gravity and the acceleration of the device.
We removed the effects of gravity to measure acceleration of the device called linear acceleration
which is determined by enhancing the gravity measurements with sensor fusion. Thus, the best result
for computing linear acceleration needs not only an accelerometer, but also a gyroscope. We also
measured the attitude of the device, which is the computed device orientation using the accelerometer,
magnetometer, and gyroscope. These values yield the Euler angles of the device. Figure 2 shows linear
acceleration signal for one subject and Figure 3 shows a three-axis signal of device attitude for the
same subject.
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4. BAC Regression with Movement Pattern and Gait Features

Using the sensor observations collected by the smartphone app (DrinkTRAC), inertial data are
obtained during the tandem gait task. This set of data is used to explore gait and extract features to
find the relationship between movement patterns and eBAC. We used these features as input vector
into a supervised learning model that performs regression analysis to find the target value of eBAC.
Figure 4 shows a schematic diagram of the data flow for eBAC estimation. The procedures of data
acquisition and feature extraction are explained in more detail in subsequent sections.
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4.1. Feature Extraction for Gait Exploration.

Acquired inertial data is noisy and less informative, rather than processed signals, which can
reveal more information. Hence, we extract features that can describe the properties of each
demonstrating gait signal. We consider four features, i.e., mean, standard deviation, correlation,
and energy, by using a sliding window over signals. Extracted features belong to either the time domain
or the frequency-domain. The first three features, mean, standard deviation, and correlation, are time
domain features, and energy is from the frequency domain. All measurements are in three dimensions;
thus, resulting in a total of 24 possible features. The efficiency of these features has been discussed
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in [33–35]. Energy in the frequency domain is computed by using a fast Fourier transform (FFT),
which converts the signal to frequency. Using the window size of 128 samples enables us to
quickly calculate these parameters. In fact, energy feature is the sum of the squared discrete
FFT coefficient magnitudes of the signal. The sum was divided by the window length of the
window for normalization [33–35]. If x1, x2, · · · are the FFT components of the sliding window,

then energy =
∑
|w|
i=1|xi |2

|w| . Energy and mean values differ for each movement pattern. Also, correlation
effectively demonstrates translation in one dimension. Figures 5 and 6 show the extracted features for
a gait signal.
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4.2. Bayesian Regularized Neural Network (BRNN) for BAC Regression

Neural networks can model the relationship between an input vector x and an output y.
The learning process involves adjusting the parameters in a way that enables the network to predict
the output value for new input vectors. One of the advantages of using neural networks for regression
and predicting values is that it uses a nonlinear sigmoid function in a hidden layer, which enhances its
computational flexibility, as compared to a standard linear regression model [36]. Thus, we applied
a neural network model to estimate eBAC. In order to efficiently design and train a neural network,
we must find an appropriate network architecture, determine a suitable training set, and compute the
corresponding parameters of the network (such as weights and learning rate) by using an efficient
and effective algorithm. In the rest of this section, we explain the overall system architecture and the
training process of the parameter.

4.3. Neural Network Architecture

In this work, we used multilayer perceptron (MLP), a BRNN, to model the nonlinear relationships
between input vectors, the extracted gait features, and the output (eBAC value), with nonlinear transfer
functions. The basic MLP network is designed by arranging units in a layered structure, where each
neuron in a layer takes its input from the output of the previous layer or from an external input.
Figure 7 shows a schematic diagram of our MLP structure. The transfer functions of the hidden layer
in our feedforward network are a sigmoid function Equation (2). Since we use MLP as a regression
technique, we should produce reasonable output values that are outside the range of [−1,1]. Hence,
in the output layer, we use a linear transfer function. Therefore, we may use this type of network
as a general function approximator which approximates the eBAC as a function of gait features.
The mathematical model to compute this is as shown in Equations (2) and (3):

F(γ) =
1

1 + exp(−γ)
(2)

y = b0 +
H

∑
j=1

wj·F
(

N

∑
i=1

wij·xi + bj

)
(3)

where xi is the input, wij is nonlinear weights that connect input neurons to hidden layer neurons,
and wj linear weights that connect the hidden neurons with the output layer.
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4.4. Training

Numerous training algorithms and learning rules have been proposed for setting the weights
and parameters in neural networks; however, it is not possible to determine a global minimum
solution. Therefore, training a network is one of the most crucial steps for neural network design.
Backpropagation, which is basically a gradient descent optimization technique, is a standard and
basic technique for training feedforward neural networks; however, it has some limitations, such as
slow convergence, local search nature, overfitting data, and being overtrained, which can cause
a loss of the network’s ability to correctly estimate the output [36]. As a result, the validation of
the models can be problematic. Moreover, optimization of the network architecture is sometimes
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time-consuming. There are some modifications to the backpropagation, such as conjugate-gradient
and Levenberg—Marquardt algorithms, that are faster than any variant of the backpropagation
algorithm [37,38]. The Levenberg—Marquardt algorithm is for minimizing a sum of squared
error [39,40] and to overcome some of the limitations in the standard backpropagation algorithm,
such as an overfitting problem.

Avoiding the overfitting problem in network architectures can be a serious challenge, because we
try to achieve an accurate estimation of the modeled function by a neural network with a minimum
number of input variables and parameters. Having too many neurons in the hidden layer can cause
overfitting, since the noise of the data is modeled along with the trends. Furthermore, an insufficient
number of neurons in the hidden layer can cause problems with the learning data. For the purpose
of finding the optimum number of neurons in the hidden layer, we conducted a model selection
experiment with different number of neurons ranging from 5 to 60 and the cross-validation error
for each setting was calculated. Figure 8 presents the value of error for networks with one hidden
layer where X-axis shows number of neurons and Y-axis represents error value. As it can be seen and
highlighted, a hidden layer with 45 neurons is is a good fit for the dataset.
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Using universal approximation theorem, it has been theoretically proven that a neural network
with only one hidden layer using a bounded, continuous activation function can approximate
any function [41,42]. Hence, in all configurations in the experiment and tests we only used one
single hidden layer. Mackay [43] proposed a Bayesian regularization algorithm to meet such an
overfitting challenge. Moreover, irrelevant and highly correlated parameters are another problem that
can deteriorate the capability of the network to approximate the function, which can be solved by
considering regularization [36]. Regularization can be modeled by incorporating Bayesian statistics.
Through this method, we can remove most of the disadvantages of the feedforward neural network.
In this study, we use a Bayesian regression neural network (BRNN) for the regression analysis. Thus,
below we review this technique, which is a modification to the Levenberg—Marquardt algorithm.

4.5. Levenberg—Marquardt Algorithm

The Levenberg—Marquardt algorithm is an iterative algorithm that finds the minimum
of a multivariate function. It is the sum of squares of non-linear real-valued functions [44].
Levenberg-Marquardt is widely used for solving non-linear least-squares problems and is usually
considered as a standard technique for doing so. This algorithm is a curve-fitting method, a combination
of gradient descent update and the Gauss-Newton update, two minimization methods. Equation (4)
represents gradient descent equations, and a normal equation for the Gauss-Newton update is shown
by Equation (5):
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hgd = αJTW(y− ŷ) (4)[
JTWJ

]
hgn = JTW(y− ŷ) (5)

where:

J =


∂e1(w)

∂w1

∂e1(w)
∂w2

· · · ∂e1(w)
∂wn

∂e2(w)
∂w1

∂e2(w)
∂w2

. . . ∂e2(w)
∂wn

...
∂eN(w)

∂w1

...
∂eN(w)

∂w2

. . .
. . .

...
∂eN(w)

∂wn

 (6)

As seen in Equation (5), the Levenberg—Marquardt algorithm is a linear combination of the
gradient descent update and the Gauss-Newton update, where the parameter updates adaptively vary
between them. λ determines this variation, and whenever the value of λ is small, then it tends toward
the Gauss-Newton update. Otherwise, when the λ value is large, it will be closer to the gradient
descent update. We started with a large λ value, therefore the first updates were small values in the
steepest-descent direction, just as the gradient descends:[

JTWJ + λI
]

hlm = JTW(y− ŷ) (7)

4.6. Bayesian Regularization of Neural Networks

Using a neural network for regression problems is preferable, as compared to other regression
techniques. The first reason is the use of universal approximators, which can model any continuous
nonlinear function [43], although having appropriate training data is essential to this process.
Nevertheless, it is likely to have both an overfitting and an overtraining problem. Overfitting behavior
of the update function occurs in a way that causes it to decrease at the beginning as expected,
but after overfitting the data, it starts to increase again. Therefore, the model overfits the data and
generalizes poorly.

This problem is addressed by using the Bayesian approach, where the weights of the network are
considered as random variables. It enables us to apply statistical techniques to estimate distribution
parameters [45]. Furthermore, because Bayesian regularization considers not only the weight,
but also the network structure as a probabilistic framework, it makes neural networks insensitive
to the architecture of the network if a minimal architecture has been provided [36]. In other words,
Bayesian regularization can avoid overfitting by converting nonlinear systems into “well posed”
problems [36,43]. In conventional training, an optimal set of weights is chosen by minimizing the sum
squared error of the model output and target value; in the Bayesian regularization, one more term is
added to the objective function:

F = βED(D|w, M) + αEw(w|M) (8)

where ED(D|w, M) = 1
N ∑n

i=1(ŷi − yi)
2 is the sum of squared errors, and Ew = 1

n ∑n
i,j w2

ij, which is
called weight decay, is sum of square of the weights in the network. α, the decay rate, and β are the
objective function parameters [46]. Considering the objective function in Equation (8) and according to
Bayes’s rule, the posterior distribution of the neural network weights can be written as in [47]:

P(w|D, α, β, M ) =
P(D|w, β, M)P(w|α, M )

P(D|α, β, M)
(9)

where D is the dataset, M is the network, and w is the weight vector. Also, P(w|α, M ) is the prior
density, which represents our knowledge of the weights before any data is collected. P(D|w, β, M) is
the likelihood function, which is the probability of the data occurring, given weights w. The denominator
of Equation (9) is a normalization factor, which makes the summation of all probability 1 [45]:
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P(D|w, β, M) =
1

ZD(β)
e−βED (10)

P(w|α, M ) =
1

ZW(α)
e−αEW (11)

where:

ZW(α) =
(π

α

)m
2 and ZD(β) =

(
π

β

) n
2

(12)

so we have:

P(w|D, α, β, M ) =

1
ZD(β)

e−βED 1
ZW (α)

e−αEW

Normalization Factor
=

1
ZF(α, β)

e−F(w) (13)

Foresee and Hagan [45] demonstrated that maximizing the posterior probability P(w|D, α, β, M )

is equivalent to minimizing the regularized objective function F = βED(D|w, M) + αEw(w|M ).
By using Bayes’s rule, the objective function parameters are optimized as follows [45]:

P(α, β|D, M) =
P(D|α, β, M)P(α, β|M)

P(D|M)
(14)

P(D|w, α, M) =
1

Zw(α)
e−αED (15)

P(w|β, M ) =
1

Zw(β)
e−βEw (16)

P(w|D, α, β, M ) =
1

ZF(α, β)
e−F(w) (17)

P(D|α, β, M) =
P(D|w, β, M)P(w|α, M )

P(w|D, α, β, M )
=

ZF(α, β)

ZD(β)ZW(α)
(18)

ZF(α, β) ≈
∣∣∣HMAP

∣∣∣− 1
2 exp

(
−F
(

wMAP
))

(19)

where HMAP is the Hessian matrix (H = β∇2ED + α∇2Ew) of the objective function, and MAP stands
for maximum a posteriori. By substituting the H matrix, we are able to solve for the optimal values for
α and β:

αMP =
γ

2Ew(wMP)
(20)

βMP =
n− γ

2ED(wMP)
(21)

where γ is the effective number of parameters and calculated as γ = N − 2αMPtr
(
HMp)−1 and N is

the total number of parameters in the network. Hessian matrix of F(w) must be computed; however,
Foresee and Hagan [45] proposed using the Levenberg-Marquardt optimization algorithm to find the
minimum point.

5. Results and Validation

In this section, we evaluate the designed network and present the results. First, we compare
different training algorithms; then we conduct an experiment to see how effective an artificial neural
network would be when applied to this dataset, and compared the BRNN to Support vector machine
(SVM) and linear regression.
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5.1. Comparison of Different Training Algorithms

We compared three training algorithms to show that BRNN approach is the most effective. Table 2
shows the result of mean squared error (MSE) and R values for conjugated gradient, Levenberg—
Marquardt, and Bayesian regularization. Although the results of MSE and R for the training data set
are close, using an independent data set that was separate from all the computations and testing
the networks reveals that Bayesian regularization outperforms two other algorithms. Moreover,
we prefer to use Bayesian regularization, since it also adjusts the effective parameters and influences
the architecture of the network. Tables 2 and 3 show the results for comparing different training and
optimization algorithms.

Table 2. Testing training algorithms with testing data.

Training Algorithm MSE R

Conjugate-gradient 5.80× 10−4 0.883389
Levenberg-Marquardt 1.90× 10−5 0.996381

Bayesian regularization 5.09× 10−6 0.999034

Table 3. Testing training algorithms with independent samples.

Training Algorithm MSE R

Conjugate-gradient 5.89× 10−4 0.881084
Levenberg-Marquardt 3.06× 10−5 0.994294

Bayesian regularization 1.06× 10−5 0.998056

5.2. Performance

Figure 9 shows how network performance is improved during the training procedure. We measured
the MSE for each of the training and test data sets. The BRNN algorithm does not use validation data.
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5.3. Error Histogram

The blue bars represent training data and the red bars represent testing data (Figure 10).
The histogram can give an indication of outliers, which are data points where the fit is significantly
worse than that of most of the data.
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Figure 10. Error histogram visualized errors between target values and predicted values after training
a feedforward neural network with 20 bins.

In this case, we can see that while most errors fall between −0.012 and +0.012, there are some
training points and just a few test points that are outside of that range. These outliers are also visible
on the testing regression plot (Figure 11). If the outliers are valid data points but are unlike the rest of
the data, then the network is extrapolating for these points. It means more data similar to the outlier
points should be considered in training analysis and that the network should be retrained.
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Figure 11. The best fit linear regression between outputs and targets for (a) Training data; (b) Test data;
(c) All data.

5.4. Regression Results

The plots in Figure 11 demonstrate the training, testing, and all data. There is a dashed line in
each plot that represents the perfect result − outputs = targets, which can be seen on the regression
diagrams. The solid line in each plot represents the best fit linear regression line between outputs
and targets. On top of each plot, we also mentioned the R value as an indication of the relationship
between the outputs and the targets. If R = 1, this indicates that there is an exact linear relationship
between the outputs and the targets. If R is close to zero, then there is no linear relationship between
the outputs and the targets. In Figure 11, as well as Tables 2 and 3, the R values show a reliable fit.
The test results also show R values that are greater than 0.9. However, the scatter plot is helpful in
showing that certain data points have poor fits.
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5.5. Comparison with Other Regression Techniques

We compared MLP with SVM and linear regression. We evaluated these techniques using the
extracted features. We calculated their correlation coefficient, their mean absolute error, their root
mean squared error, their relative absolute error, and their root relative squared error. Table 4 shows
the results of the comparisons. Based on these results, and most importantly on the root mean squared
error, MLP outperforms SVM and linear regression.

Table 4. Comparison of different regression techniques for BAC estimation.

Regression Technique Correlation
Coefficient

Mean
Absolute Error

Root Mean
Squared Error

Relative
Absolute Error

Root Relative
Squared Error

MLP 0.9009 0.0174 0.0226 40.6458% 43.8853%
SVM 0.3939 0.0362 0.0482 84.5348% 93.6504%

Linear Regression 0.4367 0.0378 0.0463 88.2747% 89.9583%

6. Related Work

Smartphone-based alcohol consumption detection that evaluates a gait pattern captured by inertial
sensors was proposed by [48], which labeled each gait signal with a Yes or a No in relation to alcohol
intoxication. The study by Kao and colleagues [48] did not examine the quantity of drinks consumed,
but focused its analyses solely on classifying a subject as intoxicated or not, thus limiting applicability
across different ranges of BAC. Park et al. [49] used a machine learning classifier to distinguish sober
walking and alcohol-impaired walking by measuring gait features from a shoe-mounted accelerometer,
which is impractical to use in the real world. Arnold et al. [9] also used smartphone inertial sensors to
determine the number of drinks (not BAC), an approach which could be prone to errors given that the
association between number of drinks and BACs varies by sex and weight.

Kao et al. [48] conducted a gait anomaly detection analysis by processing acceleration signals.
Arnold et al. [9] utilized naive Bayes, decision trees, SVMs, and random forest methods, where random
forest turned out to be the best classifier for their task. Also, in Virtual Breathalyzer [50] AdaBoost,
gradient boosting, and decision trees were used for classifying whether the subject was intoxicated
(yes or no). Furthermore, they implemented AdaBoost regression and regression trees (RT), as well as
Lasso for estimation of BrAC.

Our approach differs from prior work in several ways. First, we use a widely available software
platform for collecting movement data (Apple ResearchKit). Second, we calculate eBAC using
established formulas, thus providing a more accurate representation of actual blood alcohol content
than drink counting alone. Third, we standardized the gait task, thus removing random variability in
naturalistic walking. Fourth, we use not only accelerometers to understand movement data, but also
consider gyroscope and magnetometer measurements. Fifth, we use a sliding window technique for
extracting features and feeding MLP, which outperformed the other evaluated approaches. Finally,
instead of simply modeling association of gait with drinking (yes/no values), we examine these
relationships across a range of BAC values.

7. Conclusions and Future Directions

This work provides initial support for the utility of using movement analysis in the real world
to detect alcohol intoxication in terms of eBAC. We designed and used a smartphone application
(DrinkTRAC) for collecting both self-reported alcohol consumption data to calculate eBAC and
smartphone sensor-based movement data during a tandem gait task to understand gait impairments.
We processed the raw data and extracted some features using a sliding window. These features were
fed into a Bayesian regularized neural network, and we were able to model and fit a curve to the
function of eBAC with movement pattern. The results indicated that the approach is reliable and that
it can be used to identify the level of blood alcohol content during naturalistic drinking occasions.
However, there are some limitations.
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Some other aspects of body movement such as body sway can also be used for detecting
intoxication where these aspects can be captured using the same phone sensor data. In order to detect
not only new aspects of body movement, also improving the efficiency of the current model, it is needed
to study and evaluate some other sophisticated gait features such as THD and harmonic distortion to
select the best feature set for achieving better results. These various studies of body movement and
gait-related feature selection can be considered as a possible direction for future research.

This pilot study is limited by its small sample size (n = 10) and by the amount of missing EMA data
(~70%), particularly for the descending limb of alcohol intoxication. Nevertheless, as a proof-of-concept
study, it demonstrates the potential of accurate detection of drinking episodes using phone sensor data
in the natural environment. Our findings may not be applicable to other populations, such as young
adults with lighter alcohol use, or to other age groups, such as adolescents. The majority of participants
were female and white, which limits our study’s overall generalizability. Therefore, there is a need to
replicate the model in larger samples as future work. Furtheremore, individual differences in tolerance
to alcohol, which were not examined in this study, might affect the accuracy of the model, and warrant
future research. Moreover, due to the importance of testing the relationship between BAC and gait in
a more controlled environment, a crucial next step is to conduct a similar study while more tightly
controlling alcohol intake.

Since participants should refrain from any non-drinking substance use during the sampling
days, it is another source of limitation that in-the-moment data on other substance use was not
collected, and there was no self-report or objective verification of other substance use, which might
have affected eBAC and model accuracy. Additionally, the DrinkTRAC app was made only for iOS
devices, which affected study eligibility, and limits the generalizability of results to other mobile
devices. Self-reporting of alcohol use using EMA has demonstrated reliability and validity [51],
but may be subject to bias. Future work could use transdermal alcohol sensors to validate findings
and EMA schedule flexibility to reduce missing data.
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