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Abstract: Wireless body area networks are increasingly featuring cognitive capabilities. This work
deals with the emerging concept of cognitive body area networks. In particular, the paper addresses
two important issues, namely spectrum sharing and interferences. We propose methods for channel
and power allocation. The former builds upon a reinforcement learning mechanism, whereas the
latter is based on convex optimization. Furthermore, we also propose a mathematical channel model
for off-body communication links in line with the IEEE 802.15.6 standard. Simulation results for
a nursing home scenario show that the proposed approach yields the best performance in terms
of throughput and QoS for dynamic environments. For example, in a highly demanding scenario
our approach can provide throughput up to 7 Mbps, while giving an average of 97.2% of time
QoS satisfaction in terms of throughput. Simulation results also show that the power optimization
algorithm enables reducing transmission power by approximately 4.5 dBm, thereby sensibly and
significantly reducing interference.

Keywords: cognitive body area network; reinforcement learning; channel allocation; power allocation;
channel model; wireless body area network

1. Introduction

Recent advances in electronics and system on chip design have given birth to a new era of wireless
communication systems. Intelligent and low powered devices enable building small and miniaturized
wireless networks to help and improve human life, including among other things, wireless body area
networks (WBANs). A WBAN is a combination of ultra-low powered, programmable miniaturized
sensor nodes combined with wireless radio communication capabilities used to monitor the human
body and its physiological features, e.g., heart rate, blood pressure, temperature, etc., using either
invasive, or preferably, non-invasive sensors [1–3].

WBANs are touted as one of the key technologies foreseen to help dealing with the challenges
found in many healthcare systems around the world. Indeed, current healthcare facilities are facing
huge challenges from the growing elderly population and limited human and financial resources.
In the USA alone, from 1960 to 2010, life expectancy increased on average by 13.5% [4]. The population
aged 60–80 years will have doubled by 2050 (from 33 million to 81 million people) [5]. It is expected
that this huge increase will overload the healthcare system and overall quality of life will be affected.
Let us consider a patient who has to visit a doctor for a routine blood pressure and temperature check;
for this, he/she has to travel to the health facilities. This is costly in terms of time and money and
overloads the healthcare system; there are more urgent health issues and cases that must be taken care
of by health practitioners. To avoid such situations, a remote system can enable the persons to send
information about their health status to health care givers from their homes and thus they do not need
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to get out from their comfort zone just to do routine monitoring. This will both greatly benefit the
overall health care system and quality of life in general.

A WBAN allows the integration of intelligent small sensor nodes in, on, or around the human
body to monitor the human vital signs. The miniature devices are basically small radios that can collect
data through their sensors and transmit them to a central node or a master node. This central node
can be linked to a backend network where, upon reception, the patients’ data can be analyzed for
diagnosis and prescriptions. Generally, a WBAN can consist of in-body and/or on-body area networks.
An in-body area network allows communication between invasive or implanted sensor nodes to a base
station. An on-body area network, on the other hand, allows communication between a non-invasive
or wearable sensory device to a base station. Since human tissues are being monitored, the devices
used in WBAN have to build upon ultra-low power radio transmitters so as to avoid any adverse
effects on the human health.

In this paper, we focus solely on on-body area networks where single or multiple sensors are
attached or fitted to a person. A key idea is that instead of having all the on-body sensors transmitting
to the base station individually, a central on-body node is used as an intermediate hub and receives all
the sensors’ data and transmit them to the base station. From here onwards, we will refer to such a
sensing device as the node which is routing all the sensors’ data to the base station. The base station
itself will be referred to as gateway from here onwards.

Although wireless sensor networks in general are not new per se, their design and capabilities
are continuously evolving, including the adoption (and adaptation) of certain cognitive elements
previously developed for cognitive radios [6,7] either for resource allocation (frequency, power, etc.)
and/or signal processing and data analytics. Cognitive capabilities can be exploited in smart routing
and provide the ability to foresee any changes in the routing path [8]. Such a trend is also being applied
to WBANs and result in what we term cognitive body area network (C-BAN). In this work, we address
one of the major issues in such a setup, i.e., the tradeoff between throughput and quality of service
(QoS) by means of a cognitive and dynamic approach for frequency allocation. This approach, based
on re-enforcement learning, is named RL-CAA (for Reinforcement Learning—Channel Assignment
Algorithm). The specific contributions presented in this paper are:

• A context aware channel allocation RL-CAA approach in which the radio environment is first
sensed, and based on the feedback received in the form of signal to noise ratio (SNR), the approach
decides the fate of the channel. If the channel has a better SNR than other available channels, and
if there is no co-channel interference, the channel is assigned to that particular gateway. Based on
the throughput requirement, one or more channels can be assigned. The algorithm is robust to
traffic changes; QoS satisfaction is its main objective.

• The IEEE 802.15.6 standard has not formulated an off-body mathematical channel model.
However, the IEEE standard document provides experimented values that can be used as the
basis for such a model. Based on those experimental results, we have formulated a mathematical
model for the off-body Channel Model 4 (CM4) using MATLAB that takes on-body posture and
shadowing effects into account.

• We propose a novel power allocation algorithm that aims at achieving the desired interference
level at the boundary of the gateway’s coverage area. Its primary convergence criterion is
interference minimization towards other gateways.

The rest of this paper is organized as follows: the current state of the art related to WBANs is
described in Section 2. In Section 3, the detailed system model is presented and our simulation scenario
is described. The simulation results are presented and discussed in Section 4. Finally, the last section
concludes the paper.
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2. Related Works

WBANs have become a popular research topic in the last few years. Despite WBANs’ potential
uses in many fields of human life, they are not yet widely adopted and further research and
development are still needed. There are many open research questions and challenges that remain to be
addressed. The authors of [9] have presented a comprehensive overview of WBANs. They discussed
the network architecture, sensor hardware, 802.15.6 IEEE standard layers [10] and emerging radio
technologies available for WBAN applications. They also presented a taxonomy of proposed WBAN
projects. They highlighted various open research challenges related to the bandwidth and energy
efficient protocols, issues arising from the co-existence of WBANs with other wireless technologies
and WBANs’ successful integration into society. The authors in [11] have presented an overview
of WBAN applications related to healthcare. They recommended various wireless technologies for
WBAN medical applications; however, the non-medical aspects of WBANs were not considered and
no specific details for designing a WBAN application were presented. In [12], the authors described the
prospective usage of WBANs in the future health care system. In [2,12,13], the authors have provided
extensive overviews of generic WBANs and their applications, but they fall short in addressing
specific research challenges. Like with any other wireless network, interference is a major hindrance
in WBANs. Interference occurs commonly if multiple WBANs are deployed next to each other in
a given physical location. Inter-network interference can seriously diminish the performance of
WBANs if proper interference avoidance methods are not considered. In [14], the authors presented
an approach towards inter-network inference mitigation while considering the energy efficiency
of WBANs. A power control algorithm was presented for interference mitigation and avoidance.
The authors presented simulation results to prove their hypothesis. WBANs are like cognitive radios
in the sense that they share the spectrum with other existing technologies such as Bluetooth, ZigBee,
Wi-Fi, etc., [12]. In [14], the authors did not mention any interactions, either positive or negative,
with other technologies which share the spectrum bands with WBANs. In [15], the authors described
the convergence of cognitive radios (CR) and internet of things (IoT), i.e., an overview of how CR
technology can be beneficial for various sensor network fields. There may be possibilities for WBANs
to also interact with the internet directly at some tier of the communication stack. However, that
paper did not present any specific system design or implementation suggestions. In addition to the
internet, WBANs may also interact with other existing wireless communication technologies and
standards. In [16,17], the authors described the integration of health care system WBANs with other
communication technology standards and protocols and they reviewed their aspects. The authors
in [16] proposed a unified networking model for hospital scenarios combing various networking
technologies. They have analyzed the basic requirements for such systems. Each networking system
relies on a wired backbone network and a detailed analysis highlights how combining wired and
wireless network would really give the future hospital network designers a clear picture. The authors
in [17] proposed a hybrid model of WBAN data transmission and sharing. Their proposed architecture
combines WBAN communication tiers with the cloud for data sharing and delivery in healthcare
applications. However, including the cloud may pose some data security challenges that are now
being acknowledged by this research community as a critical issue.

Since WBANs operate in a traffic changing and interfering environment, many distributed
WBANs can be located in the same vicinity and there could be other communication technologies
(e.g., Bluetooth, ZigBee, etc.) communicating in the same spectrum bands. This could give rise to a
competition for the available spectrum, i.e., channels. Hence, there must be mechanisms for channel
allocation and sharing in such a way to satisfy the traffic and throughput requirements. Another
constraint for operating in such a heterogeneous environment is interference. To avoid interference,
some power control mechanism must be incorporated in the WBANs. In [18], the authors have
presented a channel sharing protocol for WBANs, but only for medical applications. Therefore, such
an approach lacks information about spectrum sharing among networks to facilitate their co-existence
in the available spectrum. In [19], the authors investigated channel allocation schemes in general
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for a wireless sensor network (WSN) based on game theory. The authors considered a general WSN
for investigating the behavior of their algorithm, showing that it exploits the network knowledge to
reduce interference and improve overall WSN performance. Such an approach could lead to additional
studies for WBANs. The authors in [20] proposed a multichannel MAC coordination framework
called decentralized time synchronized channel swapping. The proposed protocol combines the
benefits of decentralized time division multiple access and spontaneous alignment of nodes’ time
slots across channels and flexible time synchronization by instantaneous adoption of available slots.
The authors compared their proposed MAC protocol for channel swapping with time synchronous
channel hopping and efficient multichannel MAC protocols. Simulation and experimental results
show that the proposed approach leads to a significant reduction in convergence time and provides
higher network throughput with and without the presence of interference. However, the proposed
scheme has been applied to ad hoc wireless networks and the behavior of the protocol in WSNs and
WBANs is yet to be investigated.

In [21], the authors describe channel estimation and power control schemes for WBANs.
The authors claim that their proposed algorithm can save up to 25% of energy as compared to a
fixed transmission power scheme. The proposed algorithm has been investigated in IEEE 802.15.6
beacon mode [22] with a single hop star topology. In [23], the author investigated transmission
power assignment schemes and energy minimization techniques for WBANs. The author used two
strategies to assign transmission powers to the on-body sensor nodes; with or without body posture
state information. He studied his power optimization approach in a single hop transmission link.
However, the proposed transmission power assignment algorithms presented in [21,23] have not been
investigated nor evaluated for the specific off-body communication links used in WBANs and their
potential impact in a two-hop star topology.

The person or patient who is being monitored cannot always remain stationary, i.e., laying in
bed or sitting. Hence, there is a need for mobility algorithms to be implemented into the WBAN so
that seamless communication occurs when the nodes are mobile and they move from one access point
to another access point. In [24], the authors presented a seamless mobility and handover scheme for
WSNs taking into account the sensor mobility from one access point to another. This approach is
used as the basis for our own handover implementation described in Section 3.4. The authors in [25]
have presented an optimization algorithm for the design of WBANs. The approach is based on a
heuristic model and an ant colony optimization method. The authors proposed these algorithms for
WBAN design considerations, i.e., network topology and routing, taking into account the variable
data rates from individual sensor nodes. The experimental results are promising in terms of quality
and computational time as compared to a commercial optimization problem solver. However, the
algorithm needs further investigation to improve its performance.

In [26] a robust optimization approach to tackle traffic uncertainty in network design problems was
proposed. The described algorithm is a hybrid heuristic approach based on ant colony optimization.
The authors compared the proposed algorithm with a commercial optimization problem solver and the
experimental results show that their algorithm gave high quality solutions with low optimality gaps.
The authors in [26] considered a general network although the impact of their hybrid optimization
algorithm in WBAN design applications needs further research. The authors in [27] proposed a global
routing protocol for WBANs which targets optimizing the energy consumption at the nodes and
increasing the network lifetime. Experimental and simulation results show a significant increase
in network lifetime by balancing the energy consumption across all the network. This is quite
advantageous in the sense that all nodes can be replaced or recharged at the same time. However,
the proposed protocol only takes into account the transmission power for energy optimization.
The protocol needs further investigation to take into consideration more parameters in order to
better conserve energy.
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3. System Model

3.1. WBAN Architecture and Requirements

In this section, we present the WBAN model and the communication tier that has been used in
this work. A nursing home has been considered as the application scenario. The real dimensions of
the physical space can vary, but for simplicity, we consider a hall 10 m in width and 10 m in length.
This area has been logically partitioned into smaller sections, called ‘zones’. Each zone has its own
gateway acting as a base station, giving wireless coverage in a 5 × 5 m2 area. The gateway is fixed
(stationary) at the center of the zone and it is assumed that it has a fixed source of power, i.e., wall
power. The nodes in each zone correspond to individual patients. A patient can have multiple sensors
fitted or attached to his/her body. All these sensors are sending their data to the central sensor node
located at waist height; this central node periodically transmits the collected data to the gateway.
This concept is shown in Figure 1.
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Figure 1. Wireless body area network.

The overall hall, zones, gateways and the corresponding nodes are illustrated in Figure 2 (here at
the start of the simulation, right after they have been deployed). In this work, we consider the
IEEE 802.15.6 standard that specifically targets WBANs [22]. To accommodate the huge application
range of WBANs, this standard defines three physical layer options for WBANs, namely narrowband
(NB), ultra-wide band (UWB) and human body communications (HBC) [22]. Each physical layer
standard has its own design requirements. In this work, we consider only the NB physical layer on
the 2.4–2.483 GHz band. This band is termed the industrial and medical (ISM) band. Each gateway is
monitoring this band in the 2.4–2.483 GHz range. Other requirements and features of the system are
given in Table 1 [22,28].
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Table 1. System features and requirements.

Features Values

Frequency band 2.4–2.483 GHz
Number of channels 79 (according to ISM band)

Payload 0–2040 bits
Channel bandwidth 1 MHz

Data rates 121.4 Kbps–971.4 Kbps
Modulation Scheme DBPSK/DQPSK

For simplicity, we use only 20 channels in our simulations. The range of possible data rates for
IEEE 802.15.6-compliant WBANs is quite wide (121.4 Kbps–971 Kbps), but to evaluate the system
under demanding requirement conditions, we have chosen a data rate of 971.4 kbps in our simulations.Sensors 2017, 17, 780 6 of 23 
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3.2. WBAN Network Topology

IEEE 802.15.6 considers WBANs to operate in either a one-hop or a two-hop star topology, with
the central node to be located at the center of the body, e.g., at waist level, as shown in Figure 1 [22].
Two types of transmissions exist in the one-hop star topology: (A) transmissions from the sensor
device to the gateway and (B) from the gateway to the sensor device. In the two-hop star topology, the
sensor nodes connect to the gateway via their peer devices or multi-hopping is used to send data to
the gateway [29]. In our system model, the two-hop star topology exists between sensor nodes carried
by the patient and the gateway via the central node at the waist (Figure 1). We assume that the data
sent by the central node is the collection of data from the other sensors. However, each central node
carried by an individual person is connected to the gateway via the one-hop star topology, as shown
in Figure 3, where N corresponds to the nodes and they communicate with the gateway. Since our
research focuses on the spectrum optimization, the analysis of the individual sensor’s data (two-hop
star topology mentioned above) is not in the scope of this paper.

The time division multiple access (TDMA) technique is used for medium access. Each node is
assigned one time slot; hence, all nodes’ data are combined into a superframe for transmission from
the gateway to the backend network for further data processing and/or diagnosis purposes.



Sensors 2017, 17, 780 7 of 23

Sensors 2017, 17, 780 6 of 23 

 

 
Figure 2. Physical layout and WBANs deployment. The colors show the associations between the 
nodes and gateways. 

3.2. WBAN Network Topology 

IEEE 802.15.6 considers WBANs to operate in either a one-hop or a two-hop star topology, with 
the central node to be located at the center of the body, e.g., at waist level, as shown in Figure 1 [22]. 
Two types of transmissions exist in the one-hop star topology: (A) transmissions from the sensor 
device to the gateway and (B) from the gateway to the sensor device. In the two-hop star topology, 
the sensor nodes connect to the gateway via their peer devices or multi-hopping is used to send data 
to the gateway [29]. In our system model, the two-hop star topology exists between sensor nodes 
carried by the patient and the gateway via the central node at the waist (Figure 1). We assume that 
the data sent by the central node is the collection of data from the other sensors. However, each central 
node carried by an individual person is connected to the gateway via the one-hop star topology, as 
shown in Figure 3, where N corresponds to the nodes and they communicate with the gateway. Since 
our research focuses on the spectrum optimization, the analysis of the individual sensor’s data (two-
hop star topology mentioned above) is not in the scope of this paper. 

 
Figure 3. Network topology. 

Figure 3. Network topology.

3.3. Channel Model

The IEEE 802.15.6 standard document defines the channel models for the WBANs [10]. Figure 4
shows these channels (termed CM1–CM4). As mentioned previously, this paper only addresses the
off-body communication, i.e., between the central node (on waist, see Figure 1) and the gateway
(Figure 3). This channel is referred to as Channel Model 4 (CM4) in the IEEE standard document [10].
In WBANs, there are many factors which affect and deteriorate the signal quality, e.g., shadowing,
reflections, diffractions, interferences, etc. Shadowing is a key factor which causes signal degradation
due to the body environment; body movements and postures can also cause shadowing. Therefore,
the node is either in direct line of sight (LOS) with the gateway or in non-line of sight (NLOS) at any
instant. This also creates additional complications to create an accurate mathematical model for CM4.
The IEEE standardization document presents the measured values for the channel model [10] but
no concrete mathematical model is included. From these measured values, we have formulated a
mathematical channel model for the CM 4 using MATLAB, as shown in Equation (1):

pathloss = ax3 + bx2 + cx + d, (1)

which is a third degree polynomial equation modelling CM4. The identified values for the constants a,
b, c and d are given in Table 2.
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Table 2. Channel model values of the polynomial constants.

Constants LOS NLOS

a 2.45 3.673
b −17.99 −30.61
c 43.95 76.94
d 16.05 9.48

Our mathematical model for CM4 takes the shadowing caused by body orientation as well as
LOS and NLOS into consideration. This mathematical model gives realistic channel properties for
CM4 and is in compliance with the values presented in [10].

3.4. Mobility and Handovers

The permissible radio range of CM4 is ~5 m (as indicated in the IEEE standard itself [10]).
This is the motivation for dividing the coverage area into smaller partitions, i.e., zones of 5 × 5 m2.
This inspiration of dividing the physical location into smaller regions comes from the cellular networks
(e.g., micro or femto cells).

The positions of the gateways are fixed, i.e., at the center of each zone, while the nodes are
randomly deployed. All nodes (patients) can freely and randomly move in all directions across all
zones, at a constant speed of 1 m per second. The gateways are installed in such a way that when
a node crosses the coverage of one gateway, it enters into the other gateway coverage zone, and
handover is taking place. A simple distance-based handover algorithm has been implemented to
facilitate the movement of all nodes freely across all zones and providing seamless vital data transfer
while moving from one access point (gateway) to another [24,30].

3.5. Channel Allocations

The gateway is the master node or base station which undertakes the spectrum-related tasks along
with data processing and routing. The nodes are sensors which sense and transmit data. Each gateway
assigns the transmission channels to its governed nodes. We propose that spectrum management
algorithms shall be hosted by the gateway, as it can have a constant power source (e.g., mains). On the
other hand, the nodes, which are mainly battery operated, can have only limited functionality related
to sensing the data and transmitting it to the gateway. This saves the node’s battery to a great deal and
is very desirable for many applications of sensor networks.

We have previously proposed a dynamic channel allocation algorithm for cognitive radio
networks [31]. To turn the WBAN into a cognitive body area network (C-BAN), we have revised the
algorithm and made it more dynamic and robust for the resource limited computational platform.

3.5.1. Reinforcement Learning—Channel Assignment Algorithm (RL-CAA)

The RL-CAA is based on reinforcement learning, which itself comes from the field of artificial
intelligence and machine learning. The RL-CAA builds upon a Bernoulli distribution and its internal
architecture is based on the Bernoulli random variables and probabilities. This internal part of the
algorithm is called the Bernoulli logic unit [32,33]. The algorithm works following an unsupervised
learning approach and interacts with the target environment and considers the feedback. The algorithm
interaction with the environment is based on feedback and M input signals. An input signal x is biased
by the weighting factor w, which are real vectors containing input variables for the algorithm and their
corresponding weights. The inputs and their weights are combined as per Equation (2) in a scalar
quantity z:

z =
M

∑
i=1

wixi (2)
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where M is total number of channels; z is then subjected to a Bernoulli logistic function given in
Equation (3):

p = f(z) =
1

1 + e−z (3)

Then the algorithm updates its internal probabilities and context variables (i.e., x and w) based
on that feedback. A probability bias σ is added to p so that it may not converge to 0. Based on the
feedback signal, a decision is made according to the context in which RL algorithm is being used.
The feedback is termed reward signal r(t) in the RL terminology. The instantaneous reward signal in
our simulation domain is given in Equation (4):

r(t) =

{
0, if Throughput < TH or SNR< 0 or interference >ITh

SNR, otherwise
(4)

where the throughput threshold, i.e., TH, depends upon the total number of nodes at the gateway
(Table 4) and ITh is the interference threshold. The reward value is the average signal to noise ratio
(SNR) of the channel. The output of the algorithm is a Bernoulli random variable (Equation (5)). At the
start of the simulations, each gateway executes the RL-CAA in order to find the optimal channel
allocation for the data transmission. The RL-CAA traverses all the available channels; the channel(s)
which meet the criteria given in Equation (5) are then selected:

y =

{
0, if r(t) ≤ 0
1, if r(t) > 0

(5)

The probability mass function representing the probability p of output y is described in
Equation (6):

g(y, p) =

{
1− p, if y = 0
p, if y = 1

(6)

To simplify, y is a two action learning outcome of the RL process. The learning of the agent
can be condensed in the weighting vector so that at each time step t, the agent learns by updating
its weighting vector using Equation (7) and any instantaneous change in the individual weight is
calculated by Equation (8):

w(t) = w(t− 1) + ∆w(t) (7)

∆wi(t) = α(t)[r(t)− r(t− 1)][y(t− 1)− p(t− 1)]xi(t− 1) (8)

where α(t) > 0 is called the learning rate, r(t) is the reward returned by the environment at any instant
(step) of time t, and r(t) is the average reward which is obtained as shown in Equation (9):

r(t) = βr(t) + (1− β)r(t− 1) (9)

where 0 < β ≤ 1 is called the reward memory factor of the RL. Low values of β assures enough memory
of the past rewards. Decreasing the learning rate α with the RL steps improves the convergences speed
of the algorithm. Thus, the learning rate is linearly decreased as given in Equation (10):

α(t) = α(t− 1)− ∆ (10)

where ∆ should be small enough to assure a smooth transition between steps and negative values for
α should be avoided.

If any channel is giving a throughput below the target throughput, or if the channel is experiencing
co-channel interference, the reward function returns zero (Equation (4)) and the RL-CAA discards that
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channel and continues its exploration. Once the algorithm has converged, the set of optimal channels
is known (Equation (11)): duplicated number

Y = {y1, y2, . . . yM} (11)

where yi represents the outcome of the RL-CAA for an individual channel. These channels are
subsequently assigned to the sensor nodes and the gateway starts receiving data from the nodes.
At any instant, due to the change in throughput requirements (either the target throughput has been
changed or the traffic load has changed in the zone due to handovers) the particular gateway executes
the RL-CAA to look for the new optimal channel allocations to satisfy its governed nodes. Some of the
key parameters of the RL-CAA are presented in the Table 3. The key steps of the RL-CAA are listed
in Algorithm 1 (note that this is a revised version of [34] with more focus on QoS requirements and
co-channel interference).

Table 3. RL-CAA simulations parameters.

RL-CAA Parameters Values

RL Evaluation Steps 500
RL Convergence Steps 50
α (RL learning rate) 100

β (reward memory factor) 0.01
σ (probability bias) 0.05

Algorithm 1: The key steps of the RL-CAA.

1. REPEAT UNTIL RL Convergence OR RL Evaluation steps
2. Sense the available channels’ conditions, i.e., SNR, interference
3. Calculate instantaneous reward, r(t), as per Equation (4)
4. Update average reward, r(t), as per Equation (9)
5. FOR i = 1 to M
6. Update: x, w, p
7. END FOR
8. FOR i = 1 to M
9. IF pi > 0.5
10. yi = 1, i.e., assign the channel
11. ELSE
12. yi = 0, i.e., do not assign the channel
13. END IF
14. END FOR
15. END REPEAT
16. FOR i = 1 to M
17. Ci = Channel_Capacity(yi)
18. IF TotalTH < Req_TH
19. TotalTH = TotalTH + Ci
20. ELSE
21. yi = 0
22. END IF
23. END FOR

3.5.2. Static Channel Assignment (SCA)

In order to evaluate (later in Section 4) the performance of the proposed RL-CAA, we compare it
to the SCA even selection algorithm [35]. The algorithm has been modified in order to comply with our
application domain. The operation of the algorithm is as follows. The gateway monitors the available
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channels. The channels are assigned in an increasing order based on the gateway ID, irrespective of the
channel conditions, e.g., SNR, interference, etc. For example, if Gateway 1 needs to allocate a channel
and if Channel 1 is currently assigned, then Channel 2 will be assigned to Gateway 1 and Gateway 2
will take Channel 3 and so on.

3.6. Transmission Power

WBANs are distributed networks and often a large number of networks have to co-exist close
to each other. Each network has its own transmission power and it is practically very hard to
maintain cooperation among all the WBANs to avoid co-channel interferences. Traditionally assigned
transmission powers are not very optimized, so there is a big room for power optimization in
WBANs. These traditional transmission power algorithms can generate tremendous amounts of
interferences in the neighboring WBANs [21,36]. We propose a novel power allocation algorithm to
reduce the interference among gateways (which are acting as base stations for all control operations
for the individual WBANs). Each gateway is governing various WBANs in its vicinity. The primary
convergence criteria for the power optimization is interference minimization.

The transmission power is calculated based on the desired interference level at the boundary of
the WBAN, i.e., edge of a zone. The algorithm is derived from the convex optimization and is based
on the illumination problem [37]. To calculate the transmission power, the interference boundary, i.e.,
perimeter of the zone, is divided into equally spaced linear small k patches. The interference received
at any patch should not be greater than Ides, which is known as the interference threshold to avoid any
interference to the neighboring WBANs. Equation (12) states the received power/interference level, Ik,
at the center of each patch of interference boundary:

Ik =
m

∑
j=1

akjPT, (12)

where m is the number of transmitters (base stations). Since there is only one gateway serving the zone,
here m = 1 and PT is the optimal transmission power of the transmitter. akj is the propagation losses
between transmitter and the receiving path k, where the interference level is calculated. akj is calculated
from the path loss and channel model presented in Section 3.3. Since the interference threshold, Ides,
is known (it is determined empirically), the algorithm calculates the transmission power meeting
this interference criterion for the given gateway. For optimization purposes, the objective function is
formulated as shown in Equation (13):

Minimize:
maxk=1,...,n|log Ik − log Ides|, (13)

Subject to:
0 ≤ pj ≤ pmax, (14)

4. Simulation Results

In this section, simulation results for our proposed algorithms are presented. At the beginning
of the simulation, the WBANs are deployed, i.e., the gateway and the nodes are placed in an area of
10 × 10 m2. Each zone of 5 × 5 m2 starts with an equal number of nodes. In the cases when mobility
is also considered, the nodes can move across all the zones freely and randomly. The key simulation
parameters are listed in Table 4.
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Table 4. Simulation parameters.

Simulation Parameters Values

Frame size 2040 bits
Transmission power (fixed power case) 3 dBm

Node Throughput 971.4 Kbps
Total Nodes per Gateway 3

Zone Area 25 m2

Total Region 100 m2

Maximum distance between a node—gateway (before handover may occur) 3.54 m
Total Simulation Time 600 s

Simulation statistics averaging period 10 s

We have performed the simulations for various scenarios modeling realistic nursing home activity
patterns. These scenarios are modeled from the idlest time (when all nodes are stationary) to the
busiest activity time, i.e., all nodes are mobile. These scenarios are:

• Case A: All the nodes are stationary. This case depicts that all patients are sleeping at night.
They are not moving so there is no traffic change during this time.

• Case B: This corresponds to 100% mobility. All the nodes are moving. This situation corresponds
to the busy working hours when all patients have to perform routine tasks.

• Case C: In this case, eight nodes are moving and four nodes are stationary.
• Case D: In this case, four nodes are moving and eight nodes are stationary.

Cases C and D correspond to the situations when some patients are resting and some of them
are moving around, for example during the first hours of the working day, after lunch, or evening
before bedtime. To evaluate the performance of our proposed RL-CAA, we compare its results
with the classical static channel assignment scheme SCA. The RL-CAA is also analyzed based on
various QoS requirements. The analysis of the simulation results are done on the basis of three
performance parameters; (i) bit error rate (BER), which is the average bits in error received at the
gateway; (ii) throughput, average throughput in bits per second (bps) available at the gateway; and
(iii) dissatisfaction probability. The data involved in the WBANs can be quite critical depending upon
the nature of the application, so the users (nodes) must have sufficient quality of service (QoS) to
transmit their data properly. Dissatisfaction can give an indication of the QoS at any given time.
Here, the dissatisfaction probability is defined as the percentage of time in which the users’ QoS
(i.e., user throughput) is below the target (user) throughput. This target throughput is often referred as
satisfaction throughput. Here the satisfaction throughput is chosen as 971.4 kbps, i.e., the maximum
allowed by the IEEE 802.15.6 standard.

4.1. Case A

In this case, all nodes are stationary. Figure 5a shows the averaged BER per gateway for the SCA
and Figure 5b shows the average BER for the RL-CAA. The average error rate for SCA is a little over
10%, whereas it is less than 10% for each gateway with the RL-CAA. The average throughput per
gateway provided by both algorithms is quite similar, as shown in Figure 6a,b.

All the users have acceptable QoS so no dissatisfaction is observed (probability = 0). The SCA is a
static algorithm whereas the RL-CAA is a dynamic and robust algorithm (i.e., it can promptly act on
any change in the network parameters and can adjust accordingly to provide sufficient QoS), and it is
suited for scenarios with changing traffic requirements. In case of a static scenario, there are no much
benefits with the RL-CAA.
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Figure 6. (a) Average throughput for the SCA algorithm; (b) Average throughput for the RL-CAA algorithm.

4.2. Case B

In this case, all the users (i.e., nodes) are moving. Since handovers are allowed from one zone to
another, the users move freely and randomly across the entire region. Traffic load is also changing
randomly as the nodes are entering or leaving a zone. The RL-CAA is a dynamic and robust algorithm
which can confront the traffic change instantly, but it has a downside. More dynamics mean that
the RL-CAA will undergo exploration of new channels as soon as the throughput goes below the
throughput threshold. The RL-CAA is computationally complex and it has a learning curve before
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it can converge to new channel assignments. Hence, there is a tradeoff between the impact on the
desired QoS and the RL-CAA execution overheads. We do not require too frequent execution of the
RL-CAA, so we set a 5% margin in throughput requirements. As the gateway throughput falls 5%
below the target throughput, the RL-CAA is executed by the gateway and the new channels are then
assigned. Figure 7a,b show the average BER of the SCA and the RL-CAA, respectively.
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Figure 7. (a) Average BER for the SCA algorithm; (b) Average BER for the RL-CAA algorithm.

The RL-CAA is giving much consistent BER under 10% while SCA is fluctuating around 10%.
The average throughput available at each gate for the SCA and the RL-CAA are shown in Figure 8a,b,
respectively. The RL-CAA provides better distributed and higher throughput performance (reaches
over 7 Mbps instantaneous throughput). The dissatisfaction probabilities, as experienced by the
individual nodes, are given in Figure 9a,b for the SCA and RL-CAA, respectively.
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Figure 8. (a) Average throughput for the SCA algorithm; (b) Average throughput for the RL-CAA algorithm.
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Figure 9. (a) Individual nodes dissatisfaction probabilities for the SCA algorithm; (b) Individual nodes
dissatisfaction probabilities for the RL-CAA algorithm; (c) Comparison of the RL-CAA and SCA based
total dissatisfaction probabilities averaged over time.

The RL-CAA is giving much consistent BER under 10% while SCA is fluctuating around 10%.
The average throughput available at each gate for the SCA and the RL-CAA are shown in Figure 8a,b,
respectively. The RL-CAA provides better distributed and higher throughput performance (reaches
over 7 Mbps instantaneous throughput).

The dissatisfaction probabilities, as experienced by the individual nodes, are given in Figure 9a,b
for the SCA and RL-CAA, respectively.The RL-CAA provides better QoS satisfaction as compared to
the SCA. This can also be seen from Figure 9c, where the total dissatisfaction probabilities averaged
over time for all nodes is presented for both algorithms. The RL-CAA provides, on average, a QoS
satisfaction to individual nodes 97.2% of the time, while the SCA can only provide, on average, QoS
satisfaction 79% of the time. These results consolidate the hypothesis that the proposed RL-CAA is
highly effective in traffic changing environment and can accommodate handovers.

4.3. Case C

In this scenario, eight nodes are moving while four are stationary. The average BER, as observed
at each gateway, is shown in Figure 10a,b for SCA and RL-CAA, respectively.
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Figure 10. (a) Average BER for the SCA algorithm; (b) Average BER for the RL-CAA algorithm.

The RL-CAA is giving a below 10% error rate on average and a few fluctuations giving an
error rate over 10%. The SCA’s BER is over 10% for all gateways. The RL-CAA is providing better
throughput per gateway as compared to SCA. For a short period, G4 experiences a throughput over
7 Mbps (Figure 11a,b). From Figure 12a,b, it is clear that RL-CAA provides better QoS satisfaction and
little dissatisfaction is observed. From Figure 12c, it can be observed that there are short periods when
the total system faces dissatisfaction. The RL-CAA in general provides better user QoS satisfaction.
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Figure 11. (a) Average throughput for the SCA algorithm; (b) Average throughput for the RL-CAA algorithm.
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SCA based total dissatisfaction probabilities averaged over time. 
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4.4. Case D

In this scenario, four users are mobile while eight users are stationary. The average BER values,
shown in Figure 13a,b, illustrate that the RL-CAA is consistent in providing a ~10% error rate while
SCA is giving slightly more than 10%. Since few nodes are mobile, less handovers are occurring,
therefore throughputs observed at each gateway are more consistent, as shown in Figure 14a,b.

The RL-CAA provides a better overall throughput, e.g., at G2 and G3 the average throughput is
over 3 Mbps. The individual dissatisfaction probability for the RL-CAA is almost zero (Figure 15b).
The SCA provides poor QoS and the nodes are dissatisfied. The total average system dissatisfaction
probabilities of the RL-CAA and the SCA are compared in Figure 15c. The overall dissatisfaction for
the RL-CAA is negligible.
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Figure 14. (a) Average throughput for the SCA algorithm; (b) Average throughput for the RL-CAA algorithm.

As previously discussed, the RL-CAA is a computationally expensive algorithm. We managed to
minimize its execution time in a traffic-changing environment by introducing a throughput margin for
the acceptable throughput. The lower the throughput margin, the higher the number of executions
of the RL-CAA in a given amount of time. There is a tradeoff between QoS requirements and
the acceptable throughput margin. The results presented above correspond to a 5% margin for
the throughput.
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Based on these simulated results, the proposed RL-CAA gives an overall better performance.
In terms of BER, the RL-CAA performs slightly better than the SCA; we can summarize that the
RL-CAA and the SCA exhibits similar behaviors. However, the RL-CAA gives better performance in
terms of throughput and dissatisfaction probabilities, which is the main aim in this work.

We analyze the results of the RL-CAA with different throughput margins. Case B is the most
dynamic with the highest mobility, handovers and changing traffic, hence it is the most challenging
case for the algorithm in terms of complexity, dynamism and robustness. The RL-CAA is analyzed only
for the QoS satisfaction for the case B, for 5%, 10%, 25% and 50% throughput margin. It is evident from
Figure 16a that the 5% margin gives the best individual nodes’ QoS satisfaction, i.e., the individual
dissatisfaction probability is lowest.
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This aspect can also be presented in the form of the total averaged dissatisfaction probability
of all the margin values, as plotted in Figure 16b. The 5% margin shows the lowest dissatisfaction
probability among all. The 50% throughput margin yields almost the same dissatisfaction probability
as the SCA (refer to Figures 8 and 9). The results show that for the presented experiments, the RL-CAA
yields the best results for channel allocation in a highly dynamic environment and that a 5% margin is
good tradeoff to achieve the benefits of unsupervised learning and making the WBAN as C-BAN.

To evaluate our power optimization algorithm, we take the example of Zone 1 with gateway G1.
We use three reference users located at A, B and C (Figure 2). These users are located at the edges of
their zones, which is also the edge of Zone 1. This is the closest point where these users can come into
the coverage radius of G1. The available transmission power ranges from −13 to 3 dB (Table 1). In a
conventional power assignment scheme, the maximum available power (3 dBm) is assigned to the base
station, i.e., the gateway. For simplicity, let’s only take the case of direct LOS; the users at location A, B
and C are receiving interference of−46.7688 dBm,−49.5413 dBm and−46.7688 dBm, respectively. With
our power optimization algorithm, the same users receive−51.266 dBm at location A,−54.0386 dBm at
location B, and−51.266 dBm at location C, when they are in direct LOS with G1. These results illustrate
that our power optimization algorithm improve the performance when co-channel interferences exist
and the users receive much less interference from neighboring zones. Our proposed algorithm sets
the transmission power to −1.4973 dBm for G1. This gives 4.479 dBm lower interference at these
reference points.

5. Conclusions

In this paper, a cognitive and dynamic channel algorithm named RL-CAA has been presented.
An optimized channel can give better throughput and QoS as shown by our simulation results. In static
environments, where the sensor nodes are not much mobile, computationally expensive algorithms
are not much required as can be seen in our simulation results for Case A. In highly demanding
environments, which can be due to the change of the throughput requirements on the run or due to
the sensor nodes’ frequent handovers, the RL-CAA is a better choice for C-BANs. The static channel
assignment algorithm cannot keep up with the requirements of volatile network conditions. However,
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the RL-CAA has high computational overheads, i.e., complexity, memory requirements, execution time,
etc. Hence, it is recommended to use it in an application where the throughput and QoS requirements
must not be compromised.

Our proposed RL-CAA presented here is evaluated for a specific health related application, but
it is largely application-independent. It can be used in other types of sensor networks applications
with little or no modification to the internal structure of the algorithm. Due to its unsupervised
learning approach, the RL-CAA is well suited for distributed WSNs where there is no need for a central
controller or coordinator to supervise spectrum sharing.

The power optimization algorithm gives better performance by reducing the transmission power
and better performance in terms of interference. The radio module is one key component which drains
the batteries of the sensor nodes. Our proposed power optimization algorithm saves up to 4.4973 dBm
in transmission power. Reducing the transmission power can increase the battery life of the sensor
nodes. The algorithm is most suited for base stations or gateway nodes, which are not mobile or not
changing their positions over longer periods. It is not computationally intensive so it is quite suitable
for resource-limited platforms. The downside of the algorithm is that it requires the path loss matrix to
be calculated and stored in memory before executing the power optimization algorithm.

6. Future Work

The work presented in this paper can be seen as a starting point towards the research and
development of C-BANs. This work can be extended toward more diverse scenarios and applications
of WBANs. Considering the pace of development in modern technologies, it is expected that the size
of the sensors will reduce dramatically. Hence, it will be possible in the future to carry or wear many
more sensor nodes on the body. Such dense deployment of the sensor nodes in a WBAN will create
new challenges in terms of spectrum management, e.g., interference, QoS, etc. Traditional approaches
will no longer be very effective to encounter such challenges. The cognitive capabilities in the C-BANs
will be suitable candidate to combat these challenges. Since most of the WBANs are proposed or
designed for the ISM band and with growing diverse services in this unlicensed band, more cognitive
functionalities will be required at various layers in the C-BANs.

Interference is a major hindrance for the QoS of the WBANs. With the introduction of
C-BANs, efficient and opportunistic spectrum management algorithms can be proposed. In this
work, inter-gateway interference avoidance has been proposed through power control. In the
future, inter-WBAN and beyond-WBAN interferences could be avoided with cognitive capabilities of
future C-BANs.

Channel modeling has been a tough subject for WBANs’ researchers. Off-body and body-to-body
channel modeling has been very little investigated in the literature. In this work, an off-body
mathematical channel model has been proposed based on the body postures and shadowing resulting
from various factors. A more comprehensive model of the off-body channel link based on the antenna
design and position could be a future investigation task.

Finally, the algorithm presented in this work (i.e., the RL-CAA) has been proposed for channel
allocation and simulation results show it as a promising candidate for future C-BANs. However,
hardware implementation and design considerations for resource constrained platforms (in particular
their computational power and energy conservation issues) remain to be investigated; for this, further
modifications and optimizations to the proposed approach would be needed to improve the matching
between the algorithms and architecture.
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