The Development of Sensor Applications in the Sectors of Energy and Environment in Italy, 1976–2015
Abstract
:1. Introduction
- (1)
- Novelty of the research topic discussed in the selected paper, in the Italian context;
- (2)
- Compliance of the research results reported in the selected paper with the best results published, contemporarily, at the international level;
- (3)
- Relevance of the specific theme discussed by the selected paper with respect to the Italian context.
2. Energy
3. Environment
4. Discussion
Conflicts of Interest
References and Notes
- ISI Web of Knowledge. Available online: https://apps.webofknowledge.com/ (accessed on 22 January 2017). Journals considered are: ACM Trans. Sens. Netw., Ad Hoc Sens. Wirel. Netw., Biosens. Bioelectron., IEEE Sens. J., Int. J. Distrib. Sens. Netw., Int. J. Sens. Netw., J. Sens., Mater. Sci. Eng. C Biomim. Mater. Sens. Syst.; Sens. Lett., Sens. Rev., Sensors, Sens. Actuators, Sens. Actuators A Phys., Sens. Actuators B Chem., Sens. Mater. The application scenarios have been considered selecting only the papers related to: “Sensor applications, arrays of sensors, multisensors, sensor networks, WSNs, e-noses, e-tongues”.
- Uribe-Pérez, N.; Hernández, L.; de la Vega, D.; Angulo, I. State of the Art and Trends Review of Smart Metering in Electricity Grids. Appl. Sci. 2016, 6, 68–92. [Google Scholar] [CrossRef]
- Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 211–220. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A. Electronic tongues and their analytical application. Anal. Bioanal. Chem. 2002, 373, 136–146. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency (EEA). Available online: http://www.eea.europa.eu/publications/signals-2000/page004.html (accessed on 22 January 2017).
- Cammi, C.; Assanelli, M. An Overview of Italy’s Energy Mix. Note de l’Ifri. 2012. Available online: http://www.connaissancedesenergies.org/sites/default/files/pdf-pt-vue/ifri_anoverviewofitalysenergymixifriversion13062012.pdf (accessed on 22 January 2017).
- De Marco, A.; Radice, A.; Hubby, R.N. BTU compensated coal powder flow measurement an ‘intelligent’ sensor. Instrum. Power Ind. Proc. 1991, 34, 69–95. [Google Scholar]
- Henningsen, C.; Polster, K.; Fruth, B.A.; Gross, D.W. Experience with an On-line Monitoring System for 400 kV XLPE Cables. Rec. IEEE Transm. Distrib. Conf. 1996, 515–520. [Google Scholar]
- Biagetti, T.; Sciubba, E. A first step towards unmanned intelligent process management: A procedure for the diagnostics and prognostics of energy conversion plants. Int. J. Appl. Thermodyn. 2002, 5, 85–99. [Google Scholar]
- Capozza, A.; D’Apice, B.; Gallo, D.; Landi, C.; Mauri, G.; Rignano, N. Measurement and control system architecture for electrical energy demand side management. IEEE Russia Power Tech. 2005. [Google Scholar] [CrossRef]
- Frattari, A.; Chiogna, M.; Mahdavi, A. Energetic implications of alternative lighting control strategies in an educational building. Sun, Wind and Architecture. In Proceedings of the 24th International Conference on Passive and Low Energy Architecture, Singapore, 22–24 November 2007; pp. 149–154. [Google Scholar]
- Paselli, M.; Petré, F.; Rousseaux, O.; Meynants, G.; Gyselinckx, B.; Engels, M.; Benini, L. A high-performance wireless sensor node for industrial control applications. In Proceedings of the 3rd International Conference on Systems, Cancun, Mexico, 13–18 April 2008; pp. 235–240. [Google Scholar]
- Corucci, F.; Anastasi, G.; Marcelloni, F. A WSN-based testbed for energy efficiency in buildings. In Proceedings of the IEEE Symposium on Computers and Communications, Kerkyra (Corfù), Greece, 28 June–1 July 2011; pp. 990–993. [Google Scholar]
- Fattoruso, G.; Di Palma, C.; De Vito, S.; Casola, V.; Di Francia, G. Wireless energy meters for distributed energy efficiency applications (2012) Lecture Notes in Electrical Engineering. In Sensors and Microsystems; Springer: Boston, MA, USA, 2012; pp. 199–203. [Google Scholar]
- Parise, G.; Martirano, L. Combined electric light and daylight systems ecodesign. In Proceedings of the IAS Annual Meeting (IEEE Industry Applications Society), Orlando, FL, USA, 9–13 October 2011. [Google Scholar]
- Cottone, P.; Gaglio, S.; Re, G.L.; Ortolani, M. User activity recognition for energy saving in smart homes. In Proceedings of the Sustainable Internet and ICT for Sustainability, SustainIT 2013, Palermo, Italy, 30–31 October 2013. [Google Scholar]
- Kelly, B.; Hollosi, D.; Cousin, P.; Leal, S.; Iglár, B.; Cavallaro, A. Application of acoustic sensing technology for improving building energy efficiency. Procedia Comput. Sci. 2014, 32, 661–664. [Google Scholar] [CrossRef]
- Mora, D.; Taisch, M.; Colombo, A.W.; Mendes, J.M. Service-oriented architecture approach for industrial “system of systems”: State-of-the-art for energy management. In Proceedings of the IEEE International Conference on Industrial Informatics (INDIN), Beijing, China, 25–27 July 2012; pp. 1246–1251. [Google Scholar]
- Brenna, M.; Falvo, M.C.; Foiadelli, F.; Martirano, L.; Massaro, F.; Poli, D.; Vaccaro, A. Challenges in energy systems for the smart-cities of the future. In Proceedings of the 2012 IEEE International Energy Conference and Exhibition, ENERGYCON, Florence, Italy, 9–12 September 2012; pp. 755–762. [Google Scholar]
- Viani, F.; Giarola, E.; Robol, F.; Oliveri, G.; Massa, A. Distributed monitoring for energy consumption optimization in smart buildings. In Proceedings of the 2014 IEEE Conference on Antenna Measurements and Applications (CAMA), Antibes, France, 16–19 November 2014. [Google Scholar]
- Iatauro, D.; Zinzi, M. Assessment of the thermal comfort conditions in an high efficiency energy renovation of an Italian school building. In Proceedings of the Indoor Air 2014 13th International Conference on Indoor Air Quality and Climate, Hong Kong, China, 7–12 July 2014; pp. 392–400. [Google Scholar]
- Revel, G.M.; Arnesano, M.; Pietroni, F.; Frick, J.; Reicher, M.; Schmitt, K.; Huber, J.; Ebermann, M.; Battista, U.; Alessi, F. Cost-effective technologies to control indoor air quality and comfort in energy efficient building retrofitting. Environ. Eng. Manag. J. 2015, 14, 1487–1494. [Google Scholar]
- Magno, M.; Polonelli, T.; Benini, L.; Popovici, E. A low cost, highly scalable wireless sensor network solution to achieve smart LED light control for green buildings. IEEE Sens. J. 2015, 15, 2963–2973. [Google Scholar] [CrossRef]
- Gabriele, T.; Pantoli, L.; Stornelli, V.; Chiulli, D.; Muttillo, M. Smart power management system for home appliances and wellness based on wireless sensors network and mobile technology. In Proceedings of the 2015 18th AISEM Annual Conference, Trento, Italy, 3–5 February 2015. [Google Scholar]
- Robol, F.; Viani, F.; Giarola, E.; Massa, A. Wireless sensors for distributed monitoring of energy-efficient smart buildings. In Proceedings of the Mediterranean Microwave Symposium, Lecce, Italy, 30 November–2 December 2015. [Google Scholar]
- Arsenault, T.; Achuthan, A.; Marzocca, P.; Grappasonni, C.; Coppotelli, G. Dynamic identification of wind turbine system under operational conditions using FBG transducers 53rd AIAA/ASME/ASCE/AHS/ASC Structures. In Proceedings of the Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Simani, S. Overview of modelling and advanced control strategies for wind turbine systems. Energies 2015, 8, 13395–13418. [Google Scholar] [CrossRef]
- Guerriero, P.; Vallone, G.; Primato, M.; Di Napoli, F.; Di Nardo, L.; D’Alessandro, V.; Daliento, S. A wireless sensor network for the monitoring of large PV plants. In Proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Ischia, Italy, 18–20 June 2014; pp. 960–965. [Google Scholar]
- Petrone, G.; Ramos-Paja, C.A.; Spagnuolo, G.; Vitelli, M. Granular control of photovoltaic arrays by means of a multi-output Maximum Power Point Tracking algorithm. Prog. Photovolt. Res. Appl. 2013, 21, 918–932. [Google Scholar] [CrossRef]
- Ronzino, A.; Osello, A.; Patti, E.; Bottaccioli, L.; Danna, C.; Lingua, A.; Acquaviva, A.; Macii, E.; Grosso, M.; Messina, G.; et al. The energy efficiency management at urban scale by means of integrated modelling. Energy Proced. 2015, 83, 258–268. [Google Scholar] [CrossRef]
- Di Noia, L.P.; Rizzo, R.; Vilaragut, L.M. Design of sensors for a Smart Power Substation. In Proceedings of the International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015; pp. 1442–1445. [Google Scholar]
- Andò, B.; Baglio, S.; Pistorio, A.; Tina, G.M.; Ventura, C. Sentinella: Smart Monitoring of Photovoltaic Systems at Panel Level. IEEE Trans. Instrum. Meas. 2015, 64, 2188–2199. [Google Scholar] [CrossRef]
- Pau, M.; Locci, N.; Muscas, C. A tool to define the position and the number of irradiance sensors in large PV plants. In Proceedings of the IEEE International Energy Conference (ENERGYCON), Cavtat, Croatia, 13–16 May 2014; pp. 374–379. [Google Scholar]
- Scognamiglio, A.; Adinolfi, G.; Graditi, G.; Saretta, E. Photovoltaics in net zero energy buildings and clusters: Enabling the smart city operation. Energy Procedia 2014, 61, 1171–1174. [Google Scholar] [CrossRef]
- Dede, A.; Giustina, D.D.; Rinaldi, S.; Ferrari, P.; Flammini, A.; Vezzoli, A. Smart meters as part of a sensor network for monitoring the low voltage grid. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015. [Google Scholar]
- O’Keeffe, A.E. Needs in Electronic Instrumentation for Air-Pollution Analysis. IEEE Trans. Geosci. Electron. 1970, 8, 145–148. [Google Scholar] [CrossRef]
- Liberti, A. Modern methods for air pollution monitoring. Pure Appl. Chem. 1975, 44, 519–534. [Google Scholar] [CrossRef]
- Mascini, M.; Liberti, A. Ion selective electrodes for measurements in fresh waters. Sci. Total Environ. 1984, 37, 121–128. [Google Scholar] [CrossRef]
- Carotta, M.C.; Dallara, C.; Martinelli, G.; Passari, L.; Camanzi, A. CH4 thick-film gas sensors: Characterization method and theoretical explanation. Sens. Actuators B Chem. 1991, 3, 191–196. [Google Scholar] [CrossRef]
- Zemel, J.N.; Keramati, B.; Spivak, C.W.; D’Amico, A. Non-fet chemical sensors. Sens. Actuators 1981, 1, 427–473. [Google Scholar] [CrossRef]
- Sberveglieri, G.; Groppelli, S.; Coccoli, G. Radio frequency magnetron sputtering growth and characterization of indium-tin oxide (ITO) thin films for NO2 gas sensors. Sens. Actuators 1988, 15, 235–242. [Google Scholar] [CrossRef]
- Di Giulio, M.; Micocci, G.; Rella, R.; Siciliano, P.; Tepore, A. Properties of reactively sputtered tin oxide films as CO gas sensors. Sens. Actuators B Chem. 1995, 23, 193–195. [Google Scholar] [CrossRef]
- Mari, C.M.; Beghi, M.; Pizzini, S.; Faltemier, J. Electrochemical solid-state sensor for SO2 determination in air. Sens. Actuators B Chem. 1990, 2, 51–55. [Google Scholar] [CrossRef]
- Narducci, D.; Ornaghi, A.; Mari, C.M. CO determination in air by YSZ-based sensors. Sens. Actuators B Chem. 1994, 19, 566–568. [Google Scholar] [CrossRef]
- Santos, J.; Serrini, P.; O’Beirn, B.; Manes, L. A thin film SnO2 gas sensor selective to ultra-low NO2 concentrations in air. Sens. Actuators B Chem. 1997, 43, 154–160. [Google Scholar] [CrossRef]
- Nicoletti, S.; Dori, L.; Cardinali, G.C.; Parisini, A. Gas sensors for air quality monitoring: Realization and characterization of undoped and noble metal-doped SnO2 thin sensing films deposited by the pulsed laser ablation. Sens. Actuators B Chem. 1999, 60, 90–96. [Google Scholar] [CrossRef]
- Capone, S.; Epifani, M.; Quaranta, F.; Siciliano, P.; Vasanelli, L. Application of a semiconductor sol-gel sensor array to the discrimination of pollutants in air. Thin Solid Films 2001, 391, 314–319. [Google Scholar] [CrossRef]
- Consales, M.; Pisco, M.; Pilla, P.; Cutolo, A.; Buosicolo, A.; Viter, R.; Smyntyna, V.; Giordano, M.; Cusano, A. Room temperature detection of chemical pollutants by SnO2-based optical fiber sensors. In Proceedings of the International Society for Optical Engineering (SPIE), Prague, Czech Republic, 12–16 April 2007; p. 6585. [Google Scholar]
- Roncaglia, A.; Elmi, I.; Dori, L.; Rudan, M. Adaptive K-NN for the Detection of Air Pollutants with a Sensor Array. IEEE Sens. J. 2004, 4, 248–256. [Google Scholar] [CrossRef]
- Yang, B.; Carotta, M.C.; Faglia, G.; Ferroni, M.; Guidi, V.; Martinelli, G.; Sberveglieri, G. A hybrid neural network based pattern-recognition engine for out-door electronic nose application. Intell. Eng. Syst. Through Artif. Neural Netw. 1996, 6, 449–457. [Google Scholar]
- Di Natale, C.; Davide, F.A.M.; D’Amico, A.; Nelli, P.; Groppelli, S.; Sberveglieri, G. An electronic nose for the recognition of the vineyard of a red wine. Sens. Actuators B Chem. 1996, 33, 83–88. [Google Scholar] [CrossRef]
- Suriano, D.; Rossi, R.; Alvisi, M.; Cassano, G.; Pfister, V.; Penza, M.; Trizio, L.; Brattoli, M.; Amodio, M.; de Gennaro, G. A portable sensor system for air pollution monitoring and malodours olfactometric control. Lect. Notes Electr. Eng. 2012, 109, 87–92. [Google Scholar]
- Capezzuto, L.; Abbamonte, L.; De Vito, S.; Massera, E.; Formisano, F.; Fattoruso, G.; Di Francia, G.; Buonanno, A. A maker friendly mobile and social sensing approach to urban air quality monitoring. In Proceedings of the 13th IEEE SENSORS Conference, Valencia, Spain, 2–5 November 2014. [Google Scholar] See also: Di Francia, G. Tecnologia dei nodi multisensoriali. In Le Innovazioni Del Prossimo Futuro, 9th ed.; AIRI, Ed.; Agra Editrice: Roma, Italy, 2016; pp. 122–126. [Google Scholar]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Calibration of a cluster of low-cost sensors for the measurement of air pollution in ambient air. In Proceedings of the IEEE Sensors, Valencia, Spain, 2–5 November 2014; pp. 21–24. [Google Scholar]
- De Vito, S.; Di Francia, G.; Piga, M.; Martinotto, L. Performance analysis of e-nose on-field calibration for city air pollution quantitative monitoring. In Proceedings of the IEEE Sensors, Lecce, Italy, 26–29 October 2008; pp. 427–429. [Google Scholar]
- De Vito, S.; Piga, M.; Martinotto, L.; Di Francia, G. CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization. Sens. Actuators B Chem. 2009, 143, 182–191. [Google Scholar] [CrossRef]
- Penza, M.; Suriano, D.; Villani, M.G.; Spinelle, L.; Gerboles, M. Towards air quality indices in smart cities by calibrated low-cost sensors applied to networks. In Proceedings of the IEEE Sensors, Valencia, Spain, 2–5 November 2014; pp. 2012–2017. [Google Scholar]
- Esposito, E.; de Vito, S.; Salvato, M.; Bright, V.; Jones, R.L.; Popoola, O. Dynamic neural network architectures for on field stochastic calibration of indicative low cost air quality sensing systems. Sens. Actuators B Chem. 2016, 231, 701–713. [Google Scholar] [CrossRef]
- Columba, M.; Costanzo, S.; Pietrafesa, M.; Rizzo, G. Annotations on the applicability to residential buildings of the E.U. ventilation rates for acceptable IAQ. Riforma Medica 1994, 109 (Suppl. 2), 39–44. [Google Scholar]
- La Gennusa, M.; Rizzo, G.; Scaccianoce, G.; Nicoletti, F. Control of indoor environments in heritage buildings: Experimental measurements in an old Italian museum and proposal of a methodology. J. Cult. Herit. 2005, 6, 147–155. [Google Scholar] [CrossRef]
- Di Francesco, F.; Lazzerini, B.; Marcelloni, F.; Pioggia, G. An electronic nose for odour annoyance assessment. Atmos. Environ. 2001, 35, 1225–1234. [Google Scholar] [CrossRef]
- Zampolli, S.; Elmi, I.; Ahmed, F.; Passini, M.; Cardinali, G.C.; Nicoletti, S.; Dori, L. An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sens. Actuators B Chem. 2004, 101, 39–46. [Google Scholar] [CrossRef]
- Available online: http://www.sacmi.it/System/00/01/59/15906/633935380199697500_1.pdf (accessed on 22 January 2017).
- Penza, M.; Suriano, D.; Cassano, G.; Rossi, R.; Alvisi, M.; Pfister, V.; Trizio, L.; Brattoli, M.; Amodio, M.; de Gennaro, G. A portable gas sensor system for environmental monitoring and malodours control: Data assessment of an experimental campaign. In Proceedings of the AIP Conference, New York, NY, USA, 2–5 May 2011; Volume 1362, pp. 234–235. [Google Scholar]
- Massera, E.; de Vito, S.; Formisano, F.; Buonanno, A.; Alfano, B.; Di Francia, G.; Delli Veneri, P.; Nisti, A.; Dini, F. SNIFFI: A portable development gas sensing embedded system. In Proceedings of the 2015 18th AISEM Annual Conference (AISEM), Trento, Italy, 3–5 February 2015. [Google Scholar]
- Di Natale, C.; Macagnano, A.; Davide, F.; D’Amico, A.; Legin, A.; Vlasov, Y.; Rudnitskaya, A.; Selezenev, B. Multicomponent analysis on polluted waters by means of an electronic tongue. Sens. Actuators B Chem. 1997, 44, 423–428. [Google Scholar] [CrossRef]
- Serra, G.; Schirone, A.; Boniforti, R. Fibre-optic pH sensor for sea-water monitoring using a single dye. Anal. Chim. Acta 1990, 232, 337–344. [Google Scholar] [CrossRef]
- Fiore, M.; Brenci, M.; Kozlowski, J. Fiber optic sensor to detect nitrite and nitrate in water. In Proceedings of the International Society for Optical Engineering (SPIE), Munich, Germany, 16 June 1997; pp. 138–143. [Google Scholar]
- Pisco, M.; Consales, M.; Addio, S.D.; Campopiano, S.; Cusano, A.; Viter, R.; Smyntyna, V.; Giordano, M. Simultaneous temperature and ammonia detection in water by tin-dioxide optoelectronic sensor. Proceedings of IEEE Sensors, Orange County, CA, USA, 31 October–3 November 2005; pp. 881–884. [Google Scholar]
- Campanella, L.; Beone, T.; Sammartino, M.P.; Tomassetti, M. Determination of phenol in wastes and water using an enzyme sensor. Analyst 1993, 118, 979–986. [Google Scholar] [CrossRef]
- Campanella, L.; Cipriani, P.; Martini, T.M.; Sammartino, M.P.; Tomassetti, M. New enzyme sensor for sulfite analysis in sea and river water samples. Anal. Chim. Acta 1995, 305, 32–41. [Google Scholar] [CrossRef]
- Agresta, A.; Fattoruso, G.; Lanza, B.; Fabbricino, M.; Trifuoggi, M.; De Vito, S.; Di Francia, G. Applying numerical models and optimized sensor networks for drinking water quality control. Proced. Eng. 2015, 119, 918–926. [Google Scholar] [CrossRef]
- Adamo, F.; Attivissimo, F.; Carducci, C.G.C.; Lanzolla, A.M.L. A smart sensor network for sea water quality monitoring. IEEE Sens. J. 2015, 15, 2514–2522. [Google Scholar] [CrossRef]
- Tonacci, A.; Corda, D.; Tartarisco, G.; Pioggia, G.; Domenici, C. A Smart Sensor System for Detecting Hydrocarbon Volatile Organic Compounds in Sea Water. Clean Soil Air Water 2015, 43, 147–152. [Google Scholar] [CrossRef]
- Gabrielli, L.; Pizzichini, M.; Spinsante, S.; Squartini, S.; Gavazzi, R. Smart water grids for smart cities: A sustainable prototype demonstrator. In Proceedings of the European Conference on Networks and Communications (EuCNC), Bologna, Italy, 23–26 June 2014. [Google Scholar]
- De Vito, S.; Fattoruso, G.; Buonanno, A.; Lanza, B.; Capezzuto, L.; Tebano, C.; Salvato, M.; Agresta, A.; Ambrosino, F.; Formisano, F.; et al. An integrated infrastructure for distributed waste water quality monitoring and decision support. In Proceedings of the 2015 18th AISEM Annual Conference (AISEM), Trento, Italy, 2–5 February 2015. [Google Scholar]
- Carmona, E.N.; Sberveglieri, V.; Ponzoni, A.; Zappa, D.; Pulvirenti, A. Small Sensor Sistem S3 device to control the microbial contamination in water. In Proceedings of the International Conference on Sensing Technology (ICST), Auckland, New Zealand, 8–10 December 2015; pp. 246–250. [Google Scholar]
- Guanais Goncalves, C.; Dini, F.; Martinelli, E.; Catini, A.; Lundström, I.; Paolesse, R.; Di Natale, C. Detection of diverse potential threats in water with an array of optical sensors. Sens. Actuators B Chem. 2015, 236, 997–1004. [Google Scholar] [CrossRef]
- Paloscia, S.; Macelloni, G.; Pampaloni, P.; Santi, E.; Koike, T. Soil moisture measurements at global scale using active and passive microwave sensors. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 24–28 July 2000; pp. 1241–1243. [Google Scholar]
- Saiano, F.; Oddo, G.; Scalenghe, R.; La Mantia, T.; Ajmone-Marsan, F. DRIFTS sensor: Soil carbon validation at large scale (Pantelleria, Italy). Sensors 2013, 13, 5603–5613. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Pollice, A.; Diago, M.-P.; Oliveira, M.; Millan, B.; Bitella, G.; Amato, M.; Tardaguila, J. Using an automatic resistivity profiler soil sensor on-the-go in precision viticulture. Sensors 2013, 13, 1121–1136. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Francia, G. The Development of Sensor Applications in the Sectors of Energy and Environment in Italy, 1976–2015. Sensors 2017, 17, 793. https://doi.org/10.3390/s17040793
Di Francia G. The Development of Sensor Applications in the Sectors of Energy and Environment in Italy, 1976–2015. Sensors. 2017; 17(4):793. https://doi.org/10.3390/s17040793
Chicago/Turabian StyleDi Francia, Girolamo. 2017. "The Development of Sensor Applications in the Sectors of Energy and Environment in Italy, 1976–2015" Sensors 17, no. 4: 793. https://doi.org/10.3390/s17040793
APA StyleDi Francia, G. (2017). The Development of Sensor Applications in the Sectors of Energy and Environment in Italy, 1976–2015. Sensors, 17(4), 793. https://doi.org/10.3390/s17040793