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Abstract: Recent advances in computer science and electronics have greatly expanded the capabilities
of unmanned aerial vehicles (UAV) in both defense and civil applications, such as moving ground
object tracking. Due to the uncertainties of the application environments and objects’ motion, it is
difficult to maintain the tracked object always within the sensor coverage area by using a single UAV.
Hence, it is necessary to deploy a group of UAVs to improve the robustness of the tracking. This paper
investigates the problem of tracking ground moving objects with a group of UAVs using gimbaled
sensors under flight dynamic and collision-free constraints. The optimal cooperative tracking path
planning problem is solved using an evolutionary optimization technique based on the framework
of chemical reaction optimization (CRO). The efficiency of the proposed method was demonstrated
through a series of comparative simulations. The results show that the cooperative tracking paths
determined by the newly developed method allows for longer sensor coverage time under flight
dynamic restrictions and safety conditions.
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1. Introduction

Recently, unmanned aerial vehicles (UAV) have been widely used in both defense and civilian
applications. In many of these applications, the UAV is required to continuously track a moving target,
such as in the surveillance and tracking of ground objects. This task becomes challenging when the
target is moving in a complex and dynamic environment, where the target may be occluded by ground
features, such as buildings and mountains. In the case where the tracking cannot be achieved by using
a single UAV, multiple UAVs may be deployed to improve the tracking robustness. The methods to
coordinate the movements of multiple UAVs can be generally grouped into two categories, namely
centralized and distributed algorithms, respectively [1]. In centralized methods, the mission of each
UAV is dispatched from a central station or agent based on global information collected from the all of
the aircraft. These methods generally tend to produce better solutions since the global information
is available. In contrast, the distributed approaches determine the motion of each UAV by using the
local information obtained from the UAV itself and its neighboring UAVs, which enjoys the advantage
of computational efficiency and robustness when compared with their centralized counterparts. In a
moving target tracking problem, besides generating the tracking path for each UAV, the motion of the
target should be estimated since such information cannot be obtained from prior knowledge. As the
purpose of this paper is to determine the optimal path of each UAV for cooperative tracking tasks, the
motion pattern of the target is assumed to be available when it can be observed by the tracking UAVs.

The aim of cooperative tracking is to keep the target under the coverage of the UAV sensors
at all time. To address this problem, Yang et al. adopted the Lyapunov Vector Field Control (LVC)
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approach to make the unmanned aerial vehicles converge to a circular area on top of the target [2].
However, this method does not take environmental factors into account, such as non-fly zones and
the occlusion of sensors’ field of view. Besides, in their method prior knowledge about the motion
of the target is required, which is not available in most cases. In order to cope with this limitation,
Belkhouche et al. [3] proposed to apply active avoidance strategies for obstacles in the environment,
and determine feasible fly-zones by calculating the speed and position of the UAV relative to the
obstacle. Cheng et al. presented a time-related optimal path planning algorithm to determine the
cooperative tracking trajectories for each UAV [4]. Quintero and colleagues adopted a dynamic
programming technique to minimize the distance error covariance for solving the cooperative tracking
task, however the relative angle between UAVs and the target was ignored [5]. Chen et al., presented a
hierarchical method, combining the Lyapunov Guidance Vector Field (LGVF) and Tangent Guidance
Vector Field (TGVF) approaches, to solve the path planning problem for coordinated tracking [6].
In this method, the TGVF algorithm is firstly utilized to determine an optimal path from the initial
point to a limiting circle, and then UAV would converge to the desired limit circle by optimizing the
heading command through the use of the LGVF approach.

As discussed previously, due to the complexity and uncertainty of the ground environment, the
target may be out of the sight of the UAV sensors, thus the motion of the target should be estimated.
Shaferman et al. considered the sensor field-of-view (FOV) convergence in the urban environment,
and determined an optimal path by maximizing the sensor convergence time to the target [7]. In order
to improve the tracking performance of unmanned aerial vehicles (UAVs) under unknown conditions.
Yu and his colleagues proposed an online path planning algorithm by estimating the location of the
target based on its past states using a Bayesian filter based method [8]. Zhang et al., applied the Model
Predictive Control (MPC) concept to solve the cooperative path planning problem with unknown
target motions [9]. Beard and his co-workers present a decentralized cooperative aerial surveillance
method by solving the associated combinational optimization problem, where both flight dynamics
and environmental constraints are taken into account [10]. He and Xu proposed a model predictive
control-based solution for the cooperative tracking path planning problem by considering urban area
occlusions, however, the secure distances between UAVs were not taken into account [11].

Evolutionary algorithms, such as genetic algorithm approaches, also applied to solve the
cooperative path planning problem [12–14], achieve good results in many offline path planning
applications. Wise et al., compared commonly used methods for cooperative tracking path planning
problems and in their work [15], readers can find a comprehensive review of the relevant literature.

This work present a novel cooperative tracking path planning approach for the visual tracking
tasks of multiple UAVs, by coupling the receding horizon control principle and chemical reaction
optimization framework [16]. The proposed method does not require any prior information about the
motion and trajectory of the targets, and is capable of dealing with the occlusion of the sensors’ field of
view. Followed by this Introduction, the kinematics model of UAV and sensor visible regions model
are described in Section 2. Section 3 presents the proposed method in great detail, and we demonstrate
the performance of the proposed method through a series of comparative simulations in the following
section. Finally, we conclude this work and discuss possible future work directions in Section 5.

2. Problem Description

2.1. Kinematics Model of UAV

Assuming the UAVs are flying at a constant altitude with a fixed speed, the motion of the UAV
can be reduced to a 2-dimensional Dubins model. Figure 1 shows the 2D planar view of the Dubins
coordinate system, where XI, YI are the Cartesian inertial reference frame. va represents the velocity of
the aircraft and ψ denotes the heading of the UAV.
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2.2. Sensor Visible Regions in Complex Environment  

The sensors carried by the UAV can be categorized into to two groups, in terms of the installation 
conditions, namely gimbaled sensors and body fixed sensors. As shown in Figure 2a, gimbaled 
installed sensors are capable of pointing to a fixed direction regardless of the attitude of the UAV. 
The sensor converge area is a cone-shaped region under the aircraft. The pointing orientation of body 
fixed sensors, on the other hand, are usually affected by the state of the UAV, such as the roll and 
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In this paper, the angle of attack and the angle of side slip are neglected, then the kinematics
equations of each aircraft defined in the inertial frame can be represented as:

.
xi(t) = va cos(ψi(t))
.
yi(t) = va sin(ψi(t))
.
ψi(t) =

g tan φi(t)
vg

, |φi(t)|≤ φmax

(1)

where xi(t) and yi(t) represent the position of the i-th UAV at time instant t. φi(t) denotes the roll
angle of the UAV, which is bounded to the range within –φmax and φmax. Assuming that each UAV is
equipped with an autopilot so that it is able to follow the given roll angle, let Ts denote the sampling
rate and we apply zero-order hold to the input signal, then the discrete kinematics of the UAV can be
found as: .

ψi(k) =
g tan φi(k)

vg

xi(k + 1) = vg
.
ψi(k)

[
sin(

.
ψi(k)Ts + ψi(k))− sin(ψi(k))

]
+ xi(k)

yi(k + 1) = vg
.
ψi(k)

[
cos(ψi(k))− cos(

.
ψi(k)Ts + ψi(k))

]
+ yi(k)

ψi(k + 1) =
.
ψi(k)Ts + ψi(k)

(2)

If the input roll angle is zero, Equation (2) can be rewritten as:

xi(k + 1) = vTs cos (
.
ψi(k)) + xi(k)

yi(k + 1) = vTs sin (
.
ψi(k)) + yi(k)

ψi(k + 1) = ψi(k)
(3)

2.2. Sensor Visible Regions in Complex Environment

The sensors carried by the UAV can be categorized into to two groups, in terms of the installation
conditions, namely gimbaled sensors and body fixed sensors. As shown in Figure 2a, gimbaled
installed sensors are capable of pointing to a fixed direction regardless of the attitude of the UAV.
The sensor converge area is a cone-shaped region under the aircraft. The pointing orientation of body
fixed sensors, on the other hand, are usually affected by the state of the UAV, such as the roll and pitch
angles, as shown in Figure 2b. To simplify the problem, in this work UAVs are assumed to be equipped
with gimbaled sensors. Hence the sensor convergence on the ground would not be affected by the
changes of UAV’s attitude.

In many applications, the target to be tracked is moving in a complex environment, which may
be occluded by terrain features, such as buildings in an urban environment. Figure 3 illustrates a
simulated urban environment, where the 3D rectangular structures represent buildings. Due to the
occlusion of buildings, not all of the convergence area of the sensor is visible. The actual visible area
depends on the height and the field of view of the sensor. As shown in Figure 3, assuming the sensor
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is located at (sx, sy, sz), the visible regions on the ground can be determined calculated by using the
line of slight (LoS) methods. Rather than using conventional geometrical analysis approaches, such as
LoS algorithms, to define the visible areas of the sensors, we employ a fast yet robust spatial analysis
method developed in [17], which greatly improves the efficiency of this procedure.
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Figure 3. Illustrates of the sensor visible areas in complex environments. (a) The simulated urban
environment with buildings (rectangular structures); (b) shows the visibility regions of a sensor located
at the point A.

Figure 3b depicts the visible areas looked from the point A, the blue regions are invisible areas
due to the occlusion of buildings or terrains. Hence, the detectable regions of the sensor can be
defined as:

Rvis(p) = Rcon(p) ∩ Rin(p) (4)

where Rcon is the convergence region of the sensor positioned at p, and Rin denotes all of the possible
visible areas visible from p. Given the field of view angle of the gimbaled sensor θ, and the height of
the sensor h, the convergence region on the ground can be calculated as:

Rcon = πr2 , r = h tan θ (5)
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2.3. The Motion of the Ground Target

The ground object to be tracked is assumed to move within the 2-dimensional plane, and the
associated motion can be described by a state vector xt = [xt, yt,

.
xt,

.
yt,

..
xt,

..
yt]. Let F() represent the

state-transition function of the target dynamic, the motion of the target can be described as follows:

xt(k + 1) = F[xt(k)] + W(k) (6)

where W() denotes the state noise and is usually assumed to be subject to a zero-mean Gaussian
distribution, i.e., p(W)~N(0, Q), Q is the covariance matrix. The possible motion of the target can be
predicted by filtering approaches [13].

3. The Proposed Method

In this paper, we present a solution to the problem of tracking by multiple coordinated UAVs based
on the concept of the Receding Horizon Control (RHC) method, which minimizes the uncertainties
arising from the application environment and the motion of the target. The associated optimal control
sequence estimation problem is then solved by using a novel bio-inspired optimization approach,
based on the framework of chemical reaction optimization.

3.1. The Receding Horizon Control in Coordinated Tracking

Since the motion of the target is not available as prior knowledge, it requires predicting the
trajectory of the target based on previous observation. Receding horizon control (RHC) approach
is an advanced model predictive controller allows for determining the optimal solution at current
time instant while taking the future states of the target into account. Let u[k:k + L] denote the control
sequence starts from the time k, and L is a constant indicating the window size of the RHC sequence.
X[k] represents the state of the dynamic system, including the positions of the UAV and the target,
respectively. The main steps of RHC method for solving the target tracking problem are as follows:

Step 1: Determine the optimal control sequence based on the state X [k]:

u∗[k : k + L] = argminJ(X[k], u[k : k + L]) (7)

where u* denotes the optimal control sequence minimizing the cost function J. Since the dynamic
model of the UAV is obtained from prior knowledge, the trajectory of the UAV can be updated
in an iterative fashion based on the input control signal and its current state. Because the
motion of the target is unknown, its future positions can only be estimated based on previous
observation. The cost function J returns the goodness of the tracking based on the relative
position between the target and the UAV, which would be discussed in detail in Section 3.2.

Step 2: Apply the optimal input sequence u* to the system, and update the states of the system.
Step 3: Repeat Steps (1) and (2) for the next time instant.

3.2. The Cost of the Tracking Path

3.2.1. Dynamic Constraint of the UAV

In practice, the roll angle of the UAV should be within a reasonable scale when changing
its orientation, due to safety considerations. Hence, the input roll angle should satisfy the
following constraint:

φ ∈ (−φmax, φmax)

where φmax is a constant representing the maximal roll angle of the UAV during turning process.
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3.2.2. The Target Observation Time

The objective of the coordinate target tracking is to maintain the target located within the
detectable region of at least one UAV at any time instant. In addition, it favors the targets located next
to the center of the sensor visible area. Let (rx, ry) denote the relative position of the target with respect
to the center of the visible area of the sensor:

Js =
N

∑
i=1

k+L

∑
k=1

sen(X[k]) (8)

Sen =

 −Ce−
rx2+ry2

2σ2 , the target is within the visible region of at least one sensor
P, the target is out of the visible region for all sensors

where the function Sen() quantifies whether the target can be observed by the sensors of UAVs based
on the relative position between the UAVs and the target, This term reaches its minimum if the target
is located within the center of the visible area of all of the sensors, and approaches zero if the target is
moving to the boundaries of the sensor visible regions. P is a positive constant used to penalize the
case where the target is out of the visible region of all of the sensors.

3.2.3. The Anti-Collision Constraint

In this paper, we assume the UAVs applied to track the target are distributed on the same flight
level, thus it is necessary to prevent the UAV from colliding with each other during tracking:

JAC =
N

∑
i=1

∑
j∈Ω(i)

er f c[k · (‖xi − xj‖ − d)] (9)

where k is a constant, d indicates the desired distance between UAVs, xi and xj represent the positions of
i-th and j-th UAVs in the inertia reference frame, respectively. erfc denotes the Gaussian error function
which is defined as:

er f c(x) =
2√
π

∫ ∞

x
e−x2

dx (10)

This term would reach its minimum when the positions of the UAVs are evenly distributed
around the target.

3.2.4. The Regulation Term

In order to ensure the planned path is smooth, the change of the input signal is used as the
regulator to penalize a jagged path:

Jreg =
N

∑
i=1

k+L

∑
j=k+1

(ui(j)− ui(j− 1)) (11)

This term approaches zero when a straight path is generated, and it would be large in magnitude
if the resulting path is highly curved. The total cost can be obtained by summing the aforementioned
terms together, leading to the following function:

J = w1 Js + w2 JAC + w3 Jreg (12)

where w1, w2 and w3 are constants controlling the influence of each term on the total energy.
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3.3. Chemical Reaction Optimization-Based Coordinated Tracking

The Chemical Reaction Optimization (CRO) algorithm, first reported by Lam and Li [16], is a
nature-inspired optimization algorithm based on the principle of chemical reactions. It mimics the
process of chemical reactions occuring in a closed container. CRO is a type of population-based
algorithm where the basic individuals are molecules. Each molecule is described by some attributes,
including the molecular position, i.e., a possible solution of the optimization problem, the potential
energy (PE) and the kinetic energy (KE). The molecule structure represents a possible solution of the
optimization problem, the potential energy (PE) is associated with the cost of the resulting solution
based on the objective function. In general, a small value of the potential energy may indicate a better
solution of the optimization problem. Kinetic energy (KE) defines the tolerance of the system for
accepting a worse solution than the existing one. In addition to molecules, the container (buffer),
where the chemical reaction takes place, is another key component of the CRO algorithm. It is able to
supply or absorb the energy resulting during the process of the molecular reactions. Different from
many existing population-based optimization algorithms, the total number of molecules may not be
the same in each iteration of the optimization process, but the entire amount of energy (the energies of
molecules and the energy of the buffer) of the system stays constant throughout the reaction process.

3.3.1. Coding Scheme

As shown in Figure 4, the molecular structure is defined as a sequence of bounded input signals,
i.e., the desired roll angle to the autopilot in the time from tk to tk+1 for each UAV. Thus, the dimensions
of each molecule would be N × L, where N represents the total number of UAVs employed for
coordinated tracking, and L is the number of steps in the predicted ahead current state.
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3.3.2. On-Wall Ineffective Collision

In this elementary process, the new path is determined by slightly deforming the current path,
which can be considered as a local search around the current solution. Let KEω and PEω represent the
kinetic and potential energy of a molecule before it hitting the wall of the container, respectively. The
potential energy can be calculated based on Equation (12), and the kinetic energy for each molecule is
initialized randomly. Due to the collisions, a certain amount of the energy may transfer to the wall of
the container (i.e., the buffer), and thus the potential PEω′ and kinetic energy KEω′ of such molecule at
the new statue can be computed as:

KEω′ = (PEω + KEω − PEω′)× α, if (PEω + KEω − PEω′) ≥ 0 (13)
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Let KElossRate (KElossRate ε [0, 1]) be a constant defining the percentage of energy that lost before
and after the molecule hits the wall, α is a random number evenly distributed from KElossRate to 1.
Based on the law of conversion of energy, the energy absorbed by the buffer can be expressed as:

KEω′ = (PEω + KEω − PEω′)× (1− α) (14)

If the kinetic energy of the molecule before wall collision is large enough, the after collision
potential energy may larger than PEω, leading to a worse solution when compared with the existing
one. It allows the local search algorithm the ability of ‘hill-climbing’, which increases the probability of
avoiding local optimal solutions.

3.3.3. Decomposition

Unlike the process of the ‘on-wall ineffective collision’, the molecule breaks into parts after it hits
the wall of the container (ω→ω1

′ + ω2
′). For simplicity we only consider two parts. Because more

solutions are created through the decomposition process, the sum of KE and PE energies of the original
molecule may be less than the sum of potential energies of the resulting molecules:

PEω + KEω < PEω′1 + PEω′2 (15)

In this case, such decomposition is not valid since it disobeys the law of energy conservation.
In order to increase the possibility of a correct decomposition process, the buffer may supply a certain
amount of the energy to the decomposition process so that the following condition can be satisfied:

PEω + KEω + δ1 × δ2 × bu f f er ≥ PEω′1 + PEω′2 (16)

where δ1 and δ2 are two independently random variables uniformly distributed in the range of [0, 1].
The remaining energy is translated as the kinetic energies for two new molecules as:

PEω′1 = (PEω + KEω + δ1 × δ2 × bu f f er− PEω′1 − PEω′2)× δ3

PEω′2 = (PEω + KEω + δ1 × δ2 × bu f f er− PEω′1 − PEω′2)× (1− δ3)
(17)

where δ3 is another independent random variable range from 0 to 1. The decomposition process
provides the molecule the ability of exploring more solution regions with respect to the initial
position ω.

3.3.4. Inter-Molecular Ineffective Collision

The reaction process is very similar to its single molecule reaction counterpart, where the collision
takes place between molecules. The number of the molecules is assumed to be unchanged before
and after the collision, and the molecular energies of the associated reaction process should satisfy
the condition:

PEω1 + KEω1 + PEω2 + KEω2 ≥ PEω′1 + PEω′2 (18)

The kinetic energies of the new molecules are:

KEω′1 = Einter × δ4

KEω′2 = Einter × (1− δ4)

Einter = PEω1 + KEω1 + PEω2 + KEω2 − PEω′1 + PEω′2

(19)

The inter-molecule collision allows a median range local search, thus increasing the probability of
detecting a better solution in a local area.
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3.3.5. Synthesis

Synthesis is the opposite reaction process of decomposition, where two (multiple) molecules
merge into a single molecule. As the new molecule is produced from multiple molecules, it is more
likely to meet the following requirement for such a process:

PEω1 + KEω1 + PEω2 + KEω2 ≥ PEω′ (20)

The remaining energy of the new molecule is:

KEω′ = PEω1 + KEω1 + PEω2 + KEω2 − PEω′ (21)

In this reaction process, the new molecule is a combination of multiple old molecules, thus the
newly produced molecule may exhibit a large deviation from the original ones in the solution space.

The workflow of the CRO based optimization framework is shown in Figure 5.
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4. Simulation Results and Analysis

This section presents comparative simulation results to demonstrate the efficiency and accuracy
of the proposed technique in the coordinated UAV tracking problem. The simulations were conducted
using 3D synthetic environmental data, which allows for generating a variety of virtual environments
with different resolutions and urban features. The simulations were carried out in MATLAB (R2010b,
MathWorks, Natick, MA, USA) on a standard specification PC (Dell Precision T3500, DELL, Round
Rock, TX, USA, Inter(R) Xeon(R) CPU operating at 2.67 GHz).

The dimensions of the virtual environment are defined within the range of 1.5 km × 1.5 km, and
30 buildings with different dimensions are randomly generated. Three UAVs are employed to track
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one moving target, and the motion of the UAVs and target are described using the dynamic model
discussed in Section 2. The flight speed vg for each UAV is set to be 30 m/s, the flight level is 200 m,
the maximum roll angle φmax is set to 45◦ and the minimal distance between each UAV is 50 m. The
trajectory of the target is randomly generated in the flexible region on the ground, with a constant
speed at 15 m/s. The RHC window size L is set as 5 s, and the total simulation time is 100 s, and the
sampling time is 1 s. The parameter settings of the CRO algorithm are shown in Table 1.

Table 1. Parameter settings of CRO algorithm.

KELossRate 0.2 InitialKE 200
MoleColl 0.3 PopSize 100

buffer 0 α 500
B 10 c1 0.15
c2 2.5

Figures 6 and 7 illustrate the performance of the proposed method for tracking the moving target
in two scenarios. The total visibility time for these two scenarios are 95 s and 94 s (as shown in
Figures 6e and 7e, respectively), which approach the total flight time (100 s). This indicates that the
proposed method is able to generate an optimal tracking path for each UAV. The costs of the proposed
method at each sampling time are depicted in Figures 6f and 7f, respectively. The cost grows rapidly when
the target is out of the visibility region for all of the sensors, and for the rest the time the costs are almost
constant, implying that the proposed algorithm can determine the optimal path within the sampling time
(1 s). As shown in Figures 6d and 7d, the control input for each UAVs, i.e., the roll angle, was changing
frequently during the tracking process, since the UAVs are required to maneuver to track the moving
target while avoid the occlusions of the buildings. The control inputs determined by the proposed method
are generally smooth and changing slowly, which can be tracked by the autopilot of the UAV.
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Figures 6c and 7c illustrate the relative distances between each UAV during the tracking process
for two scenarios, respectively. It can be seen that the generated path by the proposed method always
satisfies the safety constraint (i.e., the minimal distance between each UAV). In order to demonstrate
the efficiency of the proposed CRO based cooperative tracking path planning algorithm, this section
firstly compares the proposed approach with commonly used evolutionary algorithms based optimizer,
i.e., the genetic algorithm (GA) [13] and particle swarm optimization (PSO) [14], for determination of
the tracking paths.

Figures 8 and 9 illustrate the performances of the proposed method, GA-based method and
PSO- based algorithm for the tracking task, respectively. Figure 8a,b and Figure 9a,b illustrate the
convergence of the proposed method and the other evolutionary-based optimizers from randomly
selected sampling times for two scenarios. It can been seen that the proposed approach outperforms
to GA- and PSO-based optimizer in terms of convergence speed and optimality (in terms of the
cost value). Figures 8c and 9c depict the visibility time of the ground target of the aforementioned
algorithms obtained from 10 repeat simulations. The overall performance of the proposed method is
better than GA- and PSO-based planners in terms of the visibility time. This is because the CRO is a
variable population-based metaheuristic approach, which allows for generating more solutions near
the optimality and thus increasing the convergence speed. Figures 8d and 9d are the average execution
times for each decision point (i.e., the sampling point), where the proposed method requires more time
than the GA- and PSO-based planners. However, this execution time (around 0.55 s for the proposed
method) is acceptable when compared the sampling time (1 s).

Next, the proposed method is compared with a recently developed Lyapunov guidance vector
field (LGVF)-based approach for planning the cooperative tracking path [18]. Figures 10 and 11
illustrate the results of using the LGVF-based approach for two scenarios. It can be observed that the
proposed method achieves better solution to the cooperative path planning problem in terms of the
visibility time. The minimal distances between UAVs are not always satisfactory (i.e., less than the
safety distance, i.e., 50 m), as shown in Figures 10c and 11c. The statistics of the proposed method
and the LGVF-based approach obtained from 10 repeat simulation tests are shown in Tables 2 and 3,
respectively. The mean, maximum and minimum visibility times of the proposed method are better
than those of the LGVF-based planner. This is because it is difficult for the LGVF-based optimizer to
incorporate nonlinear and non-convex constraints, such as the visibility of sensors and anti-collision
constraints in the tracking optimization problem, and thus cannot always reach the optimal solution.
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Table 2. Statistics results of the tracking performances for scenario 1.

Performance Proposed Method LGVF-Based Algorithm

Mean visibility time (s) 95 82
Maximum visibility time (s) 96 79
Minimum visibility time (s) 91 84

Variation of visibility time (s) 4 3
Range of relative distances (m) [51, 588] [11, 548]

Table 3. Statistics results of the tracking performances for scenario 2.

Performance Proposed Method LGVF-Based Algorithm

Mean visibility time (s) 94 83
Maximum visibility time (s) 97 81
Minimum visibility time (s) 91 89

Variation of visibility time (s) 4 7
Range of relative distances (m) [54, 608] [15, 611]

5. Conclusions

Tracking moving targets using UAVs is a challenging task due to the uncertainties arising from
the motion of the target and the environmental features. This paper presents a novel method, coupling
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the concept of model predictive control into the framework of chemical reaction optimization, to
solve the coordinated tracking path planning problem in complex urban environments. The sensor
visible regions under urban environment, flight dynamics and anti-collision constraints are considered.
Particularly, the LoS occlusion caused by dense buildings is discussed, and the FOV for a gimbaled
sensor is also analyzed. A series of comparative simulations have shown that the proposed method
outperforms other metaheuristic and mathematical methods in terms of tracking ability and safety,
while achieving similar computational efficiency. The simulation results imply that the proposed
method is capable of improving the performance of target tracking in urban environments, with more
visible time, higher security and stronger robustness compared to other methods.
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