An Optically Pumped Magnetometer Working in the Light-Shift Dispersed Mz Mode
Abstract
:1. Introduction
2. The LSD-Mz Magnetometer
2.1. Genesis of the LSD-Mz OPM
- The pump laser frequency was tuned from the commonly used F = 4 transitions to the F = 3 transitions.
- The laser power PL was increased by more than one order of magnitude (from about 0.5 mW to about 20 mW).
- The cell temperature was slightly increased (from about 100 °C to about 120 °C).
2.2. Experimental Setup
2.3. LSD-Mz Parameters vs. Pump Laser Power
3. Complete LSD-Mz Parameter Characterization
3.1. Optimization Strategy and Experimental Realization
3.2. Investigation of the Complete LSD-Mz Parameter Set
- Two samples with buffer gas pressures pN2 = 125 and 250 mbar at 130 °C, respectively, were measured separately. They have been denominated as “medium” and “high” buffer gas pressure cells in Figure 2. In the following we will use these terms for the two magnetometers. The pump laser power dependence of the medium-pressure magnetometer was already shown in the preceding section.
- The B1-field strength was varied using an oscillator voltage between 0.1 and 4 Vrms. With the B1-field coil constant of 347 nT/mA and 1 kΩ resistance this corresponds to a variation between 34.7 nTrms and 1.39 μTrms. The lower boundary is where a resonance line barely can be detected. At the upper boundary the large resonance widths distorts the dispersive signal.
- The pump laser power was varied between 0.5 and 4.5 mW, based on the results obtained before (cp. Section 2.3).
- The cell temperature was investigated between 80 °C, the lower boundary, where a resonance signal could be detected, and 140 °C, the upper boundary, above which most of the pumping light is absorbed.
- The pump laser frequency is responsible for the relation which hyperfine transitions are more or less pumped (cf. Figure 2). For this variation, a dc voltage between −1 and +1 V is applied to the modulation input of the laser current driver, which translates to a laser frequency variation range of about 25 GHz, covering the absorption lines of the investigated magnetometer cells as shown in Figure 2.
4. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Meyer, H.-G.; Stolz, R.; Chwala, A.; Schulz, M. SQUID technology for geophysical exploration. Phys. Stat. Sol. 2005, 2, 1504–1509. [Google Scholar] [CrossRef]
- Fratter, I.; Leger, J.-M.; Bertrand, F.; Jager, T.; Hulot, G.; Brocco, L.; Vigneron, P. Swarm Absolute Scalar Magnetometers first in-orbit results. Acta Astronaut. 2016, 121, 76–87. [Google Scholar] [CrossRef]
- Neubauer, W. Images of the invisible—Prospection methods for the documentation of threatened archaeological sites. Naturwissenschaften 2001, 88, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Linford, N. The application of geophysical methods to archaeological prospection. Rep. Progr. Phys. 2006, 69, 2205–2257. [Google Scholar] [CrossRef]
- Koch, H. SQUID magnetocardiography: Status and perspectives. IEEE Trans. Appl. Supercond. 2001, 11, 49–59. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Hari, R.; Ilmoniemi, R.J.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography-Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 1993, 65, 413–497. [Google Scholar] [CrossRef]
- Afach, S.; Bison, G.; Bodek, K.; Burri, F.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Grujic, Z.; Helaine, V.; et al. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute. J. Appl. Phys. 2014, 116, 084510. [Google Scholar] [CrossRef]
- Pustelny, S.; Kimball, D.F.J.; Pankow, C.; Ledbetter, M.P.; Wlodarczyk, P.; Wcislo, P.; Pospelov, M.; Smith, J.R.; Read, J.; Gawlik, W.; et al. The Global Network of Optical Magnetometers for Exotic physics (GNOME): A novel scheme to search for physics beyond the Standard Model. Ann. Phys. 2013, 525, 659–670. [Google Scholar] [CrossRef]
- Treutler, C.P.O. Magnetic sensors for automotive applications. Sens. Actuators A Phys. 2001, 91, 2–6. [Google Scholar] [CrossRef]
- Lenz, L.; Edelstein, A. Magnetic Sensors and their Applications. IEEE Sens. J. 2006, 6, 631–649. [Google Scholar] [CrossRef]
- Schmelz, M.; Zakosarenko, V.; Chwala, A.; Schönau, T.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, H.-G. Thin-Film-Based Ultralow Noise SQUID Magnetometer. IEEE Trans. Appl. Supercond. 2016, 26, 1600804. [Google Scholar] [CrossRef]
- Storm, J.-H.; Drung, D.; Burghoff, M.; Körber, R. A modular, extendible and field-tolerant multichannel vector magnetometer based on current sensor SQUIDs. Supercond. Sci. Technol. 2016, 29, 094001. [Google Scholar] [CrossRef]
- Budker, D.; Jackson-Kimball, D.F. (Eds.) Optical Magnetometry; Cambridge University Press: Cambridge, UK, 2013.
- Alexandrov, E.B.; Bonch-Bruevich, V.A. Optically pumped atomic magnetometers after three decades. Opt. Eng. 1992, 31, 711–717. [Google Scholar] [CrossRef]
- Budker, D.; Romalis, M.V. Optical Magnetometry. Nat. Phys. 2007, 3, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrov, E.B.; Vershovskii, A.K. Modern radio-optical methods in quantum magnetometry. Phys. Uspekhi 2009, 52, 576–601. [Google Scholar] [CrossRef]
- Happer, W. Optical Pumping. Rev. Mod. Phys. 1972, 44, 169–249. [Google Scholar] [CrossRef]
- Bloom, A.L. Principles of Operation of the Rubidium Vapor Magnetometer. Appl. Opt. 1962, 1, 61–86. [Google Scholar] [CrossRef]
- Alexandrov, E.B.; Balabas, M.V.; Pazgalev, A.S.; Vershovskii, A.K.; Yakobson, N.N. Double-Resonance Atomic Magnetometers: From Gas Discharge to Laser Pumping. Laser Phys. 1996, 6, 244–251. [Google Scholar]
- Groeger, S.; Bison, G.; Schenker, J.-L.; Wynands, R.; Weis, A. A high-sensitivity laser-pumped Mx magnetometer. Eur. Phys. J. D 2006, 38, 239–247. [Google Scholar] [CrossRef]
- Auzinsh, M.; Budker, D.; Kimball, D.F.; Rochester, S.M.; Stalnaker, J.E.; Sushkov, A.O.; Yashchuk, V.V. Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer? Phys. Rev. Lett. 2004, 93, 173002. [Google Scholar] [CrossRef] [PubMed]
- Castagna, N.; Bison, G.; Domenico, G.; Hofer, A.; Knowles, P.; Macchione, C.; Saudan, H.; Weis, A. A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells. Appl. Phys. B 2009, 96, 763–772. [Google Scholar] [CrossRef]
- Schwindt, P.D.D.; Knappe, S.; Shah, V.; Hollberg, L.; Kitching, J.; Liew, L.; Moreland, J. Chip-scale atomic magnetometer. Appl. Phys. Lett. 2004, 85, 6409–6411. [Google Scholar] [CrossRef]
- IJsselsteijn, R.; Kielpinski, M.; Woetzel, S.; Scholtes, T.; Kessler, E.; Stolz, R.; Schultze, V.; Meyer, H.-G. A full optically operated magnetometer array: An experimental study. Rev. Sci. Instrum. 2012, 93, 113106. [Google Scholar] [CrossRef] [PubMed]
- Schultze, V.; IJsselsteijn, R.; Meyer, H.-G. Noise reduction in optically pumped magnetometer assemblies. Appl. Phys. B 2010, 100, 717–724. [Google Scholar] [CrossRef]
- Scholtes, T.; Schultze, V.; IJsselsteijn, R.; Woetzel, S.; Meyer, H.-G. Light-shift suppression in a miniaturized Mx optically pumped Cs magnetometer array with enhanced resonance signal using off-resonant laser pumping. Opt. Express 2012, 20, 29217–29222. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.H.; Preusser, J.; Mhaskar, R.; Kitching, J.; Trahms, L.; Knappe, S. Magnetoencephalography with a chip-scale atomic magnetometer. Biomed. Opt. Express 2012, 3, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Kominis, K.; Kornack, T.W.; Allred, J.C.; Romalis, M.V. A subfemtotesla multichannel atomic magnetometer. Nature 2003, 422, 596. [Google Scholar] [CrossRef] [PubMed]
- Wyllie, R.; Kauer, M.; Wakai, R.T.; Walker, T.G. Optical magnetometer array for fetal magnetocardiography. Opt. Lett. 2012, 37, 2247–2249. [Google Scholar] [CrossRef] [PubMed]
- Woetzel, S.; Schultze, V.; IJsselsteijn, R.; Schulz, T.; Anders, S.; Stolz, R.; Meyer, H.-G. Microfabricated atomic vapor cell arrays for magnetic field measurements. Rev. Sci. Instrum. 2011, 82, 033111. [Google Scholar] [CrossRef] [PubMed]
- Schultze, V.; Scholtes, T.; IJsselsteijn, R.; Meyer, H.-G. Improving the sensitivity of optically pumped magnetometers by hyperfine repumping. J. Opt. Soc. Am. B 2015, 32, 730–736. [Google Scholar] [CrossRef]
- Couture, A.H.; Clegg, T.B.; Driehuys, B. Pressure shifts and broadening of the Cs D1 and D2 lines by He, N2, and Xe at densities used for optical pumping and spin exchange polarization. J. Appl. Phys. 2008, 104, 094912. [Google Scholar] [CrossRef]
- Schultze, V.; IJsselsteijn, R.; Scholtes, T.; Woetzel, S.; Meyer, H.-G. Characteristics and performance of an intensity modulated optically pumped magnetometer in comparison to the classical Mx magnetometer. Opt. Express 2012, 20, 14201, Erratum. 2012, 20, 28056(E). [Google Scholar] [CrossRef] [PubMed]
- Scholtes, T.; Schultze, V.; IJsselsteijn, R.; Woetzel, S.; Meyer, H.-G. Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell. Phys. Rev. A 2011, 84, 043416, Erratum. 2012, 86, 059904(E). [Google Scholar] [CrossRef]
- Scholtes, T.; Pustelny, S.; Fritzsche, S.; Schultze, V.; Stolz, R.; Meyer, H.-G. Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range. Phys. Rev. A 2016, 94, 013403. [Google Scholar] [CrossRef]
- Weiner, J.; Bagnato, V.S.; Zilio, S.; Julienne, P.S. Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 1999, 71, 1–85. [Google Scholar] [CrossRef]
- Mathur, B.S.; Tang, H.; Happer, W. Light Shifts in the Alkali Atoms. Phys. Rev. 1968, 171, 11–19. [Google Scholar] [CrossRef]
- Appelt, S.; Ben-Amar Baranga, A.; Young, A.R.; Happer, W. Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells. Phys. Rev. A 1999, 59, 2078. [Google Scholar] [CrossRef]
- Alexandrov, E.B.; Vershovskiy, A.K. Mx and Mz magnetometers. In Optical Magnetometry; Budker, D., Jackson Kimball, D.F., Eds.; Cambridge University Press: New York, NY, USA, 2013; pp. 60–84. [Google Scholar]
- OptiSLang. Available online: https://www.dynardo.de/en/software/optislang.html (accessed on 9 September 2016).
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis. The Primer; John Wiley & Sons, Ltd.: London, UK, 2008. [Google Scholar]
- McKay, M.; Beckman, R.; Conover, W. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 21, 239–245. [Google Scholar] [CrossRef]
- Iman, R.L.; Conover, W.J. A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Simulat. 1982, 11, 311–334. [Google Scholar] [CrossRef]
- Stander, N.; Graig, K. On the robustness of a simple domain reduction scheme for simulation-based optimization. Eng. Comput. 2002, 19, 431–450. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Novikov, L.N.; Pokazan’ev, V.G.; Skrotskii, G.V. Coherent phenomena in systems interacting with resonant radiation. Sov. Phys. Uspekhi 1970, 13, 384–399. [Google Scholar] [CrossRef]
- Bison, G.; Wynands, R.; Weis, A. Optimization and performance of an optical cardiomagnetometer. J. Opt. Soc. Am. B 2005, 22, 77–87. [Google Scholar] [CrossRef]
- Scholtes, T.; Woetzel, S.; IJsselsteijn, R.; Schultze, V.; Meyer, H.-G. Intrinsic relaxation rates of polarized Cs vapor in miniaturized cells. Appl. Phys. B 2014, 117, 211–218. [Google Scholar] [CrossRef]
- Groeger, S.; Pazgalev, A.S.; Weis, A. Comparison of discharge lamp and laser pumped cesium magnetometers. Appl. Phys. B 2005, 80, 645–654. [Google Scholar] [CrossRef]
- Jensen, K.; Polzik, E.S. Quantum noise, squeezing, and entanglement in radiofrequency optical magnetometers. In Optical Magnetometry; Budker, D., Jackson Kimball, D.F., Eds.; Cambridge University Press: New York, NY, USA, 2013; pp. 40–59. [Google Scholar]
- Griffith, W.C.; Knappe, S.; Kitching, J. Femtotesla atomic magnetometry in a microfabricated vapor cell. Opt. Express 2010, 18, 27167–27172. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.K.; Wakai, R.T. A compact, high performance atomic magnetometer for biomedical applications. Phys. Med. Biol. 2013, 58, 8153–8161. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.P.; Carter, T.R.; Borna, A.; Jau, Y.-Y.; Johnson, C.N.; Dagel, A.L.; Schwindt, P.D.D. Four-channel optically pumped atomic magnetometer for magnetoencephalography. Opt. Express 2016, 24, 15403–15416. [Google Scholar] [CrossRef] [PubMed]
High-Pressure Cell | Medium-Pressure Cell | |||
---|---|---|---|---|
Optimization type | Global | Local | Global | Local |
Algorithm | ARSM | simplex | ARSM | simplex |
Measured designs | 220 | 160 | 220 | 180 |
Measurement time [h] | 7 | 4 | 7 | 4 |
Minimum Bsn [fT/√Hz] | 11 | 10 | 8.5 | 8.5 |
B1-field amplitude [mVrms] | 495 | 785 | 945 | 945 |
[nTrms] | 172 | 272 | 328 | 328 |
Laser pump power [mW] | 1.7 | 2.25 | 3.3 | 3.3 |
Cell temperature [°C] | 130 | 128 | 130 | 130 |
Detuning voltage [mV]1 | −55 | −52 | −90 | −90 |
Detuned laser frequency [GHz]2 | 6.13 | 6.10 | 6.47 | 6.47 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schultze, V.; Schillig, B.; IJsselsteijn, R.; Scholtes, T.; Woetzel, S.; Stolz, R. An Optically Pumped Magnetometer Working in the Light-Shift Dispersed Mz Mode. Sensors 2017, 17, 561. https://doi.org/10.3390/s17030561
Schultze V, Schillig B, IJsselsteijn R, Scholtes T, Woetzel S, Stolz R. An Optically Pumped Magnetometer Working in the Light-Shift Dispersed Mz Mode. Sensors. 2017; 17(3):561. https://doi.org/10.3390/s17030561
Chicago/Turabian StyleSchultze, Volkmar, Bastian Schillig, Rob IJsselsteijn, Theo Scholtes, Stefan Woetzel, and Ronny Stolz. 2017. "An Optically Pumped Magnetometer Working in the Light-Shift Dispersed Mz Mode" Sensors 17, no. 3: 561. https://doi.org/10.3390/s17030561
APA StyleSchultze, V., Schillig, B., IJsselsteijn, R., Scholtes, T., Woetzel, S., & Stolz, R. (2017). An Optically Pumped Magnetometer Working in the Light-Shift Dispersed Mz Mode. Sensors, 17(3), 561. https://doi.org/10.3390/s17030561