

  DOA Estimation of Coherent Signals on Coprime Arrays Exploiting Fourth-Order Cumulants




DOA Estimation of Coherent Signals on Coprime Arrays Exploiting Fourth-Order Cumulants







Sensors 2017, 17(4), 682; doi:10.3390/s17040682




Article



DOA Estimation of Coherent Signals on Coprime Arrays Exploiting Fourth-Order Cumulants



Yang Hu, Yimin Liu * and Xiqin Wang





Department of Electronic Engineering, Tsinghua University, Beijing 100084, China









*



Correspondence: Tel.: +86-10-6278-1378







Academic Editors: Zhiguo Shi, Yujie Gu and Rongxing Lu



Received: 15 February 2017 / Accepted: 23 March 2017 / Published: 25 March 2017



Abstract:



This paper considers the problem of direction-of-arrival (DOA) estimation of coherent signals on passive coprime arrays, where we resort to the fourth-order cumulants of the received signal to explore more information. A fourth-order cumulant matrix (FCM) is introduced for the coprime array. The special structure of the FCM is combined with the array configuration to resolve the coherent signals. Since each sparse array of a coprime array is uniform, a series of overlapping identical subarrays can be extracted. Using this property, we propose a generalized spatial smoothing scheme applied to the FCM. From the smoothed FCM, the DOAs of both the coherent and independent signals can be successfully estimated on the pseudo-spectrum generated by the fourth-order MUSIC algorithm. To overcome the problem of occasional false peaks appearing on the pseudo-spectrum, we use a supplementary sparse array whose inter-sensor spacing is coprime to that of either existing sparse array. From the combined spectrum aided by the supplementary sensors, the false peaks are removed while the true peaks remain. The effectiveness of the proposed methods is demonstrated by simulation examples.
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1. Introduction


A coprime array consists of two uniform sparse arrays, from which a virtual uniform linear array (ULA) can be constructed from the spatial differences between any two sensors [1,2]. The spatial autocorrelations at all lags are estimated on the virtual ULA. The increased degrees of freedom has been used to identify [image: there is no content] sources from only [image: there is no content] physical sensors [3,4]. Due to the simplicity of the array configuration, and the ability to resolve many more signals than the number of sensors, coprime arrays have attracted considerable interest in the DOA estimation applications [5,6,7]. In real scenarios, due to multi-path propagation or smart jammers, signals from different DOAs may become partially correlated, or coherent (fully correlated) in the extreme case [8]. The correlated/coherent signals pose a great challenge to the DOA estimation on coprime arrays. Since the spatial autocorrelations are estimated from the sample mean of the sensor-to-sensor signal multiplications, the presence of coherent signals indicates that the spatial autocorrelations contain cross-terms, which strongly affects the structure of the signal subspace. Incorrect extraction of the signal subspace brings about a failed DOA estimation.



The spatial smoothing preprocessing scheme was developed for a physical ULA to resolve coherent signals [9]. On coprime arrays, such scheme was employed to construct a correlation matrix for the virtual ULA [2]. However, the scheme cannot eliminate the cross-terms and hence the coherent signal problem is not solved. Recently, BouDaher et.al. proposed an algorithm to locate coherent targets using an active sensing approach on the coprime multiple-input multiple-output radar [10]. However, their method cannot be used for the DOA estimation on passive coprime arrays.



The fourth-order (FO) array processing methods were developed for the DOA estimation of non-Gaussian signals [11,12]. The main interests in using the FO cumulants relies on the increased degrees-of-freedom provided by the virtual coarray, and the higher resolution brought by the larger effective aperture [13,14,15]. Currently, the FO processing methods are used in coprime arrays [16] or nested arrays [17] to increase the virtual aperture. However, as the authors stated, their algorithms cannot handle coherent signals.



In our work, the scenario where the independent and coherent signals coexist is considered. We first formulate an FO cumulant matrix (FCM) with a special form, from which the DOA estimation can be carried out by the fourth-order MUSIC (4-MUSIC) algorithm [11]. Unfortunately, the FCM cannot be used for DOA estimation of the coherent signals directly. The particular form of the FCM is combined with the array configuration to resolve coherent signals. Since each sparse array is uniform, a series of overlapping identical subarrays can be extracted. Taking one such subarray from each of the sparse arrays, we can build a coprime subarray. An FCM is inherently defined on such coprime subarray, whose size is determined by the subarray sensor numbers. On two similar coprime subarrays, the FCMs share the same structure. Analogous to the spatial smoothing scheme applied to the correlation matrix of a ULA, we propose a generalized spatial smoothing scheme applied to the FCM. When the smoothed FCM is adopted by the 4-MUSIC algorithm, both the independent and coherent signals can be successfully estimated.



Occasionally, the pseudo-spectrum generated from the smoothed FCM encounters a false-peak problem. Some false peaks may appear at the directions where none of the true signals reside, interfering with the extraction of the true signals. We analyzed the causation of this phenomenon. To overcome this challenge, a supplementary sparse array can be added, whose inter-sensor spacing is respectively coprime to each of the existing sparse arrays. On the combined pseudo-spectrum aided by the supplementary sensors, the false peaks are removed.



This paper is organized as follows. In Section 2, we briefly review the coprime array configuration and then formulate the signal model. In Section 3, the FO cumulants as well as the form of the FCM are detailed, and the impact of coherent signals on the FCM is investigated. In Section 4, a generalized spatial smoothing scheme on the FCM is proposed to resolve coherent signals. Section 5 provides a method to remove the false peaks on the pseudo-spectrum. The effectiveness of the new approach is demonstrated in Section 6. Section 7 concludes the paper.



Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). [image: there is no content] represents the statistical expectation. [image: there is no content] and [image: there is no content], respectively, denote the transposition and conjugate transposition of a vector or a matrix. [image: there is no content] is the element-wise complex conjugate. ⊗ denotes the Kronecker product. [image: there is no content] denotes the rank of a matrix. [image: there is no content] is the 2-norm of the vector [image: there is no content]. We use [image: there is no content] to denote a diagonal matrix that uses the elements of [image: there is no content] as its diagonal elements.




2. Signal Model


As illustrated in Figure 1, a typical coprime array consists of two sparse uniform arrays, denoted by Array [image: there is no content] and Array [image: there is no content], respectively. Let M and N be coprime integers, the sensors of the two sparse arrays are located at (with common sensors for both sparse arrays):


xA=MiAd|iA=0,1,…,LA−1,



(1)






xB=NiBd|iB=0,1,…,LB−1.



(2)






Figure 1. The coprime array configuration.
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In (1), [image: there is no content] and [image: there is no content] are the indices of the sensors, the unit inter-sensor spacing [image: there is no content] with [image: there is no content] as the half-wavelength, and [image: there is no content] and [image: there is no content] are the number of sensors of Array [image: there is no content] and [image: there is no content], respectively. Typically, [image: there is no content] and [image: there is no content]. Denote this coprime array by Coarray [image: there is no content].



Suppose a narrowband signal from the DOA [image: there is no content] impinges on the coprime array. The normalized DOA of the signal [image: there is no content] is defined as [image: there is no content], which indicates the phase difference of the planar wave at the unit spacing d. The steering vectors of for the individual sparse arrays are


[image: there is no content]



(3)






[image: there is no content]



(4)







Let Q narrowband signals impinge on the array from the distinct DOAs [image: there is no content], and the complex amplitude of the qth signal at snapshot time t is [image: there is no content]. The noise-corrupted measurement vectors on the two sparse arrays are


[image: there is no content]



(5)






[image: there is no content]



(6)







In (5), [image: there is no content] and [image: there is no content] are additive noise, [image: there is no content] is the vector of complex amplitudes, and the matrices [image: there is no content] and [image: there is no content] are the collections of steering vectors of Array [image: there is no content] and [image: there is no content], respectively


[image: there is no content]



(7)






[image: there is no content]



(8)







The assumptions on the signals and noises are listed below.



	
The noise vectors [image: there is no content] and [image: there is no content] in (5) are zero-mean complex white Gaussian, with arbitrary correlation matrices. The noises are statistically independent of [image: there is no content].



	
The complex amplitude of each signal follows a circularly-symmetric complex non-Gaussian distribution. A variety of modulations like quadrature amplitude modulation (QAM) or phase-shift keying (PSK) meet this assumption [11]. Under this assumption, the FO cumulants of the signal are non-zero [14].



	
Both statistically independent and coherent signals exist. We divide the signals into G groups. The signals in the same group are coherent, and the signals belonging to different groups are statistically independent.






Suppose that there are [image: there is no content] coherent signals in the gth group ([image: there is no content] for the independent signal case and [image: there is no content]) with the DOAs [image: there is no content]. Since the complex amplitudes of coherent signals are linearly dependent [9], we can write the group signal vector by


[image: there is no content]



(9)







In (9), [image: there is no content] represents the complex coefficients along the respective propagation paths and hence the elements are non-zero. [image: there is no content] is a scalar representing the complex amplitude of the source of the gth group at snapshot time t.



Because Array [image: there is no content] and [image: there is no content] are both sparse and uniform, direction ambiguity exists on the sparse arrays. If a collection of F signals with the DOAs [image: there is no content] satisfies [image: there is no content] for the distinct non-zero integers [image: there is no content], these DOAs are ambiguous on Array [image: there is no content] because their steering vectors are identical


[image: there is no content]



(10)







If F signals are coherent, and their propagation coefficients are [image: there is no content], it is necessary to assume that


[image: there is no content]



(11)







This assumption guarantees that the ambiguous signals do not vanish on the individual sparse arrays; otherwise, the collection of coherent signals are cancelled out on Array [image: there is no content] since [image: there is no content] holds for every snapshot. In real cases, the probability for a collection of signals to be vanishing is extremely low. We assume that the signals are non-vanishing on both Array [image: there is no content] and [image: there is no content].



In the DOA estimation using coprime array, one needs to estimate [image: there is no content] from [image: there is no content] snapshots of the measurements [image: there is no content]. The existing methods rely on the sensor-by-sensor correlations of the received signal [1]—for example, the signals on the [image: there is no content]th sensor of Array [image: there is no content] and the [image: there is no content]th sensor of Array [image: there is no content]. Suppose the samples on the two sensors (omitting the additive noises) are, respectively,


[image: there is no content]



(12)






[image: there is no content]



(13)







When the Q signals are statistically independent, [image: there is no content] for [image: there is no content]. The correlation becomes


[image: there is no content]



(14)







Taking all the integer combinations [image: there is no content], [image: there is no content] traverses all the integers between [image: there is no content] and [image: there is no content]. The rearranged spatial autocorrelations are therefore a superposition of Q sinusoids on an virtual ULA of size [image: there is no content]. A much larger correlation matrix can be constructed to resolve [image: there is no content] signals by the subspace-based methods like MUSIC [1,2].



However, the presence of coherent signals indicates that [image: there is no content] contains cross-terms. For example, if two signals from [image: there is no content] and [image: there is no content] are coherent, the following component included in the correlation is non-zero:


[image: there is no content]



(15)







Since [image: there is no content], the cross-term is not corresponding to any sinusoid component on the virtual ULA. When the rearranged spatial autocorrelations are used to form a correlation matrix as in [2] or [18], the signal subspace structure is strongly contaminated, leading to a failed DOA estimation. A demonstrative example of a failed DOA estimation is given in Figure 4a in the simulations.


Figure 4. The pseudo-spectra produced by 4-MUSIC are the blue curves. The true DOA of independent signals are marked by dashed vertical lines, and the true DOA of coherent signals are marked by dotted vertical lines.
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Based on the above signal model, in Section 3, we formulate an FCM of the coprime array signal that can be adopted for the fourth-order DOA estimation. Then, a generalized spatial smoothing scheme, which is crucial for resolving coherent signals from the FCM, is introduced in Section 4.




3. Formulation of FO Cumulant Matrix


In this section, we begin by revising the FO cumulants of a random vector. Next, we formulate an FCM for the coprime array signal. The subspace structure of the FCM is carefully analyzed.



3.1. FCM of Complex Amplitude Vector


Under the assumption that the complex amplitudes of signals are symmetrically distributed, the FCM of the vector [image: there is no content], denoted by [image: there is no content], is well defined and given in [11]


Ψ(s)=Es(t)⊗s*(t)s(t)⊗s*(t)H−Es(t)⊗s*(t)Es(t)⊗s*(t)H−Es(t)sH(t)⊗Es(t)sH(t)*.



(16)







In the gth coherent group, the FCM of the group complex amplitude vector [image: there is no content] is similarly formulated as in (16), and is denoted by [image: there is no content]. Since the elements in [image: there is no content] are linearly dependent, substituting (9) into (16), the FCM of [image: there is no content] becomes


[image: there is no content]



(17)







In (17), [image: there is no content] is a vector of length [image: there is no content], and [image: there is no content] is a scalar, in detail


[image: there is no content]



(18)




[image: there is no content] represents the FO cumulant of the source [image: there is no content]. When the source follows a circularly symmetric non-Gaussian distribution, [image: there is no content] is non-zero. To sum up, [image: there is no content] is a [image: there is no content] matrix with rank one, which describes the FO cumulants of the vector [image: there is no content].




3.2. FCM of Coprime Array Signal


Defining an auxiliary vector


[image: there is no content]



(19)







the following matrix is the FO moments of the array signal:


Γ4(z)=Ez(t)zH(t)=EyA(t)⊗yB*(t)yA(t)⊗yB*(t)H.



(20)







The autocorrelation matrices of the received signal on Array [image: there is no content] and Array [image: there is no content], and the cross-correlation vector between sparse arrays are the second-order moments of the array signal, respectively formulated as


[image: there is no content]



(21)






[image: there is no content]



(22)






[image: there is no content]



(23)







We now introduce a matrix consisting of the FO cumulants of the received signal. The matrix is a combination of the FO and second-order moments defined above, formulated as


[image: there is no content]



(24)







Each element in [image: there is no content] is a FO cumulant of the received signal. Since the additive noises are statistically independent of the signal, and the FO cumulants of the Gaussian noise are identically zero [19], substituting (5), (16), (20) and (21) into (24) yields


Φ=EAs(t)⊗Bs(t)*As(t)⊗Bs(t)*H−EAs(t)⊗Bs(t)*EAs(t)⊗Bs(t)*H−EAs(t)sH(t)AH⊗EBs(t)sH(t)BH*=A⊗B*ΨsA⊗B*H.



(25)







The special structure of [image: there is no content] informs the array configuration and the FO property of the sources. Most importantly, [image: there is no content] is built up by the steering vectors of impinging signals, which implies the DOAs. In the remainder of this paper, [image: there is no content] is referred to as the FCM of Coarray [image: there is no content].



In practical situations, the theoretical FCM is unknown and has to be estimated. If the signal is second-order and fourth-order ergodic, the empirical estimates of the moments in (20) and (21) can be derived by the sample second-order statistics and the sample fourth-order statistics [14]


[image: there is no content]



(26)






[image: there is no content]



(27)






[image: there is no content]



(28)






[image: there is no content]



(29)







The empirical estimation of the FCM [image: there is no content] [11] can be constructed with the sample moments in (26), matching the structure in (24)


[image: there is no content]



(30)








3.3. Subspace Structure of FCM


In (25), since the cumulants of sums of independent processes are the sums of the individual cumulants [11], the FCM [image: there is no content] is the sum of FCMs of the individual coherent groups


[image: there is no content]



(31)




where [image: there is no content] is the FCM of the gth group, [image: there is no content] and [image: there is no content] are the steering vector matrices for the gth group on Array [image: there is no content] and [image: there is no content], respectively:


[image: there is no content]



(32)






[image: there is no content]



(33)







When [image: there is no content] is eigen-decomposed, it forms a signal-subspace (with the projection operator [image: there is no content]) spanned by the eigenvectors corresponding to the large eigenvalues, and a noise-subspace (with the projection operator [image: there is no content]) spanned by the eigenvectors corresponding to the small eigenvalues. The two subspaces are orthogonal.



From (31), the signal subspace of [image: there is no content] is spanned by the column vectors in the matrix [image: there is no content]. The signal subspace of [image: there is no content] is the direct sum of the signal subspaces of each [image: there is no content]. Obviously, [image: there is no content] includes the column vectors [image: there is no content]. We can resort to the 4-MUSIC algorithm [11] to estimate the DOAs in the following manner. For a signal from the DOA [image: there is no content], the vector [image: there is no content] is in the signal subspace of [image: there is no content], then there exists a null at [image: there is no content] on the so-called null-spectrum:


[image: there is no content]



(34)







The pseudo-spectrum, or [image: there is no content], is used to locate the DOAs by searching for the maxima on it.




3.4. Impact of Coherent Signals on FCM


For an independent signal, itself constitutes a group, say the gth group, with [image: there is no content]. As in (17), [image: there is no content] becomes a non-zero scalar. The contribution of the independent signal to the FCM as in (31) is


[image: there is no content]



(35)







Clearly, the signal subspace of [image: there is no content] is spanned by the vector [image: there is no content]. Then, a peak appears at [image: there is no content] on the 4-MUSIC pseudo-spectrum.



For a group with multiple coherent signals that [image: there is no content], [image: there is no content] is a [image: there is no content] matrix with rank one. Then, the signal subspace of [image: there is no content] has only one dimension. Substituting (17) into (31), we derive


[image: there is no content]



(36)







In (36), the one-dimensional signal subspace of [image: there is no content] is spanned by the vector


[image: there is no content]



(37)







The vector in (37) is a linear combination of the [image: there is no content] column vectors [image: there is no content]. In the coherent signal case, the column vectors in [image: there is no content] are merged. Hence, the signal subspace of [image: there is no content] has only one dimension. The 4-MUSIC algorithm therefore fails to locate the DOAs of coherent signals.





4. Generalized Spatial Smoothing on FCM


In this section, we introduce a generalized spatial smoothing scheme applied to the FCM [image: there is no content]. The scheme leads to a successful estimation of the coherent signals.



Since the two sparse arrays are both uniform, we can divide each of them, for example, Array [image: there is no content] into overlapping subarrays. Every subarray contains [image: there is no content] continuous sensors, with sensors [image: there is no content] forming the 0th subarray, sensors [image: there is no content] forming the 1st subarray, etc. Similarly, Array [image: there is no content] is divided into overlapping subarrays of size [image: there is no content]. Choosing the uth subarray of Array [image: there is no content] and the vth subarray of Array [image: there is no content], a coprime subarray can be formed, and is denoted by the [image: there is no content] sub-coarray. The subarray indices can be chosen from [image: there is no content] and [image: there is no content]. An illustration of the [image: there is no content] sub-coarray is in Figure 2.


Figure 2. [image: there is no content] sub-coarray formed by two sparse subarrays.
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For a DOA [image: there is no content], the partial steering vectors on the uth subarray of Array [image: there is no content], and the vth subarray of Array [image: there is no content] are denoted by


[image: there is no content]



(38)






[image: there is no content]



(39)







The matrices of the collection of partial steering vectors in the gth group are denoted by


[image: there is no content]



(40)






[image: there is no content]



(41)







On the [image: there is no content] sub-coarray, an FCM is inherently defined analogous to (25). The size of the sub-coarray FCM is determined by the sub-coarray size [image: there is no content]. As in (31), the sub-coarray FCM can be decomposed into the sum of contributions from each group


[image: there is no content]



(42)







Comparing the uth subarray and the 0th subarray on Array [image: there is no content], and comparing the vth subarray and the 0th subarray on Array [image: there is no content], a relationship exists between the following matrices:


[image: there is no content]



(43)






[image: there is no content]



(44)







In (43), [image: there is no content] and [image: there is no content] are the uth and vth power of the following [image: there is no content] diagonal matrices, respectively:


[image: there is no content]



(45)






[image: there is no content]



(46)







Comparing the [image: there is no content] sub-coarray with the [image: there is no content] sub-coarray, the following relation exists


Au(g)⊗Bv*(g)=A0(g)ΩAu(g)⊗B0*(g)ΩB−v(g)=A0(g)⊗B0*(g)Ωu,−v(g),



(47)




where [image: there is no content] is a [image: there is no content] diagonal matrix. Therefore, [image: there is no content] can be written as


[image: there is no content]



(48)







We observe that [image: there is no content] and [image: there is no content] share the same signal subspace, and are related by a ‘rotation’ of the matrix [image: there is no content].



The generalized spatial smoothed FCM of coprime array is defined as the sum of FCMs on all of the similar sub-coarray:


[image: there is no content]



(49)







Denote [image: there is no content] as the smoothed FCM of the group complex amplitude vector [image: there is no content], written as


[image: there is no content]



(50)







Substituting (42), (48) and (50) into (49), the smoothed FCM [image: there is no content] of the coprime array signal is


[image: there is no content]



(51)







In (50), [image: there is no content] is rank-enhanced after spatial smoothing compared to [image: there is no content]. Consequently in (51), the smoothed FCM [image: there is no content] is rank-enhanced. The effect of the generalized spatial smoothing scheme on the FCM is analogous to the spatial smoothing scheme on the correlation matrix of a ULA [9].



An important theorem is in place here. We show that with some restrictions, the vectors [image: there is no content] for all the signals are in the signal subspace of [image: there is no content].



Theorem 1.

In the gth group, if [image: there is no content] and [image: there is no content], the vector [image: there is no content] for any one of the DOAs [image: there is no content] is in the signal subspace of [image: there is no content].





Proof. 

See Appendix A. ☐





Corollary 1.

Let [image: there is no content]. If [image: there is no content], [image: there is no content], then the vector [image: there is no content] for any one of the DOAs [image: there is no content] is in the signal subspace of the smoothed FCM [image: there is no content].





Proof. 

Following Theorem 1 and that [image: there is no content], the signal subspace of [image: there is no content] is the direct sum of all the signal subspaces of [image: there is no content]. ☐





Corollary 1 indicates that, if the numbers of overlapping subarrays on both sparse arrays are no less than the largest number of the coherent signals, the vectors [image: there is no content] for both the independent and coherent signals are in the signal subspace of [image: there is no content]. Then, one can eigen-decompose [image: there is no content] to acquire a noise subspace with the projection operator [image: there is no content]. The vector [image: there is no content] for any signal with a DOA [image: there is no content] is orthogonal to the noise subspace. From the smoothed FCM, the null-spectrum produced by 4-MUSIC is defined as


[image: there is no content]



(52)







On the pseudo-spectrum [image: there is no content], both the independent and coherent signals create peaks at their respective directions.



Remark: the sub-coarray FCM [image: there is no content] in (42) is a principle sub-matrix of the full-coarray FCM [image: there is no content]. The indices of columns (and rows) of the principle sub-matrix [image: there is no content] in [image: there is no content] are


[image: there is no content]



(53)







The generalized smoothing process can be accomplished by summing all the proper principle sub-matrices with the indices in (53) from [image: there is no content].



The generalized spatial smoothing scheme is obviously at the expense of a reduced effective array aperture. In fact, the size of the FCM [image: there is no content] is [image: there is no content], while the smoothed FCM [image: there is no content] is only [image: there is no content]. Considering the algorithmic complexity, the eigen-decomposition of the FCM [image: there is no content] takes [image: there is no content] operations. The complexity is equivalent to MUSIC on a ULA with a similar extent to the coprime array.




5. Removing False Peaks


On the pseudo-spectrum from the smoothed FCM, some false peaks occasionally arise at the directions where none of the true signals resides. An example of the false peaks is in Figure 5 in the simulations. In this section, we explain the false peak phenomenon and provide a technique to remove them.


Figure 5. The pseudo-spectra using the smoothed FCM of two sparse arrays have false peaks as in (a,b). Combining the null-spectra of the three coprime arrays following (65) can remove the false peaks as in (c).



[image: Sensors 17 00682 g005]






5.1. Explanation of the False Peaks


When the generalized spatial smoothing scheme is applied to enhance the rank of [image: there is no content] in (51), not only the vector [image: there is no content] for the signal DOAs [image: there is no content], but also the cross-terms [image: there is no content] appear in the signal subspace of [image: there is no content]. These cross-terms are not corresponding to any signal component and should not create peaks on the pseudo-spectrum. However, the steering vectors [image: there is no content] and [image: there is no content] are ambiguous due to the sparsity of Array [image: there is no content] and [image: there is no content]. We show that a false peak may appear as a result of the direction ambiguity. Because two independent signals will not create such cross-terms, in the remainder of this section, the discussion is limited to a single coherent group. For simplicity, we omit the group index g.



Since Array [image: there is no content] is M-sparse and Array [image: there is no content] is N-sparse, the steering vectors are ambiguous. In particular, for [image: there is no content] on Array [image: there is no content] and [image: there is no content] on Array [image: there is no content],


[image: there is no content]



(54)






[image: there is no content]



(55)




where [image: there is no content] are arbitrary integers. The ambiguity can be illustrated more clearly by the array beam patterns. In Figure 3, since Array [image: there is no content] and [image: there is no content] are both sparse and uniform, their beam patterns have multiple grating lobes.


Figure 3. An illustration of the beam patterns on Array [image: there is no content] and [image: there is no content]. The solid line represents the grating lobe of Array [image: there is no content], the dotted line represents the grating lobe of Array [image: there is no content]. The true directions [image: there is no content] and [image: there is no content] are marked by the highest lobes, while the lower lobes are the grating lobes. Theoretically, the lobes of each array should have the equal height.
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If it happens that a grating lobe of the Array [image: there is no content] beam pattern and a grating lobe of the Array [image: there is no content] beam pattern overlap at the direction [image: there is no content], i.e., for a pair of non-zero integers [image: there is no content],


[image: there is no content]



(56)






[image: there is no content]



(57)







the cross-term of the steering vectors becomes


[image: there is no content]



(58)







When the smoothed FCM [image: there is no content] of Coarray [image: there is no content] is eigen-decomposed with the noise subspace projection operator [image: there is no content], the null-spectrum at [image: there is no content] becomes


h¯AB(φ)=Π¯AB⊥a0(φ)⊗b0*(φ)2=Π¯AB⊥a0(θp)⊗b0*(θq)2=0,



(59)




since the cross-term [image: there is no content] is in the signal subspace of [image: there is no content]. A false peak at [image: there is no content] will appear on the pseudo-spectrum.



One remark is in place here. In (56), the direction [image: there is no content] needs not to be strictly equal to [image: there is no content] or [image: there is no content]. Once a grating lobe of the beam pattern [image: there is no content] and a grating lobe of the beam pattern [image: there is no content] overlap around [image: there is no content], a false peak still appears.



Furthermore, the grating lobe beamwidths of the beam patterns of [image: there is no content] and [image: there is no content] are [image: there is no content] and [image: there is no content], respectively. If [image: there is no content] and [image: there is no content], the beamwidths of the grating lobes are narrower than [image: there is no content]. From the observation that [image: there is no content] are coprime numbers, the grating lobes of the beam patterns [image: there is no content] on Array [image: there is no content] and [image: there is no content] on Array [image: there is no content] may overlap at one direction within [image: there is no content] at most, which means that the cross-term [image: there is no content] may produce at most one false peak.




5.2. Supplementary Sparse Array


Suppose that a supplementary sparse array, namely Array [image: there is no content], is deployed with its sensors positioned at


xC=RiCd|iC=0,1,…,LC−1.



(60)







In (60), R is an integer, which is respectively coprime to M and N, and [image: there is no content] is the number of sensors in Array [image: there is no content]. Now, Array [image: there is no content] and Array [image: there is no content] can form a new coprime array, denoted by Coarray [image: there is no content]. An FCM [image: there is no content] can be derived for the array signal. Dividing Array [image: there is no content] into identical subarrays of size [image: there is no content], we can perform the generalized spatial smoothing scheme on [image: there is no content] to obtain the smoothed FCM [image: there is no content]. Denoting the noise subspace projection operator by [image: there is no content], the null-spectrum of Coarray [image: there is no content] is


[image: there is no content]



(61)




where [image: there is no content].



If [image: there is no content] and [image: there is no content] both hold, on the pseudo-spectrum [image: there is no content] derived from Coarray [image: there is no content], the cross-term [image: there is no content] may produce at most one false peak, denoted by [image: there is no content]. The false peak is induced by the following cross-term:


[image: there is no content]



(62)







We can derive an important theorem for the position of the false peaks.



Theorem 2.

From the same pair of coherent signals [image: there is no content], if the cross-term [image: there is no content] produces a false peak at [image: there is no content] on the pseudo-spectrum of Coarray [image: there is no content], and the cross-term [image: there is no content] produces a false peak at [image: there is no content] on the pseudo-spectrum of Coarray [image: there is no content], then [image: there is no content].





Proof. 

The proof is by contradiction. On Coarray [image: there is no content], the direction ambiguity indicates the following relations for a pair of non-zero integers [image: there is no content]:


[image: there is no content]



(63)






[image: there is no content]



(64)







If [image: there is no content], combining (56) and (63), we can deduce that [image: there is no content]. Since N and R are coprime numbers, [image: there is no content] are within a range such that [image: there is no content] are between [image: there is no content], the equation holds only when [image: there is no content], which is contradictory to the non-zero assumption on the integers [image: there is no content]. ☐





Theorem 2 indicates that, on two different coprime array configurations, the false peaks created by the same pair of coherent signals do not overlap on the pseudo-spectrum. This property can be used for removing the false peaks.




5.3. Removing False Peaks by Combined Spectrum


To remove the false peaks induced by the direction ambiguity, we use the property for which the false peaks do not overlap. From the three sparse arrays [image: there is no content], [image: there is no content] and [image: there is no content], any two sparse arrays constitute a coprime array. Therefore, we may derive three null-spectra: [image: there is no content] from Coarray [image: there is no content], [image: there is no content] from Coarray [image: there is no content] and [image: there is no content] from Coarray [image: there is no content]. A combined null-spectrum can be generated from the individual null-spectra:


[image: there is no content]



(65)







A necessary condition for the existence of a peak at [image: there is no content] on [image: there is no content] is that [image: there is no content] is corresponding to a null at any one of the three null-spectra. In fact, if [image: there is no content] is the DOA of a true signal, there always exists a null at [image: there is no content] on any one of the three null-spectra, [image: there is no content]. However, from Theorem 2, the false peak positions are different. Consequently, the false peaks are removed on the combined pseudo-spectrum [image: there is no content] on [image: there is no content].





6. Simulation Results


In this section, we present some simulations that demonstrate the DOA estimation of coherent signals using the generalized spatial smoothing scheme. We also exhibit the false peak phenomenon, and the removal of false peaks by the combined spectrum. The ability of estimating more signals than the number of sensors is verified, and the performances under various signal-to-noise ratio (SNR) and number of snapshots are studied as well.



6.1. Effectiveness of Generalized Spatial Smoothing


A coprime array is used to verify the generalized spatial smoothing scheme. Array [image: there is no content] ([image: there is no content]) has [image: there is no content] sensors, and Array [image: there is no content] ([image: there is no content]) has [image: there is no content] sensors. The unit inter-sensor spacing is half-wavelength. We consider ten narrowband signals impinging on the coprime arrays, in which four of them are independent signals, and the other six signals are divided into three coherent groups, with two signals in each group. The signal types are either Quadrature PSK or quaternary QAM, the powers of all sources are equal, and the coefficients along all the propagation paths have the equal amplitude, but with random complex phases. The noise is additive complex Gaussian, and the SNR on the sensors is set to be 0 dB (SNR is defined as the power of one signal to the noise power). In the estimation of the FCM [image: there is no content] in (25), 2000 snapshots are used. In the generalized spatial smoothing scheme, Array [image: there is no content] is divided into subarrays of size [image: there is no content], and Array [image: there is no content] is divided into subarrays of size [image: there is no content].



Figure 4a is the spectrum derived from the method in [2], which is most widely used on coprime arrays currently. The cross-terms induced by the coherent signals contaminate the structure of the signal subspace, and the DOA estimation consequently fails. In Figure 4b, the 4-MUSIC algorithm is applied to the FCM [image: there is no content]. We can see that the four peaks corresponding to the independent signals appear, but the DOA of coherent signals are not resolved. On the contrary, if the generalized spatial smoothing scheme is used on the FCM, the peaks for both independent and coherent signals are clearly present in Figure 4c. It is exemplified that the DOA of coherent signals can be estimated from the smoothed FCM.




6.2. Removing False Peaks


In the second simulation, there exists a coherent group with three signals at the normalized DOAs [image: there is no content], another coherent group with two signals at [image: there is no content], and four other independent signals at [image: there is no content] in the environment. The signal types, source amplitudes and propagation coefficients are set up as in the first simulation. We first derive the pseudo-spectrum using the smoothed FCM of Coarray [image: there is no content] in Figure 5a. Both independent and coherent signals are estimated on the spectrum. However, there also exist multiple false peaks, which seriously affect the extraction of the true signals.



A supplementary sparse array, namely Array [image: there is no content], with sparsity [image: there is no content] and [image: there is no content] sensors is deployed, and we can construct a new coprime array with Array [image: there is no content] and Array [image: there is no content]. Let Array [image: there is no content] be divided into subarrays of size [image: there is no content], and the pseudo-spectrum using the smoothed FCM of Coarray [image: there is no content] is displayed in Figure 5b. We can see that the peaks corresponding to the true signals are still there, while the directions of the false peaks are different from that in Figure 5a. Combining the three null-spectrum using (65), the pseudo-spectrum is displayed in Figure 5c. We can see that all the signals are found on the spectrum, while the false peaks are removed. Thus, we have shown the effectiveness of removing false peaks by the combined spectrum.




6.3. Estimating More Signals Than Sensor Numbers


In the third simulation, we demonstrate the ability of estimating more signals than the number of sensors, which still holds using the FCM-based approach. The array configuration, parameters and the estimation of FCM follow the second simulation. The number of signals is thirty-five, in which six signals are coherent. In Figure 6, we can see that the DOAs of the individual signals are correctly estimated, and even the number of signals exceeds the number of sensors. In the newly proposed FCM-based method, the size of the spatial smoothed FCM is [image: there is no content]; therefore, 4-MUSIC can process [image: there is no content] signals using [image: there is no content] sensors.


Figure 6. Twenty-seven sensors are used in the array configuration. Thirty-five signals (more than the number of sensors) exist in the environment, where six of them can be divided into three coherent pairs.



[image: Sensors 17 00682 g006]







6.4. Performance Study


In the fourth simulation, we briefly study the root-mean-square error (RMSE) of the DOA estimates using the new method. The array configuration follows the second simulation. Suppose that ten signals with the equal power arrive at the coprime array, in which four signals are coherent, and the other six signals are statistically independent. We consider the cases that the number of snapshots varies from 16 to 4096. The noise follows a complex Gaussian distribution and SNR varies from −14 dB to 4 dB. Under each case, 500 trials were taken to calculate the average RMSE of all the DOA estimates. The result is shown in Figure 7.


Figure 7. Average RMSE of all the DOA estimates. Each line indicates a fixed snapshot number, and the SNR varies within a line.



[image: Sensors 17 00682 g007]






We can conclude from the figure that the performance drops when the SNR decreases, as well as when the number of snapshots reduces. If the snapshot number is sufficiently high, the requirement for SNR can be relaxed. This is due to the fact that Gaussian noise vanishes in the FO cumulants if the number of snapshots is large.





7. Conclusions


In this paper, the problem of direction-of-arrival (DOA) estimation of coherent signals on passive coprime arrays is investigated. We resort to the fourth-order cumulants to explore more information about the received signal. Formulating a fourth-order cumulant matrix (FCM) for the signal on a coprime array, a new estimation scheme based on the fourth-order MUSIC algorithm is developed.



The special structure of the FCM is combined with the array configuration to resolve the coherent signals. Using the property that the individual sparse arrays are uniform, on either of the sparse arrays, a series of overlapping identical subarrays can be extracted. Then, taking individually one subarray from each of the sparse arrays, a coprime subarray is constructed. We revealed that the FCMs of any two similar coprime subarrays share the same structure. Analogous to the spatial smoothing scheme applied to the correlation matrix on a uniform linear array, we propose a generalized spatial smoothing scheme applied to the FCM. The scheme yields a smoothed FCM with rank-enhancement. The DOAs of both the independent and coherent signals can be estimated using the smoothed FCM.



To remove the false peaks induced by the direction ambiguity, we use a supplementary sparse array for assistance. On the combined spectrum aided by the supplementary array, the false peaks are removed while the true peaks remain. Simulation examples are given to demonstrate the effectiveness and performance of the proposed approach. Future work includes considering the case of mixed independent, partially correlated and coherent signals. A few simulations were executed to verify the ability of the proposed method to handle this case. However, theoretical guarantees are not provided yet.
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Appendix A. Proof of Theorem 1


Substituting (17) into (50), we derive


[image: there is no content]



(A1)







Since [image: there is no content] is a non-zero scalar, we can omit it without affecting the rank of [image: there is no content]. The following discussion is limited to the gth group. For simplicity, the group index g is omitted.



Equation (A1) can be written as


Ψ¯(s)=∑u=0LA−KA∑v=0LB−KBΩu,−vη⊗η*η⊗η*HΩ−u,v=∑u=0LA−KA∑v=0LB−KBζu,vζu,vH,



(A2)




where [image: there is no content] is a [image: there is no content] vector, written as


[image: there is no content]



(A3)







The summation in (A2) can be written in the vector inner-product form


[image: there is no content]



(A4)




where [image: there is no content] is a matrix with [image: there is no content] column vectors


W=ζ0,0,ζ0,1,…,ζ0,LB−KB,…,ζLA−KA,LB−KB=ΩA0η,…,ΩALA−KAη⊗ΩB0η,…,ΩBLB−KBη*=WA⊗WB*.



(A5)







In (A5), [image: there is no content] and [image: there is no content] are both [image: there is no content] matrices. Each of them can also be written as the multiplication of a diagonal matrix and a Vandermonde matrix:


[image: there is no content]



(A6)






[image: there is no content]



(A7)




where the Vandermonde matrices [image: there is no content] and [image: there is no content] are


[image: there is no content]



(A8)






[image: there is no content]



(A9)







Substituting (A4) and (A5) into (51) yields


Φ¯=A0⊗B0*WWHA0⊗B0*H=A0WA⊗B0*WB*A0WA⊗B0*WB*H=YYH,



(A10)




where


Y=A0WA⊗B0*WB*=A0·diag(η)·VA⊗B0*·diag(η*)·VB*.



(A11)







In (A10), the structure of the signal subspace of [image: there is no content] is determined by the the rank of [image: there is no content], and the column vectors in [image: there is no content]. From (A5), [image: there is no content]. In order to determine the rank of [image: there is no content], the ranks of [image: there is no content] and [image: there is no content] are carefully discussed in the following two cases.



Case I: The DOAs are non-ambiguous on the individual sparse arrays, which means that the steering vectors on Array [image: there is no content][image: there is no content] are distinct, and the steering vectors on Array [image: there is no content][image: there is no content] are also distinct.



In (A6), since the elements of [image: there is no content] are non-zero, [image: there is no content] is a full rank diagonal matrix. In the Vandermonde matrix [image: there is no content], each row vector is the transposition of a steering vector of length [image: there is no content] and is distinct to one another. When [image: there is no content], the Vandermonde matrix has full row rank. Hence, [image: there is no content]. Similarly, [image: there is no content] when [image: there is no content]. [image: there is no content] is henceforth a full rank matrix with rank [image: there is no content].



In (A10), the vectors [image: there is no content] are Q columns in the matrix [image: there is no content]. When [image: there is no content] has full rank, they are clearly in the signal subspace of [image: there is no content].



Case II: The DOAs are ambiguous. For demonstrating purpose, we assume that two DOAs [image: there is no content] and [image: there is no content] satisfy [image: there is no content] for a non-zero integer m. In this case, [image: there is no content] on Array [image: there is no content]. We also assume that the other steering vectors [image: there is no content] are distinct. In (A11), we can delete the repeated column vector [image: there is no content] in [image: there is no content] and the repeated row vector in [image: there is no content], at the same time, combining the coefficients [image: there is no content] to obtain


A0·diag(η)·VA=a0(θ1),a0(θ3),…,a0(θQ)diagη1+η2,η3,…,ηQejM0θ1…ejM(LA−KA)θ1ejM0θ3…ejM(LA−KA)θ3⋮⋱⋮ejM0θQ…ejM(LA−KA)θQ=A˜0·diag(η˜)·V˜A.



(A12)







In (A12), [image: there is no content] is constructed by deleting the column vector [image: there is no content] from [image: there is no content], the Vandermonde matrix [image: there is no content] is deleting the row vector [image: there is no content] from the Vandermonde matrix [image: there is no content]. The remaining row vectors are distinct. The diagonal matrix [image: there is no content] is still full rank since [image: there is no content] from the non-vanishing assumption. Hence, the matrix [image: there is no content] has full rank.



Similarly, when the DOAs are ambiguous on Array [image: there is no content], we can delete the repeated column vectors in [image: there is no content] to obtain a full rank matrix [image: there is no content], and delete the repeated row vectors in [image: there is no content] to obtain a full rank matrix [image: there is no content]. Equation (A11) becomes


Y=A˜0·diag(η˜)·V˜A⊗B˜0*·diag(η˜*)·V˜B*=A˜0⊗B˜0*diag(η˜)·V˜A⊗diag(η˜*)·V˜B*.



(A13)







Analogous to Case I, the matrices [image: there is no content] and [image: there is no content] are of full rank. Since [image: there is no content] and [image: there is no content] are removing only the repeated steering vectors, for any DOA [image: there is no content], the vector [image: there is no content] is still in the matrix [image: there is no content]. Hence, the vectors [image: there is no content] are in the signal subspace of [image: there is no content].
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