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Abstract:



This paper investigates a subarray based algorithm for direction of arrival (DOA) estimation of wideband uniform linear array (ULA), under the presence of frequency-dependent mutual coupling effects. Based on the Toeplitz structure of mutual coupling matrices, the whole array is divided into the middle subarray and the auxiliary subarray. Then two-sided correlation transformation is applied to the correlation matrix of the middle subarray instead of the whole array. In this way, the mutual coupling effects can be eliminated. Finally, the multiple signal classification (MUSIC) method is utilized to derive the DOAs. For the condition when the blind angles exist, we refine DOA estimation by using a simple approach based on the frequency-dependent mutual coupling matrixes (MCMs). The proposed method can achieve high estimation accuracy without any calibration sources. It has a low computational complexity because iterative processing is not required. Simulation results validate the effectiveness and feasibility of the proposed algorithm.
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1. Introduction


Wideband antenna arrays have attracted tremendous interest in various fields including radar, radio astronomy, and wireless communications [1,2]. Most array signal processing algorithms, such as direction of arrival (DOA) and digital beamforming (DBF), are sensitive to array errors because they rely crucially on the prior knowledge of the array manifold. However, actual array systems are inevitably affected by unknown mutual coupling effects between the elements, which may lead to substantial performance degradation [3,4].



A variety of methods have been proposed to mitigate mutual coupling effects in narrowband applications. It is possible to estimate the mutual coupling matrix (MCM) using a network analyzer and computational electromagnetic solvers [5,6]. However, the methods are time-consuming and essentially impractical once arrays are in operation. In [7,8], an alternating minimization procedure for both DOA and mutual coupling parameters was created based on the subspace principle. Procedures of this type, however, usually suffer from serious ambiguous problems and have high computational complexity due to multidimensional searches in nonlinear optimization. An improved method resulted from the application of a group of auxiliary elements on the boundaries of the uniform linear array (ULA), and led to the development of a simple and effective DOA estimation algorithm [9,10,11]. This algorithm requires no calibration sources or iterations and behaves robustly through mutual coupling. A two-dimensional DOA estimation method for an L-shaped sensor array is proposed in [12]. This method employs two collocated antennas to reduce the mutual coupling effects.



In recent years, wideband signals have been widely used in various applications, such as passive radar and sonar, and many wideband DOA estimation algorithms have been proposed [13,14]. Compared to the narrowband situations, DOA estimation for wideband ULA in the presence of unknown mutual coupling seems to be more difficult, since mutual coupling is a frequency-dependent phenomenon [15,16,17]. In [18], the method of moments (MOM) is employed to quantize and eliminate the mutual coupling effects on DOA estimation over a wideband range of frequencies. An improved DOA estimation technique for ultra-wideband electromagnetic waves is studied in [19]. The technique combines interferometry and a modified multiple signal classification (MUSIC) method to mitigate mutual coupling effects. In [20,21], narrowband MCMs at some discrete frequencies are calculated firstly based on the receiving mutual impedance method or the element pattern reconstruction method, then, utilizing the system identification methods, a wideband calibration matrix is obtained, which can be used to compensate the mutual coupling effects at all frequencies. An analysis of wideband DOA estimation taking account of mutual coupling effects is presented in [22,23,24]. The wideband signals are decomposed into multiple discrete narrowband components, and the transforming matrices are decoupled by the MCMs at the corresponding sub-bands to eliminate mutual coupling.



The above wideband DOA estimation algorithms are based on the assumption that the MCMs at all frequencies are perfectly known beforehand. In practice, however, the MCMs vary with environmental factors such as temperature, humidity and vibration, and have to be recalculated when the environment changes. During the operation of array systems, it may be difficult to carry out the measurements owing to heavy workloads.



In this paper, we are concerned with wideband DOA estimation for ULA in the presence of unknown mutual coupling. Based on the property that the MCM at any frequency is a Toeplitz matrix, we propose a new wideband DOA estimation algorithm. The algorithm can estimate the DOAs accurately without any prior knowledge of mutual coupling. It is computationally efficient and feasible for the applications in real-time systems.



This paper is organized as follows: In Section 2, the model of wideband ULA with unknown mutual coupling is presented; Section 3 illustrates the proposed algorithm to estimate wideband DOA without any prior knowledge of mutual coupling; Computer simulations are shown and analyzed in Section 4, followed by conclusions in Section 5.




2. Problem Formulation


Consider a wideband ULA with an operating frequency band of [image: there is no content]. The array is composed of [image: there is no content] omnidirectional elements which are equally spaced. The inner-element distance [image: there is no content] is defined as the half wavelength of the highest frequency. Assuming that there are [image: there is no content] wideband signals [image: there is no content] from different directions [image: there is no content] impinging on the array, the output of the [image: there is no content]th element can be expressed as:


[image: there is no content]



(1)




where [image: there is no content] is white noise with a variance of [image: there is no content], and [image: there is no content] is the speed of signal propagation. The Fourier transform (FT) of Equation (1) is:


[image: there is no content]



(2)







Most wideband DOA estimation algorithms divide the full band into a set of frequency bins using discrete Fourier transformation (DFT). Therefore, the array outputs can be written in vector form at [image: there is no content]:


[image: there is no content]



(3)




where:


[image: there is no content]



(4)




for [image: there is no content]. [image: there is no content] is the steering matrix at [image: there is no content], which is defined as:


[image: there is no content]



(5)







Taking mutual coupling effects into consideration, the received data may be written as:


[image: there is no content]



(6)




where [image: there is no content] is the MCM at [image: there is no content].



It has been shown that [image: there is no content] can be considered as a banded symmetric matrix in the case of ULA [7]. Indeed, mutual coupling effects tend to be inversely related to the distance between elements and may be negligible for the elements separated by a few wavelengths. Assuming there are [image: there is no content] non-zero mutual coupling coefficients, [image: there is no content] can be determined from:


[image: there is no content]



(7)




where [image: there is no content] is the mutual coupling coefficient between the first and the [image: there is no content]th element at [image: there is no content]. The number of non-zero mutual coupling coefficients can be obtained by initial measurements using network analyzers. Since mutual coupling varies slowly, these measurements may be carried out only once.



As can be seen from Equation (6), wideband array outputs are affected by the MCMs at all frequencies in the band. If the mutual coupling is unknown, [image: there is no content] in Equation (6) cannot be obtained. In order to compensate Equation (6), measurements using a network analyzer must be carried out to calculate mutual coupling coefficients. However, this method is time-consuming. In this paper, however, we are concerned with estimating wideband DOA when mutual coupling is unknown.




3. Subarray-Based Wideband DOA Estimation Algorithm


3.1. Derivation of Focusing Matrices


A representative solution to wideband DOA estimation is the coherent subspace method (CSM) [13]. In CSM, the correlation matrices at different frequency bins are aligned by a series of focusing matrices to form a narrowband subspace and, subsequently, the MUSIC method can be applied. In this section, we construct the focusing matrices in the presence of unknown mutual coupling.



Considering the special structure of MCM in Equation (7), we take [image: there is no content] elements on each side of the array as auxiliary elements to combat mutual coupling effects. Define a [image: there is no content] selecting matrix as:


[image: there is no content]



(8)




where [image: there is no content] is a [image: there is no content] zero matrix, and [image: there is no content] is the [image: there is no content] identity matrix.



The outputs of the remaining [image: there is no content] elements, denoted as the middle subarray, can be selected from the whole array outputs:


X˜(fk)=FN0,P−1NX(fk)=C˜(fk)A(fk)S(fk)+N˜(fk)



(9)




where [image: there is no content], and [image: there is no content] is a [image: there is no content] noise vector. [image: there is no content] denotes the MCM of the middle subarray at [image: there is no content], which can be written in the form of:


[image: there is no content]



(10)







Here we define [image: there is no content] as the mutual coupling vector at [image: there is no content].



As shown in Equation (10), the non-zero mutual coupling coefficients of each element in the middle subarray have the same values, differing only in positions. Making use of this property, we construct the focusing matrices by the middle array outputs instead of the whole array outputs. The intention, therefore, is to eliminate the influence of mutual coupling on wideband DOA estimation.



Without loss of generality, we define [image: there is no content] as the focusing frequency. The correlation matrix of the middle array outputs at [image: there is no content] is given by:


R˜(f0)=E[X˜(f0)X˜H(f0)]=C˜(f0)A(f0,θ)Rs(f0)AH(f0,θ)C˜H(f0)+σ02IN0



(11)




where [image: there is no content] denotes the expectation operator, and [image: there is no content] is the power of noise at [image: there is no content]. The superscript [image: there is no content] denotes the conjugate transpose. [image: there is no content] is the correlation matrix of incident signals at [image: there is no content].



Due to the special structure of [image: there is no content] in Equation (10), for the signal from [image: there is no content], we have:


C˜(f0)a(f0,θm)=[cP(0)+cP−1(0)βm+⋯+c2(0)βmP−2+βmP−1+c2(0)βmP+⋯+cP(0)βm2P−2βm(cP(0)+cP−1(0)βm+⋯+c2(0)βmP−2+βmP−1+c2(0)βmP+⋯+cP(0)βm2P−2)⋮βmN0−1(cP(0)+cP−1(0)βm+⋯+c2(0)βmP−2+βmP−1+c2(0)βmP+⋯+cP(0)βm2P−2)]=g(f0,c˜0,βm)a˜(f0,θm)



(12)




where [image: there is no content]. [image: there is no content] is the mutual coupling vector at [image: there is no content]. [image: there is no content] is a function of the mutual coupling coefficients, frequency and DOA. [image: there is no content] is the ideal steering vector of the middle subarray defined as:


[image: there is no content]



(13)







From Equation (12), we can obtain:


C˜(f0)A(f0,θ)=[g(f0,c˜0,θ1)a˜(f0,θ1),⋯,g(f0,c˜0,θM)a˜(f0,θM)]=A˜(f0,θ)D(f0,c˜0,θ)



(14)




where


[image: there is no content]



(15)







For simplicity of notation, we suppress the DOA variable and represent [image: there is no content] by [image: there is no content] and [image: there is no content] by [image: there is no content].



By Substituting Equation (14) into Equation (11) and subtracting the noise-power matrix, we can obtain the focusing noise-free correlation matrix at [image: there is no content]:


[image: there is no content]



(16)







In the same way, we can derive the noise-free correlation matrix at each frequency bin as [image: there is no content], where [image: there is no content]. [image: there is no content] denotes the noise power at [image: there is no content], which can be estimated by:


[image: there is no content]



(17)




where [image: there is no content] denotes the small eigenvalues of [image: there is no content].



Here we aim at transforming the noise-free correlation matrix at each frequency bin to [image: there is no content]. Based on the two-sided correlation transformation (TCT) criterion [13], the focusing matrix is selected to satisfy Equation (18):


[image: there is no content]



(18)







Generally, the focusing matrix is constrained to a unitary matrix. Therefore, it can be determined by solving the following minimization problem:


[image: there is no content]



(19)




for [image: there is no content], where [image: there is no content] denotes the Frobenius norm of a matrix.



It has been shown in [13] that the optimal solution of Equation (19) is given by:


[image: there is no content]



(20)




where [image: there is no content] and [image: there is no content] are the eigenvector matrices of [image: there is no content] and [image: there is no content], respectively.



Using Equation (20), we can construct a focusing matrix corresponding to the correlation matrix at each frequency bin. Therefore, the general focused correlation matrix is obtained as:


[image: there is no content]



(21)







The selection of focusing frequency in Equation (19) is based on the criterion that minimizes the fitting error, which is a function of [image: there is no content]. Details of the derivation of the optimal [image: there is no content] are shown in [13]. Here we only give the result:


[image: there is no content]



(22)




where [image: there is no content]. [image: there is no content] denotes the singular values of [image: there is no content]. [image: there is no content] is the number of incident signals, and [image: there is no content] is the number of frequency bins. By searching [image: there is no content] in Equation (22), the optimal focusing frequency [image: there is no content] can be found.



If we directly deal with [image: there is no content], narrowband DOA methods, such as MUSIC, should be performed on all of the frequency bins. This kind of wideband DOA method is time-consuming. In this manuscript, the correlation matrices at different frequency bins are aligned by a series of transforming matrices. Therefore, the MUSIC method can be performed only at the focusing frequency bin, which is computationally efficient. Moreover, these transforming matrices contain the information at each frequency bin [image: there is no content]. As a result, the DOA estimation can also reach high accuracy.




3.2. DOA Estimation with Unknown Mutual Coupling


We have constructed the focusing matrices using the middle array outputs, where the energy of wideband signals are condensed at the focusing frequency [image: there is no content]. Subsequently, wideband DOA estimation problems can be addressed in narrowband.



In an ideal case, the noise-free correlation matrices at all frequency bins are transformed to the focusing noise-free correlation matrix. Substituting Equations (16) and (18) into Equation (21) yields:


[image: there is no content]



(23)




where [image: there is no content].



On the assumption that [image: there is no content] for [image: there is no content] (the situations where [image: there is no content] will be discussed further), [image: there is no content] is of full rank. Owing to the diagonal structure of [image: there is no content], [image: there is no content] has the same rank as [image: there is no content]. Therefore, the general focused correlation matrix in Equation (23) may be eigen-decomposed as:


[image: there is no content]



(24)




where [image: there is no content] and [image: there is no content] represent the signal subspace and the noise subspace, respectively. [image: there is no content] is a diagonal matrix formed by the [image: there is no content] principle eigenvalues, and [image: there is no content] is formed from the remaining [image: there is no content] eigenvalues. Most DOA estimation methods, such as MUSIC, CSM, and ISM, require that the number of incident signals is known. The number of principal eigenvalues equals to the number of incident signals.



It can be seen from Equation (23) that the unknown mutual coupling coefficients are completely contained in [image: there is no content]. Therefore, they do not affect the orthogonality between the noise space and the steering matrix of the middle subarray. According to the subspace principle, we have:


[image: there is no content]



(25)







As a result, it is possible to employ the MUSIC method without mutual coupling compensation:


[image: there is no content]



(26)







By searching the peaks of [image: there is no content], the DOA estimation of incident signals can be obtained.




3.3. Discussion


In Section 3.2, we assume that [image: there is no content] for [image: there is no content]. However, in some particular conditions, there may exist [image: there is no content] satisfying [image: there is no content]. In this case, signals from these angles will be lost. These angles, the so called blind angles, are caused by mutual coupling effects [10], and in the case of narrowband arrays, they are difficult to cope with.



In wideband applications, if the mutual coupling coefficients at the focusing frequency satisfy [image: there is no content], signals from [image: there is no content] will be missed. In order to address this problem, we select a different frequency [image: there is no content] as the focusing frequency, and the general focused correlation matrix can be obtained as:


[image: there is no content]



(27)




where [image: there is no content] denotes the mutual coupling vector at [image: there is no content]. The optimal focusing frequency can be obtained by searching minimum value of Equation (22). Therefore, we can sort the values of Equation (22) in ascending order, and select [image: there is no content] corresponding to the second smallest values as another focusing frequency.



Since [image: there is no content] is a function of the mutual coupling coefficients which change with the frequency, it rarely happens that both [image: there is no content] and [image: there is no content] are equal to zero, so [image: there is no content] is of full rank. Therefore, [image: there is no content] can be estimated using [image: there is no content].



In practice, it is difficult to select a proper focusing frequency to avoid the blind angles without any prior knowledge of mutual coupling. However, we can choose several different frequencies [image: there is no content] as the focusing frequencies and, subsequently, the corresponding spatial spectra [image: there is no content] in Equation (26) can be obtained. It seems that blind angles may not exist at all of the focusing frequencies owing to frequency-dependent mutual coupling coefficients. Therefore, to avoid blind angles, we can calculate the average spatial spectrum as follows:


[image: there is no content]



(28)







Finally, the complete descriptions of the proposed algorithm are summarized as follows:

	(1)

	
Divide the array outputs into non-overlapping time slices, each containing [image: there is no content] samples, and apply DFT in each slice to sample the spectrum of the outputs at a group of frequency bins [image: there is no content].




	(2)

	
Select the outputs of the middle subarray from Equation (9). The number of nonzero mutual coupling coefficients can be obtained by preliminary measurements at the lowest operating frequency.




	(3)

	
Find [image: there is no content] at the preselected focusing frequency. For each frequency bin, determine [image: there is no content] and construct the focusing matrix [image: there is no content] using Equation (20).




	(4)

	
Calculate the general focused correlation matrix [image: there is no content] using Equation (21).




	(5)

	
Apply the MUSIC method to [image: there is no content] for the estimation of the DOA.




	(6)

	
In order to avoid blind angles, we choose several focusing frequencies and repeat steps (3) to (5) and then search the peaks of the averaging spectrums in Equation (28). However, considering the cost of computation, this step is usually skipped unless we find some signals are lost.











4. Simulation Results


In this section, several representative simulations are carried out to demonstrate the performance of the proposed algorithm.



Consider a wideband monopole antenna array with [image: there is no content] elements arranged uniformly in a line, which is shown in Figure 1. The operation frequency band is [image: there is no content] with a center frequency of [image: there is no content]. With the purpose of avoiding grating lobes, the distance between neighboring elements is set to [image: there is no content], which is the half wavelength of the highest frequency. The wideband mutual coupling coefficients are generated by the computer simulation technology Microwave Studio (CST MW) software. In this paper, we assume that gain and phase errors have already been compensated [25], and only mutual coupling errors are concerned.


Figure 1. Setup of the array antenna.



[image: Sensors 17 00230 g001]






In the first simulation, three incoherent signals, with a bandwidth of 500 MHz covering [1.25 GHz, 1.75 GHz], impinge on the array from −18°, 9°, and 23°. The signal to noise ratio (SNR) is set to 5 dB and 100 snapshots are collected at each frequency bin. Two elements on both sides are treated as auxiliary elements, and the other N0 = 9 elements are treated as the middle array. The spatial spectrum of DOA estimation using the proposed algorithm is shown in Figure 2. In comparison, we also illustrate the results using the algorithm in [20], which employ the system identification method to decouple mutual coupling effects. Here we assume that the MCMs at all frequency bins are known precisely. However, such information may be unavailable in practice. Therefore, the results of the traditional TCT algorithm in [13] with unknown mutual coupling are also given. It is shown in the figure that both the proposed algorithm and the algorithm from [20] with known MCMs are able to estimate the DOAs successfully since the curves of their spatial spectrum share sharp peaks at the correct directions. However, without prior knowledge of the MCMs, the TCT algorithm yields poor resolution and the curve peaks deviate from their true positions.


Figure 2. Spatial spectrums of wideband DOA estimation. SNR = 5 dB, snapshots = 100.



[image: Sensors 17 00230 g002]






The second simulation is carried out to evaluate the precision of DOA estimation, which may be measured by the root mean-squared error (RMSE) defined as:


[image: there is no content]



(29)




where [image: there is no content] and [image: there is no content] denote the number of incident signals and the Monte Carlo trials, respectively. [image: there is no content] is the estimation of [image: there is no content] in the [image: there is no content]th trial. Here we ran 200 Monte Carlo trials for each condition in the simulations unless specifically mentioned.



The incident angles are the same as in Simulation 1. The RMSE of wideband DOA estimation against the input SNR and the number of snapshots at each frequency bin are shown in Figure 3a,b, respectively. The Cramer-Rao lower bound (CRLB) of the DOA estimation in the presence of mutual coupling (computed as shown in the Appendix A) is also illustrated. As we can see, the performance of the TCT algorithm is seriously degraded in the presence of unknown mutual coupling, and the RMSE can’t be improved by increasing the input SNR or the number of snapshots. In contrast, the unknown mutual coupling has little influence on the proposed algorithm, which achieves considerable accuracy. Since the proposed algorithm loses some array apertures in order to eliminate mutual coupling effects, the performance is slightly worse than the algorithm in [20] with known MCMs at low SNR. However, it still reaches high estimation precision and is close to the case without mutual coupling at high SNR. Furthermore, there is no need to calculate any MCMs, so the proposed algorithm has low computational requirements and achieves high real-time performance.


Figure 3. RMSE of wideband DOA estimation with 200 Monte Carlo trials. (a) RMSE versus input SNR, where snapshots = 100; and (b) RMSE versus the number of snapshots, where SNR = 5 dB.



[image: Sensors 17 00230 g003]






Setting the SNR to 5 dB and the number of snapshots to 100, the effect of the array size is illustrated in Figure 4. As is evident from the figure, the proposed algorithm outperforms the TCT algorithm with unknown MCM. When array elements are not sufficient, the performance of our algorithm deteriorates because only the elements from the middle subarray are used. In spite of this, the RMSE of our algorithm is almost the same as the algorithm from [20] with known MCMs in the case of a large array size.


Figure 4. RMSE of DOA estimation versus the number of array elements. SNR = 5 dB, snapshots = 100.



[image: Sensors 17 00230 g004]






The resolution of the DOA estimation is investigated in the third simulation. Keeping other conditions the same as in Simulation 1, we consider two wideband signals impinging on the array. The direction of one signal is fixed at −25°, while that of the other signal varies from −21° to −9°. The RMSE of the DOA estimation against angle separation is shown in Figure 5. It is seen that the proposed algorithm behaves robustly in the presence of unknown MCMs, and the RMSE is smaller than 0.3° when the two signals are separated by 8°.


Figure 5. RMSE of DOA estimation versus the angle separation of incident signals. SNR = 0 dB, snapshots = 64.



[image: Sensors 17 00230 g005]






Figure 6 depicts the success probabilities which are derived from 500 trials. We assume that the two signals are successfully resolved if both DOA estimation bias are smaller than 1°, i.e., [image: there is no content], where [image: there is no content] stands for the estimation of [image: there is no content]. As can be seen from the figure, with known MCMs, the signals can be well resolved with an angle separation of 6°. The proposed algorithm, with slight resolution performance deterioration, still has the potential to reach 100% success probabilities for signals separated by 8°. However, the TCT algorithm with unknown MCMs is not able to resolve the two signals unless they are separated by more than 13°.


Figure 6. Success probability of DOA estimation versus the angle separation of incident signals. SNR = 0 dB, snapshots = 64.



[image: Sensors 17 00230 g006]






In the fourth simulation, we consider the scenario where blind angles exist. We generate a group of mutual coupling coefficients which satisfy [image: there is no content] when [image: there is no content], [image: there is no content]. According to the analysis in Section 3.3, signals from ±23° will be missed if we choose 1.5 GHz as the focusing frequency. The incident signals are assumed to be the same as Simulation 1. As illustrated from the spatial spectrums in Figure 7, both the primary proposed algorithm and the TCT algorithm with unknown MCMs miss the signal from [image: there is no content]. With known MCMs, the algorithm from [20] can successfully derive the blind angle of 23°. However, the DOA estimation is still affected by mutual coupling, since a pseudo-peak appears at the other blind angle of −23°. The result is similar to the conclusion from [10]. In order to cope with this problem, we carried out the refined algorithm presented in Section 3.3 by calculating the mean value of spectrums derived at the focusing frequencies of 1.4 GHz, 1.5 GHz, and 1.6 GHz. The results show that all the signals can be resolved accurately without any pseudo-peak.


Figure 7. Spatial spectrums of wideband DOA estimation with blind angles. SNR = 5 dB, snapshots = 100.



[image: Sensors 17 00230 g007]







5. Conclusions


In this paper, we present a wideband DOA estimation algorithm for ULA in the presence of unknown mutual coupling. Based on the special structure of the MCM, focusing matrices are constructed using the outputs of the middle subarray to eliminate mutual coupling effects. The algorithm can estimate the DOA accurately without any prior information of mutual coupling. It does not require any iterative procedures and has low computational requirements. Moreover, an improved approach is proposed to cope with the blind angles. The effectiveness of the proposed algorithm is verified by the simulations.
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Appendix A


The CRLB of the wideband DOA estimation is derived as follows:



Suppose the frequency band is divided into [image: there is no content] frequency bins, the received data in the presence of mutual coupling can be expressed by Equation (A1):


[image: there is no content]



(A1)




where [image: there is no content] is white noise with a variance of [image: there is no content].



Defining [image: there is no content], we can construct the stack vectors as:


[image: there is no content]



(A2)




where:


[image: there is no content]



(A3)







The logarithm of the probability density (PDF) for [image: there is no content] statistically-independent observations can be written as [25]:


[image: there is no content]



(A4)




where [image: there is no content].



The first order derivative with respect to [image: there is no content] is:


[image: there is no content]



(A5)







The second order derivative is given by:


∂2L∂θiθj=2JRe{∂YH∂θiθjRN−1(X−Y)−∂YH∂θiRN−1∂Y∂θj}=−2JRe{∂YH∂θiRN−1∂Y∂θj}



(A6)







Therefore, we can obtain the Fisher matrix:


[image: there is no content]



(A7)







Equation (A7) can be written in the form of:


[image: there is no content]



(A8)




where:


[image: there is no content]



(A9)







For any [image: there is no content], we have:


[image: there is no content]



(A10)




where:


[image: there is no content]



(A11)







Substituting Equations (A9)–(A11) into Equation (A8), the Fisher matrix can be calculated. Subsequently, we can obtain the CRLB of the wideband DOA estimation in the presence of mutual coupling.
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