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Abstract: This paper presents a novel method for identifying three varieties (Taikong 9, Tainan 11,
and Taikong 14) of foundation paddy seeds. Taikong 9, Tainan 11, and Taikong 14 paddy seeds are
indistinguishable by inspectors during seed purity inspections. The proposed method uses image
segmentation and a key point identification algorithm that can segment paddy seed images and
extract seed features. A back propagation neural network was used to establish a classifier based on
seven features that could classify the three paddy seed varieties. The classification accuracies of the
resultant classifier for varieties Taikong 9, Tainan 11, and Taikong 14 were 92.68%, 97.35% and 96.57%,
respectively. The experimental results indicated that the three paddy seeds can be differentiated
efficiently using the developed system.
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1. Introduction

Paddy is one of the main crops in Taiwan and can be planted twice each year. Purity analysis
is crucial for nurseries and farmers, and purity is determined by paddy variety inspection. Purity is
defined by professional inspectors according to the paddy’s appearance, shape, and color. However,
there are approximately 500 cases (every case including approximately 4000 paddy seeds) of incorrect
purity analyses every year in Taiwan. The jobs of inspection burden the inspectors with loading.
Because healthy seedlings from seedling propagation stations (nurseries) are used to cultivate fields of
paddy, seed quality is a critical factor when growing seedlings.

Image processing is widely used to inspect grain. MousaviRad et al. [1] used a scanner to capture
images of five Iranian rice kernel varieties and then extracted 41 shape features using image processing.
The k-nearest neighbors algorithm, a support vector machine, and a backpropagation neural network
(BPNN) were used for classification. The classifications of the support vector machine and BPNN
were favorable, with accuracies of 97% and 96%, respectively. Mebatsion et al. [2] used a least-squares
classifier to identify five varieties of grain through their shape and color features, which were extracted
using image processing. The average accuracy of classification was 99.6%. Kuo et al. [3] used image
processing and sparse-representation-based classification to distinguish between 30 varieties of rice
grains. However, the appearances of these rice grains apparently differ.

Machine learning has been widely used in the establishment of classification mechanisms.
Lee et al. [4] used a CCD (charge-coupled device) camera to capture seven varieties of grain kernel
and extract 10 shape features and 4 color features using image processing. A BPNN was established
in four forms with features identified using principal component analysis and linear discriminant
analysis (LDA). The performance of the BPNN with one hidden layer and features in six dimensions
(as identified using LDA) was favorable and its classification accuracy was 95%. Sun et al. [5] compared
the advantages of a BPNN and a learning vector quantization network (LVQN) for the identification
of thermal fuses. The results demonstrated that a BPNN with 20 hidden layer nodes, a learning rate
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of 0.01, and a tangent sigmoid transfer function exhibited good classification performance with a
classification accuracy of 98.0%. However, the LVQN with 160 hidden layer nodes and a learning rate
of 0.1 had 91% accuracy. Additionally, Huang [6] presented a BPNN classifier for sorting the quality of
areca nuts according to geometric features. Zhang et al. [7] proposed an improved probabilistic neural
network for classifying remote-sensing images. Subsequently, Zhang et al. [8] used a fitness-scaled
chaotic artificial bee colony (FSCABC) algorithm and feedforward neural network (FNN) to classify
fruit. The results showed that the accuracy of the FSCABC–FNN was higher than that of the genetic
algorithm–FNN (84.8%), particle swarm optimization–FNN (87.9%), artificial bee colony algorithm
(85.4%), and kernel support vector machine (88.2%).

The rice grains examined in previous studies [1–4] have different appearances and are more
distinguishable than the Taikong 9 (TK9), Tainan 11 (TN11), and Taikong 14 (TK14) seeds, which were
the focus of the present study. TK9, TN11, and TK14 are so similar on appearance that they are difficult
to identify (Figure 1). Therefore, the purpose of this study was to establish an algorithm for recognizing
these three paddy seeds. Specifically, the geometric features of the seeds were to be extracted and then
used to differentiate between the three paddy seed varieties (TK9, TN11, and TK14).
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2. Materials and Methods

2.1. Image Capture System and Experimental Samples

The image capture system developed in this study comprised a USB CCD color camera
(DFK-21BU04, ImagingSource Inc., Taipei, Taiwan), a low-distortion lens (ML-MC25HR, MORITEX
Inc., Saitama, Japan), a shadowless lamp (MSRL-CW33, MORITEX Inc.), and a computer (Intel Core
i5-4460 CPU, 3.26 GB of RAM, Santa Clara, CA, USA). It captured RGB color images measuring
640 × 480 pixels in the bitmap format. The CCD camera was employed for image acquisition with
28,200 lx and the work distance was 11.0 cm. Image processing software was developed using Visual
Basic 6.0 and the Matrox Imaging Library (MIL) 8.0. Paddy seeds (which were foundation seeds in
2014)—varieties TK9, TN11, and TK14 (Figure 1)—were provided by the Taiwan Seed Improvement
and Propagation Station.

2.2. Image Segmentation

Segmenting of the paddy seed images is an essential procedure once the features of the paddy
seeds have been extracted. The segmentation steps and results (Figure 2) are thus described:

Step 1 Red and hue band images are obtained from the original image.
Step 2 Red and hue band images are treated using a smoothing operator and converted into binary

images with an optimum threshold value using Otsu’s method [9].
Step 3 Complete paddy seed binary images are obtained using the OR logic operator and filling

operator on the hue and red binary images, respectively.
Step 4 The entire segmented image is obtained using the AND operator on the binary and

original images.
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seed. AB, CD, CO, DO, PଵPଶ, PଷPସ, and O were identified according to a contour-following algorithm 
[9]. The features of the seeds are defined as follows: 

˙ The lemma, palea, glume, and chaff tip of a seed are illustrated in Figure 4. 
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Figure 2. Segmentation procedure.

2.3. Feature Extraction

Key lines (Figure 3) defined by the contour of a seed are related to the geometric features of
the seed. AB, CD, CO, DO, P1P2, P3P4, and O were identified according to a contour-following
algorithm [9]. The features of the seeds are defined as follows:

• The lemma, palea, glume, and chaff tip of a seed are illustrated in Figure 4.
• AB is the longest line segment in the seed contour.
• O is the midpoint of AB.
• CD is the perpendicular bisector of AB, and thus O is the intersection of AB and CD.
• CO crosses the lemma.
• DO crosses the palea.
• P1P2 is the perpendicular line crossing the 1/5 position of AB.
• P3P4 is the perpendicular line crossing the 4/5 position of AB.
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Figure 4. Lemma, palea, glume, and chaff tip of the seed.

In this study, several special geometric features were extracted to identify seed varieties TK9,
TN11, and TK14. Two concaves (RK and RL) to the side of the chaff tip are indicated by red curves
in Figure 5. Points L, Lu, Ld, K, Ku, and Kd (Figure 6) on the concaves were crucial for feature
extraction. The hull points Ld, Lu, Ku, and Kd of the seed contour were obtained using the convex hull
algorithm [10].
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Geometric features analysis was employed extensively for classification. In this study, seven
features were extracted using the developed algorithm. The feature definition and extraction method
proceeded as follows:

(1) AB is the longest line segment on the seed contour.
(2) CD is the perpendicular bisector of AB.
(3) The chaff-tip width (LK) is as illustrated in Figure 7.
(4) The height (hc = max(hi)) of the chaff tip is the maximum height of the chaff tip from LK, where di

is the distance between a point on the chaff-tip contour and LK, as illustrated in Figure 7.
(5) The depth dK is the maximum distance between KuKd and the concave RK (dK⊥KuKd),

as indicated in Figure 8. dK is obtained when dK = max(di) at point K.
(6) The depth dL can be similarly computed, as shown in Figure 8.
(7) The interior angle φ is described by KKd and LLd and illustrated in Figure 9.
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2.4. Classifier

In this study, geometric features were employed to differentiate between three paddy seed
varieties: TK9, TN11, and TK14. A total of seven geometric features (AB, the perpendicular bisector
CD, the chaff-tip width LK and height, the depths dK and dL, and the interior angle φ) were applied in
a BPNN [11]. The BPNN classifier consisted of input, hidden, and output layers. The input features
were normalized between 0 and 1. The output layer was composed of nodes related to the three
categories: TK9, TN11, and TK14. The number of nodes in the hidden layer (nh) was calculated using
the following formula [12]:

nh = ni + no + k

where ni and no are the number of input and output nodes, respectively, k = −2, 0, 2. The structure of
the BPNN classifier is illustrated in Figure 10, wherein Wij and bij are the weight and bias of the input
layer in the hidden layer and Wjk and bjk are the weight and bias of the hidden layer in the output
layer. Xi, Hj, and Ok denote the input layer, hidden layer, and output layer values, respectively.

After its structure was determined, the BPNN classifier was trained. The purpose of BPNN
training is to identify relationships between patterns composed of features in each variety of paddy
seed. During training, the BPNN classifier analyzed training samples at a given learning rate, and
its weights and biases were adjusted until the mean squared error was less than the tolerance error,
which indicated that the BPNN classifier had completed training and its weights and biases were
stable. In this study, the BPNN classifier analyzed 500 training samples of each variety at a learning
rate of 0.01 before training was complete, as defined by a tolerance error of 0.01.
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3. Results and Discussion

The identifying software for the paddy seeds was developed using Visual Basic 6.0 and MIL 8.0.
The functions of software include file operations (acquire, load, and save images), image analysis
operations (i.e., binary operator, hole-filling, remove noises using closing, opening, and smoothing),
the feature extraction, and BPNN. The variety of paddy can be identified by the software computation
accurately and rapidly.

In this study, 1,156 paddy seeds of variety TK9, 1,180 paddy seeds of variety TN11, and 1170
paddy seeds of variety TK14 were used as experimental samples. Of these, 500 seeds of each variety
were used as training samples to establish the BPNN classifier, and the remainder was used to test the
BPNN classifier. Overfitting often occurs when the training set contains some incorrect samples in
the BPNN. However, because the varieties of seed in the training samples were known prior to the
training process, overfitting was unlikely to occur here.
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The classification accuracies of the BPNN are presented in Tables 1 and 2, obtained using the
TK9, TN11, and TK14 test samples when the number of nodes in the hidden layer was 8, 10, or 12.
The accuracy of the BPNN was highest when the number of nodes was 10; nevertheless, the results
were also mostly accurate when there were 8, 10, or 12 hidden nodes. We also compared the BPNN
with a Bayesian classifier [9] using the same samples and features, the results of which are presented
in Table 2. The BPNN’s accuracy was slightly higher than that of the Bayesian classifier for samples
TN11 and TK14, but the Bayesian classifier performed favorably for samples TK9. Thus, the BPNN
and Bayesian classifiers have the same classification ability for the TK9, TN11, and TK14 varieties.
As mentioned previously, the features employed in this study can classify the paddy varieties using
different classifiers.

The accuracy of the BPNN when presented with variety TK9 was the lowest, probably because
the correlation between the adopted features and the TK9 seed’s contour was not sufficiently strong in
this study.

Table 1. Results using BPNNs.

nh = 8

Variety TK9 TN11 TK14

TK9 606 4 15
TN11 23 665 15
TK14 27 11 640

Classification Accuracy (%) 92.38 97.79 95.52

Average accuracy (%) 95.26

nh = 10

Variety TK9 TN11 TK14

TK9 608 5 13
TN11 21 662 10
TK14 27 13 647

Classification Accuracy (%) 92.68 97.35 96.57

Average accuracy (%) 95.56

nh = 12

Variety TK9 TN11 TK14

TK9 608 5 12
TN11 21 662 15
TK14 27 13 643

Classification Accuracy (%) 92.68 97.35 95.97

Average accuracy (%) 95.36

Table 2. Results using Bayes classifier.

Variety TK9 TN11 TK14

TK9 613 8 10
TN11 25 651 10
TK14 18 21 646
Total 656 680 670

Classification accuracy (%) 93.44 95.7 96.4

Average accuracy (%) 95.21

4. Conclusions

In this study, we developed a novel method for classifying three varieties (Taikong 9, Tainan 11,
and Taikong 14) of foundation paddy seeds. The shape features of the seeds were obtained to establish
a BPNN classifier. The test results show that three varieties of foundation paddy seeds can be classified
efficiently with this method. In a future study, we intend to further refine the classification algorithm
or use other classifiers to increase the seed classification accuracy.



Sensors 2017, 17, 809 8 of 8

Acknowledgments: The authors thank the Taiwan Seed Improvement and Propagation Station (Contract No.
103B051-B) and the Ministry of Science and Technology, Taiwan (Contract No. MOST 105-2313-B-005-023) for
financially supporting this research.

Author Contributions: Huang K.Y. had the initial idea to develop a sorting system for Chinese cabbage seeds.
Huang K.Y. and Chien M.C. developed the algorithms and classifier. Chien M.C. wrote the programs and
performed the experiment. Huang, K.Y. contributed to the paper organization and added technical writing to the
final manuscript.

References

1. MousaviRad, S.J.; Rezaee, K.; Nasri, K. A new method for identification of Iranian rice kernel varieties using
optimal morphological features and an ensemble classifier by image processing. Majlesi J. Multimedia Process.
2012, 1, 1–8.

2. Mebatsion, H.K.; Paliwal, J.; Jayas, D.S. Automatic classification of non-touching cereal grains in digital
images using limited morphological and color features. Comput. Electron. Agric. 2012, 90, 99–105. [CrossRef]

3. Kuo, T.Y.; Chung, C.L.; Chen, S.Y.; Lin, H.A.; Kuo, Y.F. Identifying rice grains using image analysis and
sparse-representation-based classification. Comput. Electron. Agric. 2016, 127, 716–725. [CrossRef]

4. Lee, C.Y.; Yan, L.; Wang, T.F.; Lee, S.R.; Park, C.W. Intelligent classification methods of grain kernels using
computer vision analysis. Meas. Sci. Technol. 2011, 22, 64006–64012. [CrossRef]

5. Sun, T.H.; Tien, F.C.; Kuo, R.J. Automated thermal fuse inspection using machine vision and artificial neural
networks. J. Intell. Manuf. 2016, 27, 639–651. [CrossRef]

6. Huang, K.Y. Detection and classification of areca nuts with machine vision. Comput. Math. Appl. 2012, 64,
739–746. [CrossRef]

7. Zhang, Y.; Wu, L.; Neggaz, N.; Wang, S.; Wei, G. Remote-sensing image classification based on an improved
probabilistic neural network. Sensors 2009, 9, 7516–7539. [CrossRef] [PubMed]

8. Zhang, Y.; Wang, S.; Ji, G.; Phillips, P. Fruit classification using computer vision and feedforward neural
network. J. Food Eng. 2014, 143, 167–177. [CrossRef]

9. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Prentice Hall: Upper Saddle River, NJ,
USA, 2002.

10. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Finding the convex hull. In Introduction to Algorithms,
3rd ed.; The MIT Press: London, UK, 2009.

11. Hagan, M.T.; Demuth, H.B.; Beale, M.H.; Jesus, O.D. Neural Network Design, 2nd ed.; eBook; Oklahoma State
University: Stillwater, OK, USA, 2014.

12. Rocco, F.; Governi, L.; Volpe, Y. ANN-based method for olive Ripening Index automatic prediction.
J. Food Eng. 2010, 101, 318–328.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compag.2012.09.007
http://dx.doi.org/10.1016/j.compag.2016.07.020
http://dx.doi.org/10.1088/0957-0233/22/6/064006
http://dx.doi.org/10.1007/s10845-014-0902-y
http://dx.doi.org/10.1016/j.camwa.2011.11.041
http://dx.doi.org/10.3390/s90907516
http://www.ncbi.nlm.nih.gov/pubmed/22400006
http://dx.doi.org/10.1016/j.jfoodeng.2014.07.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Image Capture System and Experimental Samples 
	Image Segmentation 
	Feature Extraction 
	Classifier 

	Results and Discussion 
	Conclusions 

