Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Biomolecules
2.2. Preparation of Gold Nanostructures on Glass Substrates
2.3. Instruments for Sample Characterization: SEM, AFM, XRD, SERS and LSPR Homemade Set-Up
3. Results and Discussion
3.1. LSPR Characterization and SEM Images of Annealed Nanostructured
3.2. LSPR Extinction Measurements for BPE and Cyt-b5
3.3. SERS Measurements for BPE and Cyt-b5
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings: Springer Tracts in Modern Physics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1988. [Google Scholar]
- Zayats, A.V.; Smolyaninov, I.I. Near-field photonics: Surface plasmon polaritons and localized surface plasmons. J. Opt. A Pure Appl. Opt. 2003, 5, S16–S50. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Estevez, M.-C.; Otte, M.A.; Sepulveda, B.; Lechuga, L.M. Trends and challenges of refracttometric nanoplasmonic biosensors: A review. Anal. Chim. Acta 2014, 806, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Yong, K.-T.; Roy, I.; Dinh, X.-Q.; Yu, X.; Luan, F.; Zeng, S.; Yong, K.-T. A review on functionalized gold nanoparticles for biosensing applications. Plamonics 2011, 6, 491. [Google Scholar] [CrossRef]
- Guo, L.; Chen, G.; Kim, D.-H. Three-dimensionally assembled gold nanostructures for plasmonic biosensors. Anal. Chem. 2010, 82, 5147–5153. [Google Scholar] [CrossRef] [PubMed]
- Tokel, O.; Inci, F.; Demirci, U. Advances in plasmonic technologies for point of care applications. Chem. Rev. 2014, 114, 5728–5752. [Google Scholar] [CrossRef] [PubMed]
- Brolo, A.G. Plasmonics for future biosensors. Nat. Photon. 2012, 6, 709–713. [Google Scholar] [CrossRef]
- Kabashin, A.V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G.A.; Atkinson, R.; Pollard, R.; Podolskiy, V.A.; Zayats, A.V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, A.B.; Tegenfeldt, J.O.; Hook, F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal. Chem. 2006, 78, 4416–4423. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Bijeon, J.-L.; Adam, P.-M.; Ionescu, R.E. Large scale fabrication of gold nano-structured substrates via high temperature annealing and their direct use for the LSPR detection of atrazine. Plasmonics 2013, 8, 143–151. [Google Scholar] [CrossRef]
- Manzano, M.; Vizzini, P.; Jia, K.; Adam, P.M.; Ionescu, R.E. Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine. Sens. Actuators B 2016, 223, 295–300. [Google Scholar] [CrossRef]
- Jia, K.; Khayway, M.; Li, Y.; Bijeon, J.-L.; Adam, P.M.; Déturche, R.; Guelorget, B.; Manuel, F.; Louarn, G.; Ionescu, R.E. Strong improvements of LSPR sensitivity by using Au/Ag bi-metallic nanostructures modified with poly-dopamine films. ACS Appl. Mater. Interfaces 2014, 6, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Wokaun, A. Surface-enhanced electromagnetic processes. In Advances in Research and Applications-Solid State Physics; Ehrenreich, H., Turnbull, D., Seitz, F., Eds.; Academic Press: New York, NY, USA, 1984; Volume 38, pp. 223–294. [Google Scholar]
- Byahut, S.; Furtak, T.E. Direct comparison of the chemical properties of single crystal Ag(111) and electrochemically roughened Ag as substrates for surface Raman scattering. Langmuir 1991, 7, 508–513. [Google Scholar] [CrossRef]
- Goudonnet, J.P.; Bijeon, J.L.; Warmack, R.J.; Ferrell, T.L. Substrate effects on the surface-enhanced Raman spectrum of benzoic acid adsorbed on silver oblate microparticles. Phys. Rev. B 1991, 43, 4605–4612. [Google Scholar] [CrossRef]
- Ren, B.; Liu, G.K.; Lian, X.B.; Yang, Z.L.; Tian, Z.Q. Raman spectroscopy on transition metals. Anal. Bioanal. Chem. 2007, 388, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Aybeke, E.N.; Belliot, G.; Lemaire-Ewing, S.; Estienney, M.; Lacroute, Y.; Pothier, P.; Bourillot, E.; Lesniewska, E. HS-AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts. Small 2017, 13, 1600918. [Google Scholar] [CrossRef] [PubMed]
- Haynes, C.L.; Yonzon, C.R.; Zhang, X.; Van Duyne, R.P. Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 2005, 36, 471–484. [Google Scholar] [CrossRef]
- Chumanov, G.; Sokolov, K.; Gregory, B.W.; Cotton, T.M. Colloidal metal films as a substrate for surface-enhanced spectroscopy. J. Phys. Chem. 1995, 99, 9466–9471. [Google Scholar] [CrossRef]
- Averitt, R.D.; Sarkar, D.; Halas, N.J. Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 1997, 78, 4217–4220. [Google Scholar] [CrossRef]
- Oldenburg, S.J.; Averitt, R.D.; Westcott, S.L.; Halas, N.J. Nanoengineering of optical resonances. Chem. Phys. Lett. 1988, 288, 243–247. [Google Scholar] [CrossRef]
- Oldenburg, S.J.; Westcott, S.L.; Averitt, R.D.; Halas, N.J. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J. Chem. Phys. 1999, 111, 4729–4735. [Google Scholar] [CrossRef]
- Hulteen, J.C.; Van Duyne, R.P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 1995, 13, 1553–1558. [Google Scholar] [CrossRef]
- Rivas, L.; Murgida, D.H.; Hildebrandt, P. Surface-enhanced resonance Raman study of cytochrome c′′ from Methylophilus methylotrophus. J. Mol. Struct. 2001, 565–566, 193–196. [Google Scholar] [CrossRef]
- Brazhe, N.A.; Evlyukhin, A.B.; Goodlin, E.A.; Seemenova, A.A.; Novikov, S.M.; Boozhevolnyl, S.I.; Chichkov, B.N.; Sarycheva, A.S.; Baizhumanov, A.A.; Nikelshparg, E.; et al. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy. Sci. Rep. 2015, 5, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manickam, P.; Kaushik, A.; Karunakaran, C.; Bhansali, S. Recent advances in cytochrome c biosensing technologies. Biosens. Bioelectron. 2017, 87, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.H.; Hulteen, J.C.; Schatz, G.C.; Van Duyne, R.P. A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiments and theory. J. Chem. Phys. 1996, 104, 4313–4323. [Google Scholar] [CrossRef]
- Dürr, U.H.N.; Waskell, L.; Ramamoorthy, A. The Cytochromes P450 and B5 and Their Reductases—Promising Targets for Structural Studies by Advanced Solid-State NMR Spectroscopy. Biochim. Biophys. Acta Biomembr. 2007, 1768, 3235–3259. [Google Scholar] [CrossRef] [PubMed]
- Schenkman, J.B.; Jansson, I. The many roles of cytochrome b5. Pharmacol. Ther. 2003, 97, 139–152. [Google Scholar] [CrossRef]
- De Vetten, N.; ter Horst, J.; van Schaik, H.P.; de Boer, A.; Mol, J.; Koes, R. A cytochrome b5 is required for full activity of flavonoid 3’,5’-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proc. Natl. Acad. Sci. USA 1999, 96, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Kakita, M.; Kaliaperumal, V.; Hamaguchi, H.O. Resonance Raman quantification of the redox state of cytochromes b and c in vivo and in vitro. J. Biophoton. 2012, 5, 20–24. [Google Scholar] [CrossRef] [PubMed]
Morphology | Sample 1: (A) | Sample 2: (B) | Sample 3: (C) |
---|---|---|---|
Initial gold film thickness (nm) | 3 | 5 | 12 |
Mean diameter of nanoparticles (nm) | 5–8 | 8–10 | 50–80 |
LSPR wavelength (nm) | 553 | 560 | 596 |
AuNPs (Sample 2) | ||||
---|---|---|---|---|
FWHM | λmax (nm) | |||
75.992 | 558.1 | |||
BPE | Cytochrome b5 | |||
Zone | FWHM | λmax (nm) | FWHM | λmax (nm) |
1 | 110.232 | 579.896 | 169.84 | 579.896 |
2 | 104.608 | 568.475 | 160.85 | 568.475 |
3 | 103.483 | 560.383 | 195.722 | 596.42 |
Symmetry | Calculated Frequencies (cm−1) [21] | Published SERS Spectra of BPE (cm−1) | Present SERS Spectra of BPE (cm−1) |
---|---|---|---|
13 | 986 | 1008 | 1013 |
12 | 1071 | 1064 | 1057 |
11 | 1097 | ||
10 | 1145 | 1200 | |
9 | 1201 | 1200 | 1194 |
8 | 1224 | 1244 | 1240 |
7 | 1340 | 1314 | 1292 |
6 | 1363 | 1338 | 1332 |
5 | 1409 | 1421 | 1422 |
4 | 1498 | 1493 | 1487 |
3 | 1560 | 1544 | 1543 |
2 | 1609 | 1604 | 1599 |
1 | 1682 | 1640 | 1631 |
Published SERS Spectra of Cyt-b (cm−1) | Present SERS Spectra of Cyt-b5 (cm−1) |
---|---|
1580 | 1561 |
1400 | 1423 |
1338 | 1356 |
1303 | 1295 |
1250 | 1230 |
1180 | 1180 |
1120 | 1118 |
1080 | 1019 |
1050–900 (5 peaks) | 1019–992–940–887 |
800–900 | 837 |
780 | 775 |
670 | 703 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionescu, R.E.; Aybeke, E.N.; Bourillot, E.; Lacroute, Y.; Lesniewska, E.; Adam, P.-M.; Bijeon, J.-L. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules. Sensors 2017, 17, 236. https://doi.org/10.3390/s17020236
Ionescu RE, Aybeke EN, Bourillot E, Lacroute Y, Lesniewska E, Adam P-M, Bijeon J-L. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules. Sensors. 2017; 17(2):236. https://doi.org/10.3390/s17020236
Chicago/Turabian StyleIonescu, Rodica Elena, Ece Neslihan Aybeke, Eric Bourillot, Yvon Lacroute, Eric Lesniewska, Pierre-Michel Adam, and Jean-Louis Bijeon. 2017. "Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules" Sensors 17, no. 2: 236. https://doi.org/10.3390/s17020236
APA StyleIonescu, R. E., Aybeke, E. N., Bourillot, E., Lacroute, Y., Lesniewska, E., Adam, P. -M., & Bijeon, J. -L. (2017). Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules. Sensors, 17(2), 236. https://doi.org/10.3390/s17020236