

  A Fast Algorithm for 2D DOA Estimation Using an Omnidirectional Sensor Array




A Fast Algorithm for 2D DOA Estimation Using an Omnidirectional Sensor Array







Sensors 2017, 17(3), 515; doi:10.3390/s17030515




Article



A Fast Algorithm for 2D DOA Estimation Using an Omnidirectional Sensor Array



Weike Nie 1, Kaijie Xu 2, Dazheng Feng 3, Chase Qishi Wu 1,4, Aiqin Hou 1,* and Xiaoyan Yin 1





1



School of Information Science and Technology, Northwest University, Xi’an 710127, China






2



School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China






3



National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China






4



Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA









*



Correspondence: Tel.: +86-29-8830-8119







Academic Editor: Vittorio M.N. Passaro



Received: 15 December 2016 / Accepted: 28 February 2017 / Published: 4 March 2017



Abstract:



The traditional 2D MUSIC algorithm fixes the azimuth or the elevation, and searches for the other without considering the directions of sources. A spectrum peak diffusion effect phenomenon is observed and may be utilized to detect the approximate directions of sources. Accordingly, a fast 2D MUSIC algorithm, which performs azimuth and elevation simultaneous searches (henceforth referred to as AESS) based on only three rounds of search is proposed. Firstly, AESS searches along a circle to detect the approximate source directions. Then, a subsequent search is launched along several straight lines based on these approximate directions. Finally, the 2D Direction of Arrival (DOA) of each source is derived by searching on several small concentric circles. Unlike the 2D MUSIC algorithm, AESS does not fix any azimuth and elevation parameters. Instead, the adjacent point of each search possesses different azimuth and elevation, i.e., azimuth and elevation are simultaneously searched to ensure that the search path is minimized, and hence the total spectral search over the angular field of view is avoided. Simulation results demonstrate the performance characters of the proposed AESS over some existing algorithms.
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1. Introduction


Direction of Arrival (DOA) is a critical parameter in many sensor-based systems using radar, sonar and wireless communications. As a well-known high-resolution DOA estimation algorithm, the MUltiple SIgnal Classification (MUSIC) algorithm [1] has attracted considerable attention in the areas concerned with estimating parameters from observations of array output [2]. However, this algorithm suffers from prohibitively high computational cost for its search-based strategy, especially for two dimensional (2D) DOA estimation.



The work by Huang [3] indicated that it is generally difficult to control a fixed stepsize in the adaptation process due to the inherent conflict between fast convergence and estimated accuracy. A large stepsize may simplify calculation at the expense of a worse Root Mean Square Error (RMSE); meanwhile, a small stepsize may require more calculation but with an improved RMSE. Variable stepsize algorithms [4] often include a coarse-grained search and a fine-grained search with a large and small stepsize respectively, which can effectively balance the convergence rate and error. By combining MUSIC results of two decomposed linear arrays, Zhou [5] accurately estimated the DOA with phase ambiguity removed. In its search procedures of two arrays, an adaptive scheme including coarse-grained and fine-grained search is used to reduce the complexity.



1D processing approaches can also be applied for solving the 2D DOA problem to reduce computational complexity. Wang [6] successfully used 1D MUSIC with a novel tree structure to estimate the azimuth and elevation dependently. By constructing a novel relation between azimuth and elevation, Karthikeyan [7] proposed an elegant 1D search technique to compute the 2D DOA estimation using the MUSIC algorithm in the case of a single source. A robust 2D DOA estimation based on two 1D angles estimations using L-shaped array is proposed by Kikuchi [8], and its pair matching of azimuth and elevation is accurate in low SNR and multi-source scenarios.



Search-free [9] methods are an important approach for reducing complexity. Han [10] reconstructed a special antenna array based on the Toeplitz matrix whose rank is only related to the DOA of the signals, hence the subspace can be extracted without being affected by the coherence between the signals. With the estimated subspace, an improved ESPRIT method is provided to implement the DOA estimation without spectrum peak search for coherent signal DOA estimation. Chen [11] extended the algorithm in [10] to a 2D situation and presented another search-free algorithm, where they obtained a block Hankel matrix from correlations and found that the rank of the block Hankel matrix only depends on the number of impinging waves. Two matrix pencils including DOA parameters are derived from the signal subspace of the Hankel matrix, and a pairing free method [12] is used to achieve the 2D parameters estimation. As a well-known search-free fast algorithm, Root-MUSIC [13,14] algorithm converted spectrum search into finding roots of a complex polynomial formed from noise subspace. Generally, Root-MUSIC is more accurate than the normal MUSIC in a larger stepsize such as 1°, but for a smaller stepsize such as 0.1°, the MUSIC algorithm yields a higher accuracy than Root-MUSIC. In the presence of completely polarized electromagnetic wave, Costa [15] proposed a joint high-resolution 2D DOA and polarization estimator [16,17] based on polynomial rooting techniques and Fast Fourier decomposition of the steering vector. Several antenna arrays including small handheld terminals and channel sounding applications show a significant improvement in performances.



Goossens and Rogier [18] proposed an efficient 2D DOA estimation algorithm based on the combination of UCA-RARE and Root-MUSIC. They estimated the azimuth angles by UCA-RARE which decoupled the estimation of azimuths from that of elevations. For each azimuth, they designed a new search-free rooting algorithm by expanding the array manifold into a double Fourier series. It is proved that even in the presence of severe mutual coupling [19,20], this hybrid approach can yield very robust 2D DOA estimation performances.



Converting complex-valued computations to real-valued ones can often accelerate DOA estimations. Ren [21] preprocessed the block Hankel matrix in [11] through an averaging like method for unitary transformation, which transforms the eigenvalue and singular value decomposition into real-valued computation. Subsequently, the DOA estimations are solved by 1-D unitary ESPRIT [22]. The 2D unitary ESPRIT algorithm in [23] involves a specific unitary transformation to formulate the eigenvalue decomposition in terms of a real-valued computation.



Motivated by these low-complexity algorithms, which have been successfully in applying sensor array processing [24], this paper proposed a fast 2D MUSIC algorithm, which involves three rounds of searching: the first two rounds are 1D searches along a circle and straight lines, respectively, and the third one is a 2D search on several concentric circles. The contribution of this work lies in the observation of spectrum peak diffusion effect and its utilization for finding the approximate direction of sources, while most of the other works in the literature concentrate on how to suppress this effect. The second contribution is the design of a search strategy to minimize the search path and avoid the total spectral search over the angular field of view.



Simulation results demonstrate that with the same search stepsize, AESS has a similar estimated RMSE compared with the 2D MUSIC algorithm, while the computing complexity and the actual running time are remarkably reduced. Meanwhile, with the same computation cost, the estimated RMSE of AESS is significantly improved. The 2D DOA estimation success rate is also analyzed versus the computation complexity. To further evaluate the estimation performance, we present the scatter plots of estimated 2D angle, and compare the running time of the proposed AESS with the 2D MUSIC algorithm and PIE algorithm.




2. Problem Formulation


Consider a planar array composed of M (m = 1,2,…,M) sensors on which P (p = 1,2,…,P) narrow band non-coherent far field signals sp(t) are impinging with different DOAs. We denote the coordinates of the m-th sensor as (xm,ym,0), and the DOA related to the p-th signal is (θp,ϕp), where θp and ϕp are the azimuth and elevation, respectively. The uniform rectangular array (URA) coordinates system is shown in Figure 1. In the case of the m-th sensor receiving the p-th signal, there is a wave path difference between sensors. As illustrated by the coordinate system in Figure 1, if we choose the element at the origin of the coordinate system as the reference point, this path difference is calculated as:


[image: there is no content]



(1)






Figure 1. The coordinate system.
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The complex factor corresponding to phase difference is calculated as:


[image: there is no content]



(2)




where λ is the wavelength. At the t-th snapshot (t = 1,2,…,T), the signal arriving at the m-th sensor is:


[image: there is no content]



(3)




where nm(t) is the White Gaussian noise. The array output at the t-th snapshot is modeled as:


[image: there is no content]



(4)




where T represents the transpose, A = [a1,a2,…,ap] is the array direction matrix, ap = [exp(−j2πΔ1p/λ),…,exp(−j2πΔMp/λ)]T is the steering vector, s(t) = [s1(t),s2(t),…,sp(t)]T is the vector of source waveforms, and the noise vector n(t) = [n1(t),n2(t),…,nm(t)]T is assumed to be zero-mean and independent of the observed signal. The correlation matrix of the received data is defined as:


[image: there is no content]



(5)




where σ2 and I represent the noise power and unit matrix, respectively, and H represents the complex conjugate transpose. By the eigen-decomposition of Rx, we obtain the estimation of noise subspace [image: there is no content]. Utilizing the orthogonality between signal and noise subspace [25], the 2D MUSIC algorithm estimates the source DOA by a spectrum search as follows:


[image: there is no content]



(6)




where a(θ,ϕ) is the steering vector corresponding to the azimuth angle θ and elevation angle ϕ. When the noise subspace Un is sufficiently accurate and (θ,ϕ) is equal to the actual DOA, the spatial spectrum function P(θ,ϕ) shows a peak. 2D MUSIC has to perform a 2D search with a certain stepsize over the angular field of view. A large stepsize may simplify the calculations but also lead to a worse RMSE. Furthermore, MUSIC possesses an extremely sharp spectrum peak, and a larger stepsize is more likely to miss the peak, especially in the case of a high signal-to-noise ratio (SNR). A small stepsize may improve RMSE, but may also increase computing overhead.




3. Spectrum Peak Diffusion Effect


From Equation (6), we can see that if signal or noise subspace is sufficiently accurate and the estimated [image: there is no content] equals to the actual (θ,ϕ), the spatial spectrum will show a peak. Usually, when [image: there is no content] deviates from the (θ,ϕ), there will still be a spatial spectrum peak although its peak becomes smaller with the increase of deviation from the actual DOA. We call this the spectrum peak diffusion effect. It is this observation that motivated us to change the traditional search strategy in 2D MUSIC, the diffusion spectrum peak provides us two pieces of information at least: one is that the actual DOA is near, and the other is the approximate direction of the sources.



Figure 2 shows the spatial spectrum versus the diffusion angle with 100 Monte Carlo trials. Here a uniform rectangular array with three rows and four columns omnidirectional sensors is used and a narrow band non-coherent far field signal comes from (45°,45°). The SNR, snapshot and stepsize are set to be 0 dB, 400 and 1°, respectively. The simulation in Figure 2 manifests that the spatial spectrum peak is high enough to be detected even the deviation is far from the actual (θ,ϕ).


Figure 2. Spatial spectrum versus the diffusion angle.
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4. Proposed Fast Algorithm


Suppose there are P narrow band non-coherent far field signals sp(t) (p = 1,2,…,P), the azimuth and elevation angle of the p-th source are set to be (θp,ϕp), where θp ∈ (0°,Θ) and ϕp ∈ (0°,Φ). Figure 3 shows the search scheme of the proposed AESS in the 2D DOA plane.


Figure 3. Proposed search scheme. *[image: there is no content] and *[image: there is no content] represent signals 1 and 2.
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Our proposal is a three rounds search-based scheme. In the first search, we select the point o(Θ/2,Φ/2) as the center of a circle. Let Ω be the radius, which should not be too large or too small. An appropriate value should be selected for Ω in order to modestly sitting the circle on the area of 2D plane. It should be noted that the unit of Ω is not length but degree, so the parametric equation of this circle is:


[image: there is no content]



(7)




where δ is the central angle. The first search is implemented on this circle, since Ω is selected before the first round of search, it is actually a 1D search. The search variable is neither azimuth nor elevation, but the rotation angle δ which can be seen from Figure 3. The corresponding 1D spectral search is written as:


[image: there is no content]



(8)







After searching on the circle with certain stepsize from δ = 0° to δ = 360°, and due to the existence of the spectrum peak diffusion effect mentioned above, we can get P spectrum peaks whose search variables are [image: there is no content] (p = 1,2,…,P). Corresponding to each [image: there is no content], we can get a straight line whose parametric equation is:


[image: there is no content]



(9)







And the length of the p-th line (p = 1,2,…,P) is:


[image: there is no content]



(10)







Similarly, the unit of Lp is degrees. The second round of searching is implemented along the P straight lines; it is also a 1D spectral search which is expressed as:


[image: there is no content]



(11)







Applying Equation (11), we can get one spectrum peak on each straight line. For each spectrum peak, the corresponding search variable in Equation (11) is marked as [image: there is no content]. Now we can derive the azimuth and elevation [image: there is no content] which corresponds to the spectrum peak on the p-th straight line, the parametric equation of [image: there is no content] and [image: there is no content] is expressed as:


[image: there is no content]



(12)







Once the ([image: there is no content] (p = 1,2,…,P) is adopted, we can perform the third round of searching which is a 2D search on a set of concentric circles, the centers of the circles are [image: there is no content] (p = 1,2,…,P), respectively. This time the search variable are rotation angle τ ∈ (0°,360°] and the neighborhood radius is ω. The spectrum peak function is given as:


[image: there is no content]



(13)







Performing the above 2D search, we can obtain the search variable corresponding to the spectrum peaks which can be noted as [image: there is no content] (p = 1,2,…,P), from [image: there is no content] we can obtain the estimation of the actual 2D DOA as:


[image: there is no content]



(14)








5. Computational Complexity Analysis


We carefully compute the flops required by the classical 2D MUSIC and the proposed AESS methods. As mentioned above, M, P and T represent the total sensor number, source number and snapshot, respectively. Assume K represents the stepsize. Firstly, we present several basic operations and their computation consume in flops. Computing the multiplication of a M row and P column complex matrix by a P row N column complex matrix takes 6MN(2P − 1) flops. Computing the mathematical expectation of a M row M column matrix takes 6M2 + 1 flops. Computing the eigen-decomposition of a M row M column matrix takes 4M5 − 5M4 + M3 flops. Computing the absolute of a complex scalar takes 3 flops. Computing the reciprocal of a scalar takes 1 flops.



For 2D MUSIC, assume the stepsize is K. Computing Rxx = E[xxH] takes 8M2T − 2M2 + 1 flops. Computing Rxx = UΣUH takes 4M5 − 5M4 + M3 flops. Computing [image: there is no content] takes 8M3 − 8M2P − 2M2 flops. Computing [image: there is no content] takes (6M2 + 16M + 52)(Θ/K)(Φ/K) flops, where Θ and Φ are the maximum search scope of azimuth and elevation which are depicted in Figure 3. The total computation consumption in flops is:


C2D MUSIC=(6M2+16M+52)(ΘΦ/K2)+8M2T+4M5−5M4+9M3−8M2P−4M2+1



(15)







For the proposed AESS algorithm, the first three steps also involve computing Rxx = E[xxH], Rxx = UΣUH and [image: there is no content], so the corresponding computation consumptions are identical to 2D MUSIC. The following step of computing [image: there is no content] in Equation (8) takes (6M2 + 16M + 52)(360/K) flops. Computing [image: there is no content] in Equation (11) takes [image: there is no content] flops, where the meaning of Lp can be seen from Equation (10).Computing [image: there is no content] in Equation (13) takes [image: there is no content] flops, where the meaning of Wp can be seen from Equation (13). The total computation consumption in flops is:


CAESS=(6M2+16M+52)[(360/K)+∑p=1P(Lp/K)+∑p=1P(360Wp/K2)]+8M2T+4M5−5M4+9M3−8M2P−4M2+1



(16)







From Equations (15) and (16), we can see that the sensor number M and stepsize K are the two most important factors in determining the computational complexity. Snapshot T and the number of sources P are not the principal factors that increase the calculation. Figure 4 shows the computational complexity varies with the sensor number and the stepsize. We can see that the computational complexity of AESS and 2D MUSIC algorithms both increase with the decrease of stepsize. The increase of computational complexity of 2D MUSIC algorithm is much faster than that of the proposed AESS. AESS thus has a remarkable computational advantage over the conventional 2D MUSIC method, especially in the case of small stepsize. Filik [21] proposed a fast automatically paired 2D DOA estimation algorithm termed PIE, where they exploited the rotational matrix by employing real and virtual arrays, and deduced that the eigenvalues of the rotational matrix have the angle information at both magnitude and phase which allows the estimation of azimuth and elevation angles via closed-form expressions. Here we analyze the computational flops of the PIE algorithm with the symbols of [21]. Computing y4 = (B12 + B13)y1 takes 2M2 + 8M2P flops, computing [image: there is no content] takes 128M5 + 80M4 + 8M3 flops, computing [image: there is no content] takes 18PM2 − 6PM + 6P3+ (8/3)P2 flops, computing [image: there is no content] takes 9P flops, computing [image: there is no content] takes 27P flops. The total computation consumption in flops is:


[image: there is no content]



(17)






Figure 4. Computational complexity versus the sensor number and stepsize.
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6. Simulation Results


In this section, simulations are presented to illustrate the performance of the proposed fast 2D MUSIC algorithm. A uniform rectangular array (URA) with omnidirectional sensors is used, along with three narrow band non-coherent far field signals coming from (20°,40°), (75°,50°) and (35°,60°).



6.1. RMSE and Estimation Success Rate versus Computational Complexity


The root mean square errors (RMSE) is defined as:


[image: there is no content]



(18)




where N = 100 represents the independent trials, P = 3 represents the number of sources, [image: there is no content] is the estimation of θp for the n-th Monte Carlo trial. The results have been averaged over 100 Monte Carlo runs.



It is obvious that the RMSE depends on the accuracy of the estimated subspace. Moreover, the estimated subspace is usually derived from the eigen-decomposition calculation. As this kind of calculation is critically affected by SNR and snapshots, the performance of RMSE is always closely related to the SNR and snapshots. In this paper, both the classic 2D MUSIC and the proposed AESS are search-based methods, they use the same subspace and their main difference is the search procedure, so SNR and snapshots have the same influence on RMSE. For this reason, our simulations here analyze the RMSE versus sensor number in equal stepsizes. We respectively use the rectangular array of three row and three column with a total of 3 × 3 = 9 omnidirectional sensors, and the following are 3 × 4 = 12, 3 × 5 = 15, 3 × 6 = 18, 3 × 7 = 21 and 3 × 8 = 24 omnidirectional sensors. From Equations (15) and (16), we know that the sensor number M and snapshot K take an important role in the computational complexity of the 2D MUSIC and proposed AESS, so substituting the value of sensor number into Equations (15) and (16) under a certain stepsize, we can get the corresponding computational complexity, hence we can derive the RMSE versus the computation complexity as shown in Figure 5. In Figure 5, SNR is set to be 0 dB, snapshot is set to be 400, and the stepsize is 0.1°. From Figure 5, we can see that if the stepsizes are equal, the classic 2D MUSIC and our proposed AESS possess similar RMSE, while the computational complexity of the proposed AESS will be greatly decreased. With equal computational complexity provided, AESS will derive a better RMSE than the 2D MUSIC algorithm. In this experiment, we also validate the DOA estimation success rate versus computational complexity, the SNR is fixed at 0 dB and snapshot at 400, stepsize is set to be 0.1°. In each independent run, we decide that the estimated [image: there is no content] are successfully resolved if:


[image: there is no content]



(19)






Figure 5. RMSE versus computational complexity.



[image: Sensors 17 00515 g005]






Figure 6 demonstrates that the 2D MUSIC algorithm need many more calculation flops to obtain the same success rate compared to the proposed AESS. From another point of view, we can see AESS possesses much higher success rate in the same calculation flops provided. The numerical results show that with 39 to 250 million flops provided, AESS can cover the success rate from 36% to 94% while 2D MUSIC needs 554 to 3192 million flops to achieve the same success rate.


Figure 6. Success rate versus computational complexity.
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6.2. RMSE versus SNR and Snapshot


Figure 7 and Figure 8 describe the RMSE versus SNR and snapshot, respectively. Here a rectangular array of four rows and four columns with a total of sixteen omnidirectional sensors are used. In Figure 7 the snapshot is set to be 400, the SNR varies from −5 dB to 19 dB with 3 dB interval.


Figure 7. RMSE versus SNR. Snapshot is set to be 400, stepsize is set to be [image: there is no content]. (a) The first source come from [image: there is no content] ; (b) The second source come from [image: there is no content] ; (c) The third source come from [image: there is no content].



[image: Sensors 17 00515 g007]





Figure 8. RMSE versus snapshot. SNR is set to be 0 dB, stepsize is set to be [image: there is no content]. (a) The first source come from [image: there is no content] ; (b) The second source come from [image: there is no content] ; (c) The third source come from [image: there is no content].
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In Figure 8 the SNR is set to be 0 dB, the snapshot varies from 300 to 1000 with 100 interval. The stepsize of 2D MUSIC and AESS in this experiment are all set to be 0.1°. The results have been averaged over 500 Monte Carlo runs. Since our proposed AESS and classic 2D MUSIC both are search-based methods, their RMSEs mainly depend on the stepsize, the two figures show that they possess almost the same RMSE versus SNR and snapshot. It should be noted that in the higher SNR scenario, the PIE algorithm derives a significant RMSE improvement.




6.3. Comparison Scatter Plots of Estimated 2D Angles in Different SNR


RMSE can coarsely reflect the estimated accuracy. For further analyzing the performances of the estimator, we show the scatter plots of the DOA in Figure 9. Here the SNR of three sources are set to be −5 dB, 0 dB and 10 dB respectively. A rectangular array of four row and four column with totally sixteen omnidirectional sensors are used. The stepsize of 2D MUSIC and AESS in this experiment are all set to be 0.1°. The snapshots of the three algorithms are set to be 400. The cross symbols in Figure 9 represent the actual position of sources.


Figure 9. Scatter plots of estimated 2D angles when three sources with different SNR level are impinging on the URA. (a) Classic 2D MUSIC algorithm; (b) PIE algorithm; (c) The proposed AESS algorithm; (d) The proposed AESS algorithm with a slightly enlargement of the radius of the third round searching.
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Figure 9a–d demonstrate that a higher SNR makes each of the algorithms derive a smaller DOA estimation bias and smaller variance. On the other hand, lower SNR makes it hard to detect the DOAs. We can see that AESS has a higher uniformity than the 2D MUSIC and PIE algorithms. That is to say, its scatter plots concentrate on a smaller area than the other two algorithms. Unfortunately, the estimation is biased from the actual DOAs. The reason is that the last search of our AESS is implemented on several small concentric circles, when the actual source is situated outside the biggest concentric circle, AESS also take the highest spectrum peak inside the biggest concentric circle as the actual DOA. Obviously, this spectrum peak is the highest within the small area of concentric circles, but not the highest spectrum peak in the total angular field of view. This problem is inevitable for almost all local search methods. A slightly enlargement of the radius of the concentric circles can significantly decrease the estimation bias of AESS from the actual DOAs, which we can see from Figure 9d. The simulation conditions of Figure 9d are same as for Figure 9c except the search radius is modified from 5° to 7.5°.




6.4. CPU Time Comparison


In fairness to both algorithms, we compare the search time of the proposed AESS and the classic 2D MUSIC algorithm under same stepsize conditions. The results are obtained using a PC with an Intel(R) Core(TM) i5-3470 3.2 GHz CPU and 8 GB RAM by running the Matlab codes in the same environment. Table 1 shows that in the different stepsizes such as 0.1°, 0.25° and 0.5°, the search time of the proposed AESS is much smaller than that of the 2D MUSIC algorithm. It also can be seen that this advantage is more obvious with the decrease of stepsize. As PIE is a search-free method, it needs much less CPU time for the DOA estimation.



Table 1. Comparison of CPU time (s). Ss in the table means stepsize.







	
Configuration

	
Ss 0.1°

	
Ss 0.1°

	
Ss 0.25°

	
Ss 0.25°

	
Ss 0.5°

	
Ss 0.5°

	






	
Row × Column

	
AESS

	
MUSIC

	
AESS

	
MUSIC

	
AESS

	
MUSIC

	
PIE




	
3 × 3

	
2.4032

	
41.9570

	
0.4205

	
6.6706

	
0.1228

	
1.7263

	
0.0043




	
3 × 4

	
2.4063

	
41.9736

	
0.4221

	
6.7262

	
0.1236

	
1.7394

	
0.0050




	
3 × 5

	
2.4176

	
43.4240

	
0.4228

	
6.8137

	
0.1238

	
1.7728

	
0.0052




	
3 × 6

	
2.4221

	
43.9129

	
0.4248

	
6.9126

	
0.1241

	
1.7955

	
0.0078




	
3 × 7

	
2.4399

	
44.8107

	
0.4398

	
7.0829

	
0.1351

	
1.8056

	
0.0089




	
3 × 8

	
2.5659

	
45.4299

	
0.4553

	
7.7317

	
0.1525

	
1.8943

	
0.0095











6.5. RMSE and CRB versus Source Separation δ


To evaluate the resolution, we examine the capability of the proposed AESS and the related algorithms to estimate the DOAs of closely spaced signals. We fixed the first DOA source as (10°,40°), and the second source is situated at (θ2,ϕ2) = (10° + δ,40° − δ), where δ = 0°, 1°, 2°, 3°, 5°, 7°, 11°, 15°, 20°, 25°, respectively. From Figure 10 we can see that when δ = 0°, there is only one source and the RMSE is lower. When δ = 0°, 1°, 2°, 3°, 5°, 7°, the two source influence each other due to their close spacing, and the RMSE in this section are worse. When δ = 11°, 15°, 20°, 25°, the RMSE of all the algorithms are improved for the ease of distinguishing two far spaced signals.


Figure 10. RMSE and CRB versus source separation. (a) RMSE of the first source; (b) RMSE of the second source.
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6.6. Performance in the Presence of Mutual Coupling


As the DOA estimation performance is often affected by mutual coupling [18], we simulated the performance of our proposed and the related algorithms in the presence of mutual coupling. A rectangular array of four rows and four columns with a total of sixteen omnidirectional sensors is used. The stepsizes of 2D MUSIC and AESS in this experiment are all set to be 0.1°. The snapshots of the three algorithms are all set to be 400. The mutual coupling coefficient in our experiment is same as the literature [19], i.e., cx = cy = 0.3527 + 0.4854i, cxy = 0.0927 − 0.2853i. Scatter plots of the estimated azimuth and elevation are plotted in Figure 11, where the results have been averaged over 500 Monte Carlo runs. A challenge for further research is to incorporate the mutual coupling processing method to provide a more realistic scheme like the excellent algorithms [18,19,20] for applying sensor arrays.


Figure 11. Scatter plots of estimated 2D angles in the presence of mutual coupling. (a) Classic 2D MUSIC algorithm; (b) PIE algorithm; (c) The proposed AESS algorithm.
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7. Conclusions


We have proposed a new search-based algorithm, called AESS, for 2D DOA estimation. By exploiting the spectrum peak diffusion effect, our method is capable of searching the sources along their directions. Unlike the well-known 2D MISIC, which fixes one of the 2D angles and searches the other, the adjacent search points of AESS have different azimuth and elevation parameters to minimize the search path, which enables AESS to drastically reduce the computation and storage costs. Simulation results show that AESS achieves comparable RMSE and success rate but with a significant computational advantage over 2D MUSIC. Furthermore, the search process is much faster than that of 2D MUSIC in the scenarios of different stepsizes. We measured the RMSE versus SNR and snapshot, presented the CRB of each source for performance comparison with the theoretical optimum. To further evaluate the 2D DOA estimation performance, we presented the scatter plots of estimated 2D angles in different SNR, which show that AESS has smaller estimated variance although it is a biased estimation. Our simulation demonstrated that this bias can be decreased by slightly enlarging the search radius of the third round. To evaluate the resolution, we examined the capability of the proposed AESS and the related algorithms to estimate the DOAs of closely spaced signals. In the end, we tested AESS and the related algorithms in the presence of mutual coupling. A challenge for further research is to incorporate the mutual coupling processing method to provide a more realistic scheme such as the excellent algorithms in [18,19,20] for practical use.
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