MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination
Abstract
:1. Introduction
2. Molecular Imprinting in the Design of Sensors
3. Review of the Literature Related to MIP-Based Sensors for Cancer Biomarkers
3.1. Prostate Specific Antigen
3.2. Alpha-Fetoprotein
3.3. Carcinoembryonic Antigen
3.4. Cancer Antigen 125
3.5. Nuclear Matrix Protein 22
3.6. Calcitonin
3.7. Bilirubin
3.8. Neopterin
3.9. Modified Nucleosides
4. Current Trends and Future Perspectives
5. Conclusions
Conflicts of Interest
References
- Ullah, M.F.; Aatif, M. The footprints of cancer development: Cancer biomarkers. Cancer Treat. Rev. 2009, 35, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Ravalli, A.; Marrazza, G. Gold and magnetic nanoparticles-based electrochemical biosensors for cancer biomarker determination. J. Nanosci. Nanotechnol. 2015, 15, 3307–3319. [Google Scholar] [CrossRef] [PubMed]
- Mayeux, R. Biomarkers: Potential uses and limitations. NeuroRx 2004, 1, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Ravalli, A.; Voccia, D.; Palchetti, I.; Marrazza, G. Electrochemical, electrochemiluminescence, and photoelectrochemical aptamer-based nanostructured sensors for biomarker analysis. Biosensors 2016, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Cieplak, M.; Kutner, W. Artificial biosensors: How can molecular imprinting mimic biorecognition? Trends Biotechnol. 2016, 34, 922–941. [Google Scholar] [CrossRef] [PubMed]
- Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates—A way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 1995, 34, 1812–1832. [Google Scholar] [CrossRef]
- Mayes, A.G.; Mosbach, K. Molecularly imprinted polymers: Useful materials for analytical chemistry? Trends Anal. Chem. 1997, 16, 321–332. [Google Scholar] [CrossRef]
- Haupt, K. Biomaterials: Plastic antibodies. Nat. Mater. 2010, 9, 612–614. [Google Scholar] [CrossRef] [PubMed]
- Karimian, N.; Vagin, M.; Zavar, M.H.A.; Chamsaz, M.; Turner, A.P.F.; Tiwari, A. An ultrasensitive molecularly-imprinted human cardiac troponin sensor. Biosens. Bioelectron. 2013, 50, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Schirhagl, R. Bioapplications for molecularly imprinted polymers. Anal. Chem. 2014, 86, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Piletsky, S.; Turner, A. A new generation of chemical sensors based on mips. In Molecular Imprinting of Polymers; Piletsky, S.A., Turner, A.P.F., Eds.; Landes Bioscience: Georgetown, TX, USA, 2006; pp. 64–79. [Google Scholar]
- Piletsky, S.A.; Piletskaya, E.V.; Panasyuk, T.L.; El’skaya, A.V.; Levi, R.; Karube, I.; Wulff, G. Imprinted membranes for sensor technology: Opposite behavior of covalently and noncovalently imprinted membranes. Macromolecules 1998, 31, 2137–2140. [Google Scholar] [CrossRef]
- Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O’Mahony, J.; Whitcombe, M.J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19, 106–180. [Google Scholar] [CrossRef] [PubMed]
- Poma, A.; Turner, A.P.F.; Piletsky, S.A. Advances in the manufacture of MIP nanoparticles. Trends Biotechnol. 2010, 28, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Panasyuk, T.; Campo Dall’Orto, V.; Marrazza, G.; El’skaya, A.; Piletsky, S.; Rezzano, I.; Mascini, M. Molecular imprinted polymers prepared by electropolymerization of Ni-(Protoporphyrin IX). Anal. Lett. 1998, 31, 1809–1824. [Google Scholar] [CrossRef]
- DePorter, S.M.; Lui, I.; McNaughton, B.R. Programmed cell adhesion and growth on cell-imprinted polyacrylamide hydrogels. Soft Matter 2012, 8, 10403–10408. [Google Scholar] [CrossRef]
- Lahav, M.; Kharitonov, A.B.; Katz, O.; Kunitake, T.; Willner, I. Tailored chemosensors for chloroaromatic acids using molecular imprinted TiO2 thin films on ion-sensitive field-effect transistors. Anal. Chem. 2001, 73, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Muhammad, P.; Liu, J.; Ma, Y.; Wang, S.; Yin, D.; Liu, Z. Molecularly imprinted polymer-based plasmonic immunosandwich assay for fast and ultrasensitive determination of trace glycoproteins in complex samples. Anal. Chem. 2016, 88, 12363–12370. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, C.; Abdel Qader, A.; Halvorsen, T.G.; Sellergren, B.; Reubsaet, L. Antibody-free biomarker determination: Exploring molecularly imprinted polymers for pro-gastrin releasing peptide. Anal. Chem. 2014, 86, 12291–12298. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, E.; Turco, A.; Chianella, I.; Guerreiro, A.; Piletsky, S.A.; Malitesta, C. Solid-phase synthesis of electroactive nanoparticles of molecularly imprinted polymers. A novel platform for indirect electrochemical sensing applications. Sens. Actuators B Chem. 2016, 229, 174–180. [Google Scholar] [CrossRef]
- Karfa, P.; Roy, E.; Patra, S.; Kumar, D.; Madhuri, R.; Sharma, P.K. A fluorescent molecularly-imprinted polymer gate with temperature and pH as inputs for detection of alpha-fetoprotein. Biosens. Bioelectron. 2016, 78, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Piletsky, S.; Piletsky, S.; Chianella, I. MIP-based sensors. In Molecularly Imprinted Sensors; Li, S., Ge, Y., Piletsky, S.A., Lunec, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 339–354. [Google Scholar]
- Berti, F.; Todros, S.; Lakshmi, D.; Whitcombe, M.J.; Chianella, I.; Ferroni, M.; Piletsky, S.A.; Turner, A.P.F.; Marrazza, G. Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing. Biosens. Bioelectron. 2010, 26, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Karimian, N.; Turner, A.P.F.; Tiwari, A. Electrochemical evaluation of troponin T imprinted polymer receptor. Biosens. Bioelectron. 2014, 59, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M. Molecularly Imprinted Polymers (MIPs) for bioanalytical sensors: Strategies for incorporation of MIPs into sensing platforms. Austin J. Biosens. Bioelectron. 2015, 1, 1–5. [Google Scholar]
- Piletsky, S.A.; Piletska, E.V.; Chen, B.; Karim, K.; Weston, D.; Barrett, G.; Lowe, P.; Turner, A.P.F. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for β-agonists determination. Anal. Chem. 2000, 72, 4381–4385. [Google Scholar] [CrossRef] [PubMed]
- Kriz, D.; Kempe, M.; Mosbach, K. Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors. Sens. Actuators B Chem. 1996, 33, 178–181. [Google Scholar] [CrossRef]
- Malitesta, C.; Mazzotta, E.; Picca, R.A.; Poma, A.; Chianella, I.; Piletsky, S.A. MIP sensors—The electrochemical approach. Anal. Bioanal. Chem. 2012, 402, 1827–1846. [Google Scholar] [CrossRef] [PubMed]
- Wackerlig, J.; Lieberzeit, P.A. Molecularly imprinted polymer nanoparticles in chemical sensing—Synthesis, characterisation and application. Sens. Actuators B Chem. 2015, 207, 144–157. [Google Scholar] [CrossRef]
- Blix, F.G.; Gottschalk, A.; Klenk, E. Proposed nomenclature in the field of neuraminic and sialic acids. Nature 1957, 179, 1088. [Google Scholar] [CrossRef] [PubMed]
- Hoff, S.D.; Matsushita, Y.; Ota, D.M.; Cleary, K.L.; Yamori, T.; Hakomori, S.; Irimura, T. Increased expression of sialyl-dimeric LeX antigen in liver metastases of human colorectal carcinoma. Cancer Res. 1989, 49, 6883–6888. [Google Scholar]
- Shinde, S.; El-Schich, Z.; Malakpour, A.; Wan, W.; Dizeyi, N.; Mohammadi, R.; Rurack, K.; Gjörloff Wingren, A.; Sellergren, B. Sialic acid-imprinted fluorescent core-shell particles for selective labeling of cell surface glycans. J. Am. Chem. Soc. 2015, 137, 13908–13912. [Google Scholar] [CrossRef] [PubMed]
- El-Schich, Z.; Abdullah, M.; Shinde, S.; Dizeyi, N.; Rosén, A.; Sellergren, B.; Wingren, A.G. Different expression levels of glycans on leukemic cells—A novel screening method with molecularly imprinted polymers (MIP) targeting sialic acid. Tumor Biol. 2016, 37, 13763–13768. [Google Scholar] [CrossRef] [PubMed]
- Ertürk, G.; Hedström, M.; Tümer, M.A.; Denizli, A.; Mattiasson, B. Real-time prostate-specific antigen detection with prostate-specific antigen imprinted capacitive biosensors. Anal. Chim. Acta 2015, 891, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Jolly, P.; Tamboli, V.; Harniman, R.L.; Estrela, P.; Allender, C.J.; Bowen, J.L. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens. Bioelectron. 2016, 75, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, T.S.C.R.; Santos, C.; Costa-Rodrigues, J.; Fernandes, M.H.; Noronha, J.P.; Sales, M.G.F. Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction. Electrochim. Acta 2014, 132, 142–150. [Google Scholar] [CrossRef]
- Patra, S.; Roy, E.; Madhuri, R.; Sharma, P.K. Nano-iniferter based imprinted sensor for ultra trace level detection of prostate-specific antigen in both men and women. Biosens. Bioelectron. 2015, 66, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ertürk, G.; Özen, H.; Tümer, M.A.; Mattiasson, B.; Denizli, A. Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples. Sens. Actuators B Chem. 2016, 224, 823–832. [Google Scholar] [CrossRef]
- Shen, X.; Ma, Y.; Zeng, Q.; Tao, J.; Huang, J.; Wang, L. Molecularly imprinted electrochemical sensor for advanced diagnosis of alpha-fetoprotein. Anal. Methods 2016, 8, 7361–7368. [Google Scholar] [CrossRef]
- Karfa, P.; Madhuri, R.; Sharma, P.K. A battle between spherical and cube-shaped Ag/AgCl nanoparticle modified imprinted polymer to achieve femtogram detection of alpha-feto protein. J. Mater. Chem. B 2016, 4, 5534–5547. [Google Scholar] [CrossRef]
- Moreira, F.T.C.; Ferreira, M.J.M.S.; Puga, J.R.T.; Sales, M.G.F. Screen-printed electrode produced by printed-circuit board technology. Application to cancer biomarker detection by means of plastic antibody as sensing material. Sens. Actuators B Chem. 2016, 223, 927–935. [Google Scholar] [CrossRef]
- Viswanathan, S.; Rani, C.; Ribeiro, S.; Delerue-Matos, C. Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosens. Bioelectron. 2012, 33, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-H.; Thomas, J.L.; Chang, Y.-C.; Tsai, Y.-S.; Liu, B.-D.; Lin, H.-Y. Electrochemical sensing of nuclear matrix protein 22 in urine with molecularly imprinted poly(ethylene-co-vinyl alcohol) coated zinc oxide nanorod arrays for clinical studies of bladder cancer diagnosis. Biosens. Bioelectron. 2016, 79, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Roy, E.; Madhuri, R.; Sharma, P.K. Imprinted ZnO nanostructure-based electrochemical sensing of calcitonin: A clinical marker for medullary thyroid carcinoma. Anal. Chim. Acta 2015, 853, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Bai, W.; Yang, Z. A novel photoelectrochemical sensor for bilirubin based on porous transparent TiO2 and molecularly imprinted polypyrrole. Electrochim. Acta 2016, 187, 451–456. [Google Scholar] [CrossRef]
- Çiçek, Ç.; Yilmaz, F.; Özgür, E.; Yavuz, H.; Denizli, A. Molecularly imprinted quartz crystal microbalance sensor (QCM) for bilirubin detection. Chemosensors 2016, 4, 21. [Google Scholar] [CrossRef]
- Sharma, P.S.; Wojnarowicz, A.; Sosnowska, M.; Benincori, T.; Noworyta, K.; D’Souza, F.; Kutner, W. Potentiometric chemosensor for neopterin, a cancer biomarker, using an electrochemically synthesized molecularly imprinted polymer as the recognition unit. Biosens. Bioelectron. 2016, 77, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Dejous, C.; Hallil, H.; Raimbault, V.; Lachaud, J.-L.; Plano, B.; Delépée, R.; Favetta, P.; Agrofoglio, L.; Rebière, D. Love acoustic wave-based devices and molecularly-imprinted polymers as versatile sensors for electronic nose or tongue for cancer monitoring. Sensors 2016, 16, 915. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.V.; Marques, A.C.; Fortunato, E.; Sales, M.G.F. 8-hydroxy-2′-deoxyguanosine (8-OHdG) biomarker detection down to picoMolar level on a plastic antibody film. Biosens. Bioelectron. 2016, 86, 225–234. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Cozzi, P.; Walsh, B.; Willcox, M.; Kearsley, J.; Russell, P.; Li, Y. Innovative biomarkers for prostate cancer early diagnosis and progression. Crit. Rev. Oncol. Hematol. 2010, 73, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, T.S.C.R.; Noronha, J.P.; Galésio, M.; Santos, H.; Diniz, M.; Sales, M.G.F.; Fernandes, M.H.; Costa-Rodrigues, J. Testing the variability of PSA expression by different human prostate cancer cell lines by means of a new potentiometric device employing molecularly antibody assembled on graphene surface. Mater. Sci. Eng. C 2016, 59, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Linton, H.J.; Marks, L.S.; Millar, L.S.; Knott, C.L.; Rittenhouse, H.G.; Mikolajczyk, S.D. Benign prostate-specific antigen (BPSA) in serum is increased in benign prostate disease. Clin. Chem. 2003, 49, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Özen, H.; Sözen, S. PSA isoforms in prostate cancer detection. Eur. Urol. Suppl. 2006, 5, 495–499. [Google Scholar] [CrossRef]
- Erlandsson, D.; Teeparuksapun, K.; Mattiasson, B.; Hedström, M. Automated flow-injection immunosensor based on current pulse capacitive measurements. Sens. Actuators B Chem. 2014, 190, 295–304. [Google Scholar] [CrossRef]
- Kamel, A.H.; Moreira, F.T.C.; Almeida, S.A.A.; Sales, M.G.F. Novel potentiometric sensors of molecular imprinted polymers for specific binding of chlormequat. Electroanalysis 2008, 20, 194–202. [Google Scholar] [CrossRef]
- Di Carlo, I.; Mannino, M.; Toro, A.; Ardiri, A.; Galia, A.; Cappello, G.; Bertino, G. Persistent increase in alpha-fetoprotein level in a patient without underlying liver disease who underwent curative resection of hepatocellular carcinoma. A case report and review of the literature. World J. Surg. Oncol. 2012, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rapisarda, V.; Loreto, C.; Malaguarnera, M.; Ardiri, A.; Proiti, M.; Rigano, G.; Frazzetto, E.; Ruggeri, M.I.; Malaguarnera, G.; Bertino, N.; et al. Hepatocellular carcinoma and the risk of occupational exposure. World J. Hepatol. 2016, 8, 573–590. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Jiang, R.; Deng, L.; Zhang, X.; Wang, K.; Sun, B. Circulation long non-coding RNAs act as biomarkers for predicting tumorigenesis and metastasis in hepatocellular carcinoma. Oncotarget 2015, 6, 4505–4515. [Google Scholar] [CrossRef] [PubMed]
- Malati, T. Tumour markers: An overview. Indian J. Clin. Biochem. 2007, 22, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Beastall, G.H.; Cook, B.; Rustin, G.J.S.; Jennings, J. A review of the role of established tumour markers. Ann. Clin. Biochem. 1991, 28, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Gold, P.; Freedman, S.O. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J. Exp. Med. 1965, 121, 439–462. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin. Chem. 2001, 47, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Tanaka, M.; Tanaka, T.; Ishigamori, R. Biomarkers for colorectal cancer. Int. J. Mol. Sci. 2010, 11, 3209–3225. [Google Scholar] [CrossRef] [PubMed]
- Søreide, K.; Nedrebø, B.S.; Knapp, J.-C.; Glomsaker, T.B.; Søreide, J.A.; Kørner, H. Evolving molecular classification by genomic and proteomic biomarkers in colorectal cancer: Potential implications for the surgical oncologist. Surg. Oncol. 2009, 18, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Soper, S.A.; Brown, K.; Ellington, A.; Frazier, B.; Garcia-Manero, G.; Gau, V.; Gutman, S.I.; Hayes, D.F.; Korte, B.; Landers, J.L.; et al. Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens. Bioelectron. 2006, 21, 1932–1942. [Google Scholar] [CrossRef] [PubMed]
- Minton, J.P.; Martin, E.W. The use of serial CEA determinations to predict recurrence of colon cancer and when to do a second-look operation. Cancer 1978, 42, 1422–1427. [Google Scholar] [CrossRef]
- Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.W.T.; Lloyd, K.O. Molecular cloning of the CA125 ovarian cancer antigen. Identification as a new mucin, MUC16. J. Biol. Chem. 2001, 276, 27371–27375. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.W.T.; Dnistrian, A.; Lloyd, K.O. Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. Int. J. Cancer 2002, 98, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Diaconu, I.; Cristea, C.; Hârceagǎ, V.; Marrazza, G.; Berindan-Neagoe, I.; Sǎndulescu, R. Electrochemical immunosensors in breast and ovarian cancer. Clin. Chim. Acta 2013, 425, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Peng, N.-J.; Liou, W.-S.; Liu, R.-S.; Hu, C.; Tsay, D.-G.; Liu, C.-B. Early detection of recurrent ovarian cancer in patients with low-level increases in serum CA-125 levels by 2-[F-18]fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography. Cancer Biother. Radiopharm. 2011, 26, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Lis, C.G. Pretreatment serum albumin as a predictor of cancer survival: A systematic review of the epidemiological literature. Nutr. J. 2010, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bagan, P.; Berna, P.; Assouad, J.; Hupertan, V.; Le Pimpec Barthes, F.; Riquet, M. Value of cancer antigen 125 for diagnosis of pleural endometriosis in females with recurrent pneumothorax. Eur. Respir. J. 2008, 31, 140–142. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Graybill, W.S.; Zhu, Y. Detection and monitoring of ovarian cancer. Clin. Chim. Acta 2013, 415, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Öge, Ö.; Atsü, N.; Kendi, S.; Özen, H. Evaluation of nuclear matrix protein 22 (NMP22) as a tumor marker in the detection of bladder cancer. Int. Urol. Nephrol. 2001, 32, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Miyanaga, N.; Akaza, H.; Tsukamoto, T.; Ishikawa, S.; Noguchi, R.; Ohtani, M.; Kawabe, K.; Kubota, Y.; Fujita, K.; Obata, K.; et al. Urinary nuclear matrix protein 22 as a new marker for the screening of urothelial cancer in patients with microscopic hematuria. Int. J. Urol. 1999, 6, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Carpinito, G.A.; Stadler, W.M.; Briggman, J.V.; Chodak, G.W.; Church, P.A.; Lamm, D.L.; Lange, P.H.; Messing, E.M.; Pasciak, R.M.; Reservitz, G.B.; et al. Urinary nuclear matrix protein as a marker for transitional cell carcinoma of the urinary tract. J. Urol. 1996, 156, 1280–1285. [Google Scholar] [CrossRef]
- Svatek, R.S.; Hollenbeck, B.K.; Holmäng, S.; Lee, R.; Kim, S.P.; Stenzl, A.; Lotan, Y. The economics of bladder cancer: Costs and considerations of caring for this disease. Eur. Urol. 2014, 66, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, D.; Bossi, A.; Whitcombe, M.J.; Chianella, I.; Fowler, S.A.; Subrahmanyam, S.; Piletska, E.V.; Piletsky, S.A. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Anal. Chem. 2009, 81, 3576–3584. [Google Scholar] [CrossRef] [PubMed]
- Toledo, S.P.A.; Lourenço, D.M.; Santos, M.A.; Tavares, M.R.; Toledo, R.A.; Correia-Deur, J.E.D.M. Hypercalcitoninemia is not pathognomonic of medullary thyroid carcinoma. Clinics 2009, 64, 699–706. [Google Scholar] [CrossRef] [PubMed]
- D’Hondt, M.; Van Dorpe, S.; Mehuys, E.; Deforce, D.; De Spiegeleer, B. Quality analysis of salmon calcitonin in a polymeric bioadhesive pharmaceutical formulation: Sample preparation optimization by DOE. J. Pharm. Biomed. Anal. 2010, 53, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Silvestro, L.; Savu, S.R. High-performance liquid chromatography/tandem mass spectrometry identification of salmon calcitonin degradation products in aqueous solution preparations. Rapid Commun. Mass Spectrom. 1996, 10, 151–156. [Google Scholar] [CrossRef]
- Costante, G.; Durante, C.; Francis, Z.; Schlumberger, M.; Filetti, S. Determination of calcitonin levels in C-cell disease: Clinical interest and potential pitfalls. Nat. Clin. Pract. Endocrinol. Metab. 2009, 5, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Barañano, D.E.; Rao, M.; Ferris, C.D.; Snyder, S.H. Biliverdin reductase: A major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA 2002, 99, 16093–16098. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, M.; Chinnadayyala, S.R.; Kakoti, A.; Goswami, P. Selective and sensitive detection of free bilirubin in blood serum using human serum albumin stabilized gold nanoclusters as fluorometric and colorimetric probe. Biosens. Bioelectron. 2014, 59, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Tiribelli, C.; Ostrow, J.D. The molecular basis of bilirubin encephalopathy and toxicity: Report of an EASL Single Topic Conference, Trieste, Italy, 1–2 October 2004. J. Hepatol. 2005, 43, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Fevery, J. Bilirubin in clinical practice: A review. Liver Int. 2008, 28, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Moein, M.M.; Jabbar, D.; Colmsjö, A.; Abdel-Rehim, M. A needle extraction utilizing a molecularly imprinted-sol-gel xerogel for on-line microextraction of the lung cancer biomarker bilirubin from plasma and urine samples. J. Chromatogr. A 2014, 1366, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.P.; Zhang, F.; Liang, D.; Wen, C.; Gu, J.; Skinner, H.; Chow, W.H.; Ye, Y.; Pu, X.; Hildebrandt, M.A.T.; et al. The ability of bilirubin in identifying smokers with higher risk of lung cancer: A large cohort study in conjunction with global metabolomic profiling. Clin. Cancer Res. 2015, 21, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Kuzmits, R.; Ludwig, H.; Legenstein, E.; Szekeress, T.; Kratzik, C.; Hofbauer, J. Neopterin as tumour marker serum and urinary neopterin concentrations in malignant diseases. J. Clin. Chem. Clin. Biochem. 1986, 24, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Berdowska, A.; Zwirska-Korczala, K. Neopterin measurement in clinical diagnosis. J. Clin. Pharm. Ther. 2001, 26, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Centi, S.; Tombelli, S.; Puntoni, M.; Domenici, C.; Franek, M.; Palchetti, I. Detection of biomarkers for inflammatory diseases by an electrochemical immunoassay: The case of neopterin. Talanta 2015, 134, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Wirleitner, B.; Schroecksnadel, K.; Winkler, C.; Fuchs, D. Neopterin in HIV-1 infection. Mol. Immunol. 2005, 42, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Widner, B.; Murr, C.; Wirleitner, B.; Mayr, C.; Spotti, N.; Baier-Bitterlich, G.; Fuchs, D. The importance of neopterin as a laboratory diagnostic marker of immune activation. Pteridines 1999, 10, 101–111. [Google Scholar] [CrossRef]
- Murr, C.; Widner, B.; Wirleitner, B.; Fuchs, D. Neopterin as a marker for immune system activation. Curr. Drug Metab. 2002, 3, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Sucher, R.; Schroecksnadel, K.; Weiss, G.; Margreiter, R.; Fuchs, D.; Brandacher, G. Neopterin, a prognostic marker in human malignancies. Cancer Lett. 2010, 287, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Jégourel, D.; Delépée, R.; Breton, F.; Rolland, A.; Vidal, R.; Agrofoglio, L.A. Molecularly imprinted polymer of 5-methyluridine for solid-phase extraction of pyrimidine nucleoside cancer markers in urine. Bioorg. Med. Chem. 2008, 16, 8932–8939. [Google Scholar] [CrossRef] [PubMed]
- Liebich, H.M.; Müller-Hagedorn, S.; Klaus, F.; Meziane, K.; Kim, K.-R.; Frickenschmidt, A.; Kammerer, B. Chromatographic, capillary electrophoretic and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of urinary modified nucleosides as tumor markers. J. Chromatogr. A 2005, 1071, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Riedmaier, I.; Pfaffl, M.W. Transcriptional biomarkers—High throughput screening, quantitative verification, and bioinformatical validation methods. Methods 2013, 59, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Iwanowska, A.; Yusa, S.I.; Nowakowska, M.; Szczubiałka, K. Selective adsorption of modified nucleoside cancer biomarkers by hybrid molecularly imprinted adsorbents. J. Sep. Sci. 2016, 39, 3072–3080. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, Z.; Liu, X.; Wei, L.; Liu, Y.; Yu, J.; Sun, L. Targeted metabolic analysis of nucleotides and identification of biomarkers associated with cancer in cultured cell models. Acta Pharm. Sin. B 2013, 3, 254–262. [Google Scholar] [CrossRef]
- Schetinger, M.R.C.; Morsch, V.M.; Bonan, C.D.; Wyse, A.T.S. NTPDase and 5′-nucleotidase activities in physiological and disease conditions : New perspectives for human health. BioFactors 2007, 31, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Tsai, T.C.; Huang, C.Y.; Liu, B.D.; Lin, H.Y. Recognition and electrochemical sensing of 8-Hydroxydeoxyguanosine with molecularly imprinted poly (ethylene-co-vinyl alcohol) thin films. Key Eng. Mater. 2012, 495, 331–334. [Google Scholar] [CrossRef]
- Ersöz, A.; Diltemiz, S.E.; Özcan, A.A.; Denizli, A.; Say, R. Synergie between molecular imprinted polymer based on solid-phase extraction and quartz crystal microbalance technique for 8-OHdG sensing. Biosens. Bioelectron. 2008, 24, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Agrofoglio, L.A.; Krstulja, A.; De Schutter, C.; Favetta, P.; Delépée, R.; Roy, V.; Dejous, C.; Hallil, H.; Lachaud, J.-L.; Lebal, N.; et al. Detection of urinary modified nucleosides by a bulk acoustic wave MIP sensor—Results and future work. IRBM 2014, 35, 66–71. [Google Scholar] [CrossRef]
- Ertürk, G.; Mattiasson, B. Molecular imprinting techniques used for the preparation of biosensors. Sensors 2017, 17, 288. [Google Scholar] [CrossRef]
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-Molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Bahadir, E.B.; Sezgintürk, M.K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 2015, 478, 107–120. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Cancer Type | Clinical Use |
---|---|---|
NMP22 | Bladder | Screening and monitoring |
Modified nucleosides | Diagnosis, screening, and monitoring | |
CA-125 | Breast, Ovarian | Monitoring |
CEA | Colon | Monitoring |
Modified nucleosides | Diagnosis, screening, and monitoring | |
AFP | Liver | Diagnosis |
Bilirubin | Diagnosis | |
Bilirubin | Lung | Diagnosis |
Neopterin | Diagnosis and monitoring | |
PSA | Prostate | Screening and monitoring |
Calcitonin | Thyroid | Diagnosis, prognosis, and screening |
Monomer(s) | Cross Linker | Polymerization Procedure | Biomarker |
---|---|---|---|
MAA | EGDMA | UV | PSA |
Dopamine | – | Electrochemical | PSA |
AAm | MBAAm | Radical | PSA, AFP |
Itaconic acid | EGDMA | Thermal | PSA |
NIPAAm | BAAm | Thermal | AFP |
APA + NIPAAm + silane@CDs | MBAAm | Thermal | AFP |
Pyrrole | – | Electrochemical | CEA |
– | Ultrasonic | Bilirubin | |
Phenol | – | Electrochemical | CA-125, modified nucleosides |
Ethylene + vinyl alcohol | – | Thermal | NMP22 |
AAHPhPA | EGDMA | Thermal | Calcitonin |
MATrp + HEMA | – | UV | Bilirubin |
BTBA + CEBTMB | HTBT | Electrochemical | Neopterin |
AAm + DMAEM | EGDMA | UV | Modified nucleosides |
Biomarker | Detection Technique | Linear Range | LOD | Reference |
---|---|---|---|---|
PSA | Electrochemical (capacitance) | 0.1–10,000 pg/mL | 0.08 pg/mL | [34] |
Electrochemical (EIS) | 100 pg/mL–100 ng/mL | 1 pg/mL | [35] | |
Potentiometry | 2.0–89.0 ng/mL | <2.0 ng/mL | [36] | |
Electrochemical (SWSV) | – | 0.25 fg/mL | [37] | |
Electrochemical (DPSV) | – | 3.04 fg/mL | [37] | |
Optical (SPR) | 0.1–50 ng/mL | 91 pg/mL | [38] | |
AFP | Electrochemical (DPV) | 0.8–10,000 ng/mL | 0.096 ng/mL | [39] |
Electrochemical (SWSV) | 0.10–700 pg/mL | 24.6 fg/mL | [40] | |
Optical (fluorescence) | 3.96–80.0 ng/mL | 0.42 ng/mL | [21] | |
CEA | Electrochemical (CV, EIS, SWV) | 0.05–1.25 pg/mL | – | [41] |
CA-125 | Electrochemical (EIS, DPV) | 0.5–400 U/mL | 0.5 U/mL | [42] |
NMP22 | Electrochemical (CV) | 128–588 ng/mL | – | [43] |
Calcitonin | Electrochemical (DPSV) | 9.99 pg/mL–7919 ng/mL | 3.09 pg/mL | [44] |
Bilirubin | Photoelectrochemical | 0.03–28 μM | 0.001 μM | [45] |
Piezoelectric (QCM) | 1–50 μg/mL | 0.45 μg/mL | [46] | |
Neopterin | Potentiometry | 0.15–2.5 mM | 22 μM | [47] |
Modified nucleosides | Piezoelectric (acoustic wave) | – | <1 ppm | [48] |
Electrochemical (CV, EIS) | 0.1–100 pg/mL | – | [49] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvolini, G.; Marrazza, G. MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination. Sensors 2017, 17, 718. https://doi.org/10.3390/s17040718
Selvolini G, Marrazza G. MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination. Sensors. 2017; 17(4):718. https://doi.org/10.3390/s17040718
Chicago/Turabian StyleSelvolini, Giulia, and Giovanna Marrazza. 2017. "MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination" Sensors 17, no. 4: 718. https://doi.org/10.3390/s17040718
APA StyleSelvolini, G., & Marrazza, G. (2017). MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination. Sensors, 17(4), 718. https://doi.org/10.3390/s17040718