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Abstract: Background: Modern Elekta Neuromag MEG devices include 102 sensor triplets containing
one magnetometer and two planar gradiometers. The first processing step is often a signal space
separation (SSS), which provides a powerful noise reduction. A question commonly raised by
researchers and reviewers relates to which data should be employed in analyses: (1) magnetometers
only, (2) gradiometers only, (3) magnetometers and gradiometers together. The MEG community
is currently divided with regard to the proper answer. Methods: First, we provide theoretical
evidence that both gradiometers and magnetometers result from the backprojection of the same
SSS components. Then, we compare resting state and task-related sensor and source estimations
from magnetometers and gradiometers in real MEG recordings before and after SSS. Results:
SSS introduced a strong increase in the similarity between source time series derived from
magnetometers and gradiometers (r2 = 0.3–0.8 before SSS and r2 > 0.80 after SSS). After SSS,
resting state power spectrum and functional connectivity, as well as visual evoked responses,
derived from both magnetometers and gradiometers were highly similar (Intraclass Correlation
Coefficient > 0.8, r2 > 0.8). Conclusions: After SSS, magnetometer and gradiometer data are estimated
from a single set of SSS components (usually ≤ 80). Equivalent results can be obtained with both
sensor types in typical MEG experiments.

Keywords: magnetoencephalography; signal space separation; magnetometer; gradiometer;
beamforming; regularization

1. Introduction

The signal space separation method (SSS) [1] and its spatiotemporal extension (tSSS) [2] are
powerful noise-reduction methods commonly used as a first preprocessing step in raw MEG data
analysis. In fact, they have repeatedly been proven to be successful in the suppression of unwanted
magnetic noise originating from distant [3] and nearby [2] sources, or even from orthodontic
material [4]. Additionally, the use of device-independent coordinates in SSS enables to compensate
for head movements inside the MEG scanner [2]. Roughly, this is achieved by considering the raw
MEG data as a superposition of harmonic components, which originate either inside or outside the
brain (or rather, a sphere that is fitted individually and lies inside the MEG helmet). SSS discards the
external components and produces a cleaner version of the MEG data by backprojecting the internal
components exclusively.
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SSS is a popular technique for denoising MEG data. It was recently made publicly available
in MNE python for application to all whole-head MEG systems [5]. However, the use of SSS is
particularly widespread in modern Elekta Neuromag®, Helsinki, Finland (Vectorview and TRIUX)
MEG systems, since it can be easily applied directly at Elekta MEG workstations with MaxfilterTM [6] or
with MNE software (from version 0.11 onwards [7]). These new systems are equipped with 306 sensors,
grouped into 102 elements with one magnetometer and two orthogonal planar gradiometers each [8].
Magnetometers measure the component of the magnetic field perpendicular to the MEG helmet surface
(or rather, to the sensor’s coil): Bz(

→
r ) and are sensitive to fields originating within a wide distance.

Planar gradiometers, instead, estimate the spatial derivative of Bz(
→
r ) in two orthogonal directions

perpendicular to the MEG helmet (i.e., ∂Bz(
→
r )

∂x and ∂Bz(
→
r )

∂y ), so that their sensitivity decreases faster
with distance. Hence, they are less sensitive to distant sources and more robust to environmental
interference [9,10]. Both magnetometers and gradiometers measure tiny magnetic fields, typically in
the range of 20 fT and 5 fT/cm, respectively.

Although the availability of these two sensor types at each location is very appealing, it also
creates some controversy with regard to the appropriate analysis pipeline. This is particularly the
case when performing source reconstruction. Researchers in the field typically follow one of three
different approaches for this purpose: (1) using gradiometers only, (2) using magnetometers only,
or (3) using a combination of both sensor types, usually after applying some scaling factor that
yields a similar variance in the time series of both data types. Notably, some recent methodological
approaches, which can deal with several sensor types and rank deficient data, enable the use of the
third option. For instance, factor analysis is a useful technique for robustly estimating covariance
matrices with heteroscedastic noise [11], and this is implemented in the latest MNE versions, along
with cross-validation to select the optimal covariance matrix estimation method (and regularization
parameters) for each particular dataset [5,7]. All three options have strong supporters and critics
amongst experimenters and reviewers, and arguments such as “magnetometers can detect deeper
sources”, “gradiometers are less noisy”, or “using magnetometers only (gradiometers only) means
discarding 2/3 (1/3) of the data” are often heard. However, are these arguments valid after SSS?
In this work, we address this question and argue that, after (t)SSS, magnetometers and gradiometers
contain the same information. To tackle this issue, we provide theoretical arguments and compare
experimentally resting source reconstructions and sensor and source space task-related activity
estimated from magnetometers and gradiometers, with and without SSS.

2. Materials and Methods

2.1. Theoretical Reasoning

The initial assumption in SSS is the presence of three separate volumes: (a) an inner volume
containing the inside (brain) currents jin, (b) an intermediate volume that includes the MEG sensors
and is current-free, and (c) an outer volume containing the external currents jout. The magnetic field
B(r) at a source-free sensor position r is the superposition of the fields created by jin and jout:

B(r) = Bin(r) + Bout(r). (1)

As proven in [1,12], under the quasistatic approximation, Bin(r) and Bout(r) can be written as
separate series expansions:

Bin(r) = ∑∞
l=1 ∑l

m=−l αlmFl(r), (2)

Bout(r) = ∑∞
l=1 ∑l

m=−l βlmGl(r), (3)

where Fl(r) and Gl(r) are functions derived from spherical harmonics and scale with 1/rl+2 and rl ,
respectively. For the sake of brevity, their analytic formulation is not written here, but can be found
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elsewhere [1]. αlm and βlm are coefficients that depend on the current distributions jin and jout, and are
independent of the target position r.

Bin and Bout at each of the MEG coils position r1, . . . , rNcoils can then be expressed as a linear
combination of αlm and βlm, after truncating (2) and (3) to l ≤ Lin and l ≤ Lout, respectively,
and computing Fl(r) and Gl(r) at r1, . . . , rNcoils. The series expansions are usually truncated to
Lin = 8 and Lout = 3, since they are considered to produce a negligible residual [1,3]. This would
yield nin = (Lin + 1)2 − 1 = 80 inside terms and nout = (Lout + 1)2 − 1 = 15 outside terms. It is
important to note that the number of inside components (nin = 80) is largely inferior to the number of
magnetometers (102) or gradiometers (204), and roughly represents the dimensionality of the MEG
spatial information (for each time point separately). Although this number could seem low at first
sight, it can be understood when examining the spatial decay of magnetic fields generated by dipolar
brain sources. We refer the reader to [13] for a deeper discussion on the topic. As an illustrative
example, the authors concluded that an MEG system with 61 detector elements (each comprising two
planar gradiometers) is well above the critical sensor density that ensures no spatial aliasing, provided
that the distance from the sensors to the to the closest cortical source is at least 35 mm.

Then, the magnetic field (normal component) at each of the coils’ positions can be written as:

Bcoil ≈ [Tin,coil Tout,coil ]

[
xin
xout

]
, (4)

where Tin,coil and Tout,coil are Ncoils × nin and Ncoils × nout matrices, respectively, which are computed
from the system’s geometry based on Fl(r) and Gl(r); and xin and xout are vectors of length nin and
nout that contain the αlm and βlm coefficients.

The MEG measurement at each sensor s is Ms = Bcoil,x for magnetometers (where x is the index
of the single pick up coil in magnetometer s) and Ms = Bcoil, x − Bcoil, y for gradiometers (where x and
y are the indices of the two pick-up coils in gradiometer s). The vector of MEG measurements M can
be then expressed as:

M ≈ Sx = [Sin Sout]

[
xin
xout

]
, (5)

where the rows of Sin (Sout) are rows of Tin,coil (Tout,coil) for magnetometers and are the subtraction of
two Tin,coil (Tout,coil) rows for gradiometers.

Finally, the inside and outside components are estimated from x̂ =

[
xin
xout

]
= S−1M, and

a cleaner version of the MEG measurements is estimated by projecting the inside components only:

M̂in ≈ Sinx̂in. (6)

In summary, a single set of nin inside components xin (usually nin ≤ 80) is estimated using all
channels, magnetometers and gradiometers (bad channels should of course be discarded). These nin
inside components are then projected into all 306 channels (102 magnetometers and 204 gradiometers).

2.2. Experimental Source Reconstructions from Magnetometers and Gradiometers

To further explore the relation between magnetometers and gradiometers after SSS, in this
section we compare source reconstructions estimated separately from both sensor types in real
MEG recordings.

MEG Acquisition and Source Estimation

The resting state data used here was recorded for a test-retest reliability project. Details on data
acquisition, preprocessing, and source reconstruction can be found in [14]. Briefly, 4 min resting
state eyes closed data from 16 healthy subjects (age 30.4 ± 5.8, ten female) were employed here.
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MEG recordings were acquired with an Elekta Neuromag® Vectorview system with 306 sensors
(102 magnetometers and 204 planar gradiometers), inside a Vacuumschmelze® magnetically shielded
room. Subjects’ heads were digitized with a Fastrak Polhemus, and four coils were attached to the
forehead and mastoids so that the head position on the MEG helmet was continuously determined.
Activity in electrooculogram channels was also recorded to keep track of ocular artifacts. Signals were
sampled at 1000 Hz with an online filter of bandwidth 0.1–300 Hz.

SSS and tSSS were applied to the raw resting state data with Maxfilter (Version 2.2) and its default
parameters (Lin = 8, Lout = 3, tSSS correlation window = 10 s, and tSSS correlation limit = 0.9). We note
that, although the data presented in subsequent sections corresponds to the SSS-filtered dataset, we
obtained similar results with tSSS. Bad channels were visually detected, and were not included in
the SSS/tSSS estimation. Jump, muscle and ocular artefacts were detected using FieldTrip [15], and
non-overlapping artefact-free 6-s epochs were located. Data was bandpass filtered in [2–10] Hz with a
finite impulse response (FIR) filter of order 1000.

Source and forward models were built individually after segmenting each subject’s T1-weighted
MRI with Freesurfer (Version 5.1.0), [16,17], downsampling and realigning surfaces, and estimating
leadfield matrices with MNE software [7]. Linearly constrained minimum variance (LCMV)
beamformer [18] was used to perform source reconstruction. For each subject and source i, we
computed beamformer filters as:

Wi =
[
Li

TCinvLi

]−1
Li

TCinv, (7)

where Li is the Nsensors × 3 leadfield matrix between each sensor and the i-th source for three brain
current orientations (along Cartesian axes x, y and z). C is the Nsensors × Nsensors sensor covariance
matrix and is estimated using all samples in the resting state clean trials. Cinv is an estimate of the
inverse of C:

Cinv = pinv
(

C + λ
trace(C)
Nsensors

I
)

, (8)

where I is the identity matrix and λ > 0 is called the regularization factor. λ is a dimensionless
magnitude and represents the fraction of trace(C)

Nsensors
, which is added to the diagonal of C in order to

render it more robust to matrix inversion. This is a common convention in the literature [19], and
it is used in the popular FieldTrip toolbox [15]. Regularizing is equivalent to adding uncorrelated
noise to the sensor measurements, but it is necessary for the stability of the inversion of the covariance
matrix C. This is especially crucial after SSS, since SSS projects back only 60–80 inside coefficients,
and yields rank-deficient covariance matrices. The robustness of the Cinv matrix inversion can be
quantified through:

cn = cond
(

C + λ
trace(C)
Nsensors

I
)

(9)

where cond refers to the 1-norm condition number, a dimensionless measure defined as
cond(A) = ||A||·||A−1 || [20]. Matrices with condition numbers close to one are well conditioned with
respect to inversion. Conversely, matrices with higher condition numbers are ill conditioned with
respect to inversion; small changes in the original matrix A can lead to big changes in the estimate of
the inverse matrix A−1.

For each source location i, the orientation ηi (1 × 3 row vector) of the source activity was
determined as the one maximizing the source power Wi

TCwi, and the beamforming filter was projected
into this direction: Wi,η = ηiWi. Finally, we derived source time series as:

si(t) = Wi,ηM(t) (10)

For each subject, source time series were extracted for magnetometers and gradiometers separately
for varying regularization parameters λmag and λgrad. The similarity between magnetometer and
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gradiometer source reconstructions was evaluated with the Pearson correlation between reconstructed
source time series. The effect of the magnetometers vs. gradiometer choice on resting state power
spectrum and functional connectivity estimates was evaluated with intraclass correlation coefficient
(ICC type 1-1, following [21]).

3. Results

3.1. Correlation between Magnetometer and Gradiometer Source Reconstructions after SSS, as a Function of the
Regularization Factor λ

For each subject, we computed source reconstruction separately for magnetometers and
gradiometers, with and without SSS, for 80 regularization factors between λ = 10−4 and λ = 1.
For brevity and simplicity, we focused here on four sources of interest, which are spread across
the cortex and commonly are used in the neuroimaging literature: visual cortex (MNI coordinates
[−41, −77, 3] mm), primary somatosensory cortex (MNI: [−38, −27, 52] mm), precuneus (MNI:
[1, −57, 28] mm) and median cingulate (MNI: [−2, 12, 40] mm). Squared Pearson correlation
coefficients r2 were computed between source time series derived from magnetometers and
gradiometers for each pair of λmag and λgrad and averaged over trials and subjects (see Figure 1).
Without SSS, r2 values (squared Pearson correlation coefficients) were moderate, ranging between
0.3 and 0.5, and reaching their highest values (0.6–0.8) for high regularizations approaching λ = 1.
However, they were much higher for SSS-filtered data, reaching values of r2 > 0.9 for λmag and
λgrad > 0.01 (p < 10−4 for all combinations λmag and λgrad > 0.01, paired samples t-test comparing
r2 values with and without SSS). The λmag and λgrad reaching the highest values of r2 > 0.9 were
positively related, in a seemingly log-log dependence. Of note, equivalent results were obtained when
comparing the source reconstructions using each type of sensor separately with that obtained with the
whole magnetometer + gradiometer dataset, normalizing the variance of both sensor types as in [22].
Results can be found in Supplementary Figure S1.
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Figure 1. Correlation between source time series derived from magnetometers and gradiometers with
and without SSS. Squared Pearson correlation coefficients averaged across subjects are shown for
four selected sources as a function of the regularization parameters λ for magnetometer (x-axis) and
gradiometer (y-axis) beamforming reconstructions. The selected sources were located in MNI space:
visual cortex (MNI: [−41, −77, 3] mm), primary somatosensory cortex (MNI: [−38, −27, 52] mm),
precuneus (MNI: [1, −57, 28] mm) and median cingulate (MNI: [−2, 12, 40] mm).
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Notably, the change in correlation strength before and after SSS is not exclusively due to an increase
in the similarity between magnetometers and gradiometers introduced by the SSS backprojection.
In fact, MEG data before SSS is affected by a considerable external interference, which can influence
both sensor types differently. In particular, we could expect that, before SSS, magnetometer data
contained a higher noise level than gradiometer data, therefore producing noisier source estimates
and decreased correlation between derived source time series. We can use the ratio of the maximum
sensor space magnetometer amplitude before and after SSS as a rough estimate of the intensity of
noise that is eliminated during SSS. We found that this noise estimate correlated negatively with the
correlation strength between magnetometer- and gradiometer-derived source time series before SSS
(p-value = 0.027). In other words, the greater the noise level in the raw recordings without SSS, the
smaller the similarity between magnetometer and gradiometer source reconstructions. More details
can be found in Supplementary Figure S2.

We further explored this dependence by selecting, for each source and λmag separately, the
λgrad for which the highest r2 was obtained. As shown in Figure 2, the relation between λmag and
λgrad,max was indeed monotonically increasing in a rather linear fashion for λmag > 0.01. A least

squares linear fit log10

(
λgrad,max

)
= a· log10

(
λmag

)
+ b was computed for each subject separately,

averaging over the four sources of interest, resulting in a = 0.56–0.71, b = 0.59–0.80 (95% confidence
intervals, t-test across subjects). For all subjects, the proportion of explained variance of this linear
model was between 0.86 and 0.999. This means that equivalent source reconstructions are obtained for
λgrad > λmag. For instance, for a λmag = 0.01, the corresponding λgrad yielding the most similar source

reconstructions is λgrad = 0.29. When focusing on the condition numbers of C + λ
trace(C)
Nsensors

I, instead of
the regularization factors λ, we also observed a rather linear and positive relation between cnmag and

cngrad,max. The minimum square linear fits log10

(
cngrad,max

)
= a· log10

(
cnmag

)
+ b for each subject

resulted in a = 0.51–0.66, b = 0.52–1.15, proportion of explained variance 0.90–0.99 (95% confidence
intervals). Equivalent source reconstructions are obtained for cngrad < cnmag.
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Figure 2. The correlation between magnetometer and gradiometer source reconstruction after SSS
depends on the regularization parameter λ and the condition number cn of the sensor covariance
matrix. In the left, the lines display, for each λmag, λgrad,max—the λgrad that yields maximum subject
average correlation r2 between magnetometer and gradiometer source reconstructions. The gray
surfaces span the area for which the subject average r2 > 0.6 (lighter gray) and r2 > 0.8 (darker gray) for
all five sources considered. In the right side, an equivalent plot is built with axes corresponding to the
condition numbers of the regularized magnetometers and gradiometers covariance matrices (cnmag

and cngrad, respectively).
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3.2. Spatial Dependence of the Correlation between Magnetometer and Gradiometer Source Reconstructions

To evaluate the whole-brain spatial relationship between magnetometer and gradiometer source
reconstructions, we separately computed the correlations between source time series extracted with
both sensor types using λmag = 0.01 and λgrad = 0.29, respectively, for all cortical sources. Figure 3
shows the spatial distribution of the average r2 between magnetometer and gradiometer source
reconstructions across subjects, using both the raw and the SSS-filtered datasets. After SSS, r2 > 0.8
across the brain. This correlation was much weaker for the raw dataset without SSS, with r2 < 0.4 for
most cortical regions and r2 > 0.5 for posterior and deeper regions around visual cortex, posterior
cingulate and precuneus. When comparing source reconstructions with and without SSS, the former
were more strongly correlated (r2 > 0.6), with raw magnetometer source reconstructions in posterior
central, parietal, and posterior regions, and with raw gradiometer source reconstructions in frontal,
temporal and cingulate regions.
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3.3. Inter-Pipeline Reliability of Power and Functional Connectivity Values: Impact on the Choice of
Magnetometers or Gradiometers

One may argue that the aforementioned results only apply to the reconstructed source time
series in the time domain, whereas the spectral properties or the functional connectivity (FC) patterns
obtained from both types of sensors may differ. To estimate the impact that the choice of magnetometers
or gradiometers would have in the outcome of the spectral properties and FC in a real experiment,
we quantified the difference between the magnetometer and gradiometer-derived values of these
target measures. Power spectra were calculated from source time series with the multitaper method
using Hamming windows and 1 Hz smoothing and normalized to the overall power in the [2–30] Hz.
We estimated relative power for the following frequency bands: delta ([2–4] Hz), theta ([4–8] Hz), alpha
([8–13] Hz) and beta ([13–30] Hz), and averaged over the 66 cortical regions of the Desikan-Killiany
atlas [23]. As an estimate of FC, we computed the phase-locking value (PLV) between all pairs of
regions in the delta, theta, alpha, and beta bands. More details on the implementation of power and
PLV estimation can be found in [14,24].
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The inter-analysis pipeline reliability of the power and PLV estimates was quantified with the
intraclass correlation coefficient (ICC type 1-1, following [21]), comparing power and PLV values
obtained with magnetometers and regularization mag-λ = 0.01 and gradiometers with regularization
grad-λ = 0.29. Figure 4 shows the distribution of ICC values across regions and links. For comparison,
we also computed the reliability between the analysis pipelines using magnetometers only, but with
different λ coefficients (always keeping the dataset obtained with magnetometers with λ = 0.01 as a
reference), and these are included in Figure 4. We found excellent inter-pipeline reliability (ICC > 0.85)
for the power spectra for all analysis pipeline combinations. ICC values for PLV were however
smaller. Although for more than 3/4 of the links ICC > 0.8, which is usually regarded as an excellent
reliability [25], the ICC values spanned a broader interval ([0.4–1]) when comparing mag-λ = 0.01
and grad-λ = 0.29. This was, however, also the case when comparing within a single sensor type
mag-λ = 0.01 and mag-λ = 0.05. To further evaluate whether the impact on reliability was driven by the
regularization or by the sensor choice, the dependence between ICC values obtained with grad-λ = 0.29
and mag-λ = 0.05 (keeping mag-λ = 0.01 as a reference) was explored (Figure 4C). Both magnitudes
were strongly correlated (Pearson r2 = 0.13–0.26, p-value < 10−10). This means that the links with
smaller ICC in grad-λ = 0.29 tend to be also the links with smaller ICC in mag-λ = 0.05. This fact could
indicate that the regularization intensity rather than the sensor choice causes the drop on ICC.
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Figure 4. Inter-pipeline reliability of power spectrum and phase locking value (PLV) estimates.
The reliability was evaluated with the ICC (Intraclass correlation coefficient), using as a reference the
mag-λ = 0.01 pipeline (choosing magnetometers for source reconstruction and a regularization factor
of λ = 0.01). We compared three pipelines against this reference: mag-λ = 0.02 (using magnetometers
and λ = 0.02), mag-λ = 0.05 (using magnetometers and λ = 0.05) and grad-λ = 0.29 (using gradiometers
and λ = 0.29). (A) Violin plots of the distribution of ICC coefficients for relative power estimates in
the delta, alpha, beta and gamma bands across the 66 cortical regions of the Desikan-Killiany atlas.
(B) Violin plots of the distribution of ICC for PLV across pairs of regions (or links) for each frequency
band. (C) Scatterplot of the ICC values obtained with the mag-λ = 0.05 and the grad-λ = 0.29 pipelines.
Each dot represents a single connection, and the color displays the density of points.
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3.4. Generalizability of the Previous Results

In order to demonstrate the reproducibility and generalizability of our results, we undertook
similar magnetometer and gradiometer comparisons in an external dataset, recorded in a different
MEG site and with a different protocol. We used MEG recordings during a passive visual task
for 37 healthy volunteers (between 18 and 29 years age, mean 24.1). Data were obtained from
the CamCAN repository (available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/) [26,27].
tSSS was applied with Maxfilter (version 2.2) Lin = 8, Lout = 3, tSSS correlation window = 10 s, and
tSSS correlation limit = 0.98. A detailed description of the methods used in this section can be found in
the Supplementary Material.

We first focused on the Visual Evoked Fields (VEFs). For each subject and sensor type,
a representative VEF was computed directly from sensor data using a principal component approach,
similar to that in [28]. Results are shown in Figure 5A. Magnetometer- and gradiometer-derived sensor
space VEF were extremely correlated, with r2 > 0.9 for all but one subject. Notably, magnetometer- and
gradiometer-derived source space VEFs in the left and right primary visual cortices (MNI coordinates
[−11, −81, 7] mm and [11, −78, 9] mm, respectively) were also strongly correlated at the subject
level with similar results for both visual cortices. Maps of source power in the 60–160 ms interval
compared to baseline (−100 to 0 ms) were computed from magnetometer and gradiometer data
separately, leading to similar source activation plots of around 10% power increase in posterior regions
(Figure 5B).
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Figure 5. Similarity of the evoked and ongoing activity during a passive visual task estimated with
magnetometers and gradiometers after SSS. (A) Sensor space Visual Evoked Fields (VEF). The gray
areas represent the standard deviation across subjects. The squared Pearson correlation coefficients (r2)
between the magnetometer and gradiometer-derived VEFs are displayed for each subject. (B) Source
activation at 60–160 ms after stimulus presentation compared to baseline (−100–0 ms). (C) Correlation
between source time series derived from magnetometers and gradiometers. Beamforming filters and
source power values were estimated from the average covariance matrix across all trials (from −0.1 to
0.9 s relative to stimulus onset).
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Additionally, we replicated the analyses performed in Section 3.1 in the passive visual task,
focusing on the ongoing activity during the whole task (−100 to 900 ms relative to stimulus onset).
Similarly to Section 3.1, source reconstructions were performed separately for magnetometers and
gradiometers for regularization factors between λ = 10−4 and λ = 1, focusing on four representative
sources. Squared Pearson correlation coefficients r2 were computed between source time series derived
from magnetometers and gradiometers for each pair of λmag and λgrad and averaged over trials and
subjects (Figure 5C). The same patterns than in Section 3.1 were recovered, reaching correlations of r2 > 0.9.

4. Discussion

In this work, we have demonstrated both theoretically and experimentally that magnetometer
and gradiometer data after SSS contain equivalent information, and therefore produce very similar
sensor-space VEFs and source space resting state activity estimates and task-related activity maps
(r2 > 0.8). Although these results may not come as a surprise for most Elekta users experienced with
SSS and source reconstruction, there is substantial controversy in the general neuroimaging community
on the selection of magnetometers and gradiometers. The present work provides a focused analysis
on this issue, which we hope will guide MEG users who are designing analysis plans, contribute to
avoiding additional lengthy discussions during scientific peer-review, and inform researchers who are
doubtful about the different source reconstruction approaches.

Currently, the community using Elekta MEG devices is divided among different options: using
magnetometers only [29], gradiometers only [30], both sensor types simultaneously [31,32], or both
sensor types separately across main manuscript and supplementary information [24]. In this work, we
have demonstrated that all these approaches can be regarded as equivalent when using SSS for MEG
data denoising. We note, however, that the choice of magnetometers and gradiometers is relevant
when working in sensor space, since both sensor types yield different topographies for the same
source activation. While magnetometers have a circular sensitivity distribution, planar gradiometers
have maximum sensitivity directly under the sensors [9]. Furthermore, planar gradiometers can be
combined to produce sensor-space pseudo current maps, which provide a more accurate estimation of
the underlying current distribution than magnetometer-derived topographies [33].

A crucial factor in ensuring comparability between magnetometer and gradiometer source
reconstructions is an appropriate regularization of the covariance matrices. The importance of
regularization in MEG/EEG beamforming has been established previously [34–36]. Brookes et al. [37]
demonstrated that shorter experiment times, smaller frequency bandwidths and increasing numbers
of sensors produce a higher error in the covariance matrix estimation, and therefore require greater
regularization, which comes at the expense of a loss in spatial resolution. After (t)SSS, the effective
dimensionality of magnetometer and gradiometer covariance matrices is equal to the number of
inside SSS components, which is typically in the range 60–80. Since Elekta MEG devices contain
twice as many gradiometers as magnetometers, after SSS the gradiometer covariance matrix has a
higher condition number (is less invertible) than the magnetometer covariance matrix. When using the
popular approach of defining the regularization parameter λ as the fraction of the average diagonal of
the covariance matrix, which is added to the covariance matrix’s diagonal before inversion [15,19], the
highest agreement between magnetometer- and gradiometer-derived source time series was obtained
for λgrad > λmag. Notably, other methods for covariance matrix estimation and regularization have been
introduced [11], and they may yield a different dependence between the similarity of magnetometer-
and gradiometer-derived source reconstructions and regularization strength. This dependence could
also be altered when using inverse models other than beamforming. In fact, beamformers were
found to be more strongly affected than minimum norm estimates by errors in covariance matrix
estimation [38].

Although selecting higher regularizations for gradiometers than for magnetometers yields
comparable condition numbers and the highest level of correlation between the source time series,
having different regularization intensities (and therefore the different intensity of added noise) can
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affect the spatial properties of magnetometers and gradiometers. To explore this, we evaluated the
inter-pipeline reliability of conventional MEG measures (power and functional connectivity) obtained
with magnetometers with λ = 0.01 and gradiometers with λ = 0.29 (combination yielding source time
series correlation r2 > 0.8). Power values estimated with both analysis pipelines were remarkably
similar (ICC > 0.85). Functional connectivity values were more variable; although for most links
and frequency bands ICC > 0.8, ICC values in the 0.4–0.8 range were also obtained. ICC comparing
pipelines using magnetometers only and different values of λ were similarly affected, indicating
that the regularization is causing the difference in FC estimates obtained with magnetometers and
gradiometers. Such a result is not particularly surprising, since the effect of regularization on the
spatial resolution of source reconstruction is well known [34–36].

5. Conclusions

We have highlighted here an often-overlooked fact: magnetometer and gradiometer data after
SSS are derived from the same set of SSS inside components (usually a maximum of 80 components),
which represent the most dominating magnetic field patterns of interest in any multichannel MEG
measurement. We have then demonstrated that, after SSS, magnetometer and gradiometer datasets
produce very similar outcome measures: resting state power spectral and functional connectivity
estimates (average ICCs of 0.8–0.98) and visual evoked fields (r2 > 0.9). These results unify different
analysis pipelines existing in the literature, and prove that the choice of magnetometers or gradiometers
in source reconstruction after SSS has a small impact on the outcomes of MEG studies. In fact, other
analysis parameters such as the beamforming regularization strength could have a stronger impact
than the sensor type choice. These findings support the relevance of developing of new source
analysis methods that could work directly in the SSS space, and thereby avoid projecting SSS inside
components back into sensor space and using strong regularization to account for badly conditioned
covariance matrices.

Supplementary Materials: Supplementary figures and methds can be found online at http://www.mdpi.com/
1424-8220/17/12/2926/s1. Figure S1. Correlation between source time series derived from magnetometers
only and magnetometers + gradiometers combined, depending of the λ regularization parameter. Squared
Pearson correlation coefficients averaged across subjects are shown for four selected sources, as a function of the
regularization parameters λ for magnetometer (x-axis) and magnetometer + gradiometer (y-axis) beamforming
reconstructions. For the (mag + grad) dataset, data for both sensor types were variance normalised. Figure S2.
Dependence between the squared Pearson correlation coefficient r2 between source time series derived from
magnetometers and gradiometers and the noise estimate in the raw recordings (znoise). Each point represent a
single recording (subject). r2

max,raw and r2
max, SSS is the strongest r2 across pairs of regularization parameters

λmag and λgrad for datasets without and with SSS, respectively, for each subject separately (averaging r2 maps
across the four sources of interest). znoise is defined as the ratio between the maximum magnetometer amplitude
(across channels and time) before SSS and after SSS and is computed for each subject and trial separately, and then
averaged over trials.
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