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Abstract: Modern cars continue to offer more and more functionalities due to which they need a
growing number of commands. As the driver tries to monitor the road and the graphic user interface
simultaneously, his/her overall efficiency is reduced. In order to reduce the visual attention necessary
for monitoring, a gesture-based user interface is very important. In this paper, gesture recognition for
a vehicle through impulse radio ultra-wideband (IR-UWB) radar is discussed. The gestures can be
used to control different electronic devices inside a vehicle. The gestures are based on human hand
and finger motion. We have implemented a real-time version using only one radar sensor. Studies on
gesture recognition using IR-UWB radar have rarely been carried out, and some studies are merely
simple methods using the magnitude of the reflected signal or those whose performance deteriorates
largely due to changes in distance or direction. In this study, we propose a new hand-based gesture
recognition algorithm that works robustly against changes in distance or direction while responding
only to defined gestures by ignoring meaningless motions. We used three independent features,
i.e., variance of the probability density function (pdf) of the magnitude histogram, time of arrival
(TOA) variation and the frequency of the reflected signal, to classify the gestures. A data fitting
method is included to differentiate between gesture signals and unintended hand or body motions.
We have used the clustering technique for the classification of the gestures. Moreover, the distance
information is used as an additional input parameter to the clustering algorithm, such that the
recognition technique will not be vulnerable to distance change. The hand-based gesture recognition
proposed in this paper would be a key technology of future automobile user interfaces.

Keywords: gesture recognition; IR-UWB radar; unsupervised learning; motion recognition; radar
sensor; distance compensation; user interface

1. Introduction

Hand-based gesture recognition is one of the hottest research fields, since it is of great significance
in designing artificially intelligent human computer interfaces. Driving a modern car is an extremely
difficult task [1]. A driver has to perform multi-tasking, such as observing the road, monitoring the
vehicle’s status, Global Positioning System (GPS) monitoring, operating numerous electronic and
mechanical devices and using audio entertainment. The gesture interface inside a car can assist the
driver to perform various tasks. Different sensors have been used for gesture recognition, such as
camera, radio-frequency identification (RFID), data-gloves, etc. [2–9]. Cameras, however, have a
number of line of sight-related challenges that may prevent gesture recognition from being effective.
For example, poorly-lit environments may have a negative impact on the image quality and in
turn degrade the performance of gesture detection through the camera. The other main issue with
camera-based gesture recognition is privacy [10]. An alternate method for gesture recognition is
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glove-based sensors. The data-glove-based methods use sensor devices for digitizing hand and finger
motions into multi-parametric data [5]. The extra sensors make it easy to collect hand movement and
configuration. However, the devices are quite expensive and bring much cumbersome experience
to the users [6]. The environment inside a vehicle is usually dark at night, and it is inconvenient
to wear something during driving; therefore, the above-mentioned techniques are not suitable for
vehicular applications.

To overcome the above problems, radar-based gesture recognition can be used as a user interface
inside a vehicle. Radar-based gesture recognition techniques have the advantage of better performance
in dark environments, do not have privacy issues and do not require wearing sensors. In [11–15],
the researchers have used Doppler radar sensors for gesture recognition. Molchanov et al. [11] used
multiple sensors, including a depth camera and Doppler, for gesture recognition inside a vehicle.
Portable radar sensors for gesture recognition in smart home applications are discussed in [12].
Kim Youngwook et al. [13] have performed hand-based gesture recognition using Doppler radar using
machine learning techniques; however, the results are too dependent on the orientation and distance
between hand and radar.

In addition to Doppler radars, UWB radars have been in the spotlight in recent years. There are
many advantages of using IR-UWB radar, such as high range resolution and robustness to multipath
due to the extremely wide bandwidth [16]. The major application areas of UWB radar technology are
sensors and communications, localization, tracking and biomedical research [17]. IR-UWB sensor has
been used in various radar applications, such as non-invasive vital sign monitoring [18–20], multiple
object counting [21] and direction recognition of moving targets [22], and it has the ability to detect
stationary or slowly moving targets [23]. However, there is very little reference work available in
the literature about gesture recognition based on IR-UWB radar sensors. Ren Nan et al. [24] have
presented an algorithm for big gesture recognition through IR-UWB radar, but the gestures detected
in that work were simply based on the position difference of the hand and may not be useful in
practical applications. Junbum Park et al. [25] used an IR-UWB radar sensor for detecting hand-based
gestures through machine learning techniques. Although the results show high accuracy, there was
an overfitting problem, and the gestures testing in a real environment showed much lower accuracy.
Furthermore, there is no method included for the distance compensation or robustness of the algorithm
to a change in distance or the orientation of the hand.

The main problem noted in the past radar-based gesture recognition algorithms was that they
were vulnerable to distance and orientation; and the feature extraction through machine learning
caused the overfitting problem in some cases, which made them error prone. To overcome these
problems, we have presented a robust algorithm for hand-based gesture recognition using an IR-UWB
radar sensor in this paper. We do not use the completely raw data as an input to the classifier
in order to avoid the overfitting problem. We extracted three robust features, i.e., the variance of
the pdf of the magnitude histogram, frequency and the variance of time of arrival (TOA) from the
pre-processed signal reflected from the human hand. The features extracted were robust and showed
better performance even if we changed the orientation of the hand. After the feature extraction,
we used the K-means clustering algorithm for classification of the gestures. In order to make the
algorithm robust against the distance and orientation variation, we have integrated the TOA-based
distance information into the clustering algorithm.

In order to differentiate the gesture motion from some random hand or body motion, we included
a data-fitting algorithm. Since the gesture motion defined in our work is almost periodic, therefore we
fit the received gesture signal into a sinusoid and check the R-square value. If the R-square value is
above a certain threshold, then it is supposed to be periodic and, hence, classified as a gesture signal;
otherwise, it is classified as a non-gesture motion. The process block diagram of our algorithm is
shown in Figure 1.
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Figure 1. Process block diagram for gesture recognition. 

The main contribution of our work is that it is the first real-time IR-UWB-based gesture 
recognition technique, which avoids the overfitting problem and shows robustness when a change 
in distance or orientation of the hand occurs, because of the selection of robust parameters and the 
integration of the TOA information into the clustering algorithm. Additionally, we proposed an 
algorithm for the detection of only intended gestures while ignoring any random movement in front 
of the radar sensor. Considering these advantages, this method would be an important technology of 
the car user interface as one of the core technologies of the future autonomous vehicles. 

The hand-based gestures for our work are shown in Figure 2. The first gesture (Gesture 0) is the 
empty gesture when there is no hand movement in front of the radar. Table 1 shows the detailed 
explanation of the defined gestures. Gestures 1, 2 and 3 are broadly classified as small gestures, while 
Gestures 4 and 5 are classified as big gestures with larger displacements. The rest of the paper is 
organized as follows. In Section 2 of the paper, the feature extraction and classification are discussed. 
In Section 3, the results of gesture training and classification are presented, and conclusions are given 
in Section 4 of the paper. References are given at the end of the paper. 
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The main contribution of our work is that it is the first real-time IR-UWB-based gesture recognition
technique, which avoids the overfitting problem and shows robustness when a change in distance or
orientation of the hand occurs, because of the selection of robust parameters and the integration of
the TOA information into the clustering algorithm. Additionally, we proposed an algorithm for the
detection of only intended gestures while ignoring any random movement in front of the radar sensor.
Considering these advantages, this method would be an important technology of the car user interface
as one of the core technologies of the future autonomous vehicles.

The hand-based gestures for our work are shown in Figure 2. The first gesture (Gesture 0) is
the empty gesture when there is no hand movement in front of the radar. Table 1 shows the detailed
explanation of the defined gestures. Gestures 1, 2 and 3 are broadly classified as small gestures, while
Gestures 4 and 5 are classified as big gestures with larger displacements. The rest of the paper is
organized as follows. In Section 2 of the paper, the feature extraction and classification are discussed.
In Section 3, the results of gesture training and classification are presented, and conclusions are given
in Section 4 of the paper. References are given at the end of the paper.
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Table 1. Gestures defined for our work.

Gesture # Explanation Inference

0 When there is no hand movement in front of the radar Empty Gesture

1 The finger is moving to the left and right slowly NO

2 Thumbs up and the hand moving to and fro quickly, but with
little displacements BEST (Thumbs Up)

3 Three fingers going upward and downward while thumb and
index fingers make an “O” symbol OK

4 The hand palm is open and moving forward and backward
with greater displacements while facing the radar transceiver STOP

5 The hand palm is open and moving backward and forward
diagonally with respect to the radar transceiver NEXT

2. Feature Extraction and Classification

2.1. Signal Pre-Processing

From the raw signal reflected from the human hand, the clutter has to be removed. The loopback
filter is used for removal of the clutter [26]. The loopback filter as represented by Figure 3 works as:

ck(t) =∝ ck−1(t) + (1− ∝)rk(t) (1)

yk(t) = rk(t)− ck(t) (2)

In the above equations, the symbol “∝” represents a constant used for weighting. For our
experiments, the value of “∝” was 0.97. The symbol ck(t) represents the clutter signal, which is made
until the k-th received sample. yk(t) is the background subtracted signal. From the above equations,
it is clear that the new estimated clutter has two parts: one part is from the previous estimate, and one
is from the current reflected signal. We need to store each filtered signal waveform and combine them
into matrix Wmn of size “m× n”. The “m” represents the slow time length, whereas the “n” represents
the fast time length of the matrix. The “n” depends on the measurement distance or range of the
radar. The slow time length “m” depends on the number of waveforms that we want to process at a
single time. Since the gestures detected are all dynamic gestures, therefore the hand gesture area is
detected and separated based on the maximum variance index of the signal in the fast time domain
throughout the matrix duration “m”. The maximum variance index in the fast time shows the biggest
change in the values over the gesture duration “m”, which we assume is the center of the location
of the hand. We make the gesture matrix by combining the regions at the left and right side of the
maximum variance index in the fast time domain. For example, in Figure 4, the gesture location is
from Sample 140–Sample 190 in the fast time domain. The slow time length of the gesture matrix is
determined by the gesture duration.
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Figure 4. Gesture matrix (a) before clutter removal and (b) after clutter removal.

After we find the gesture matrix, we need to find whether the motion is due to the gesture signal or
due to unintended hand motion. As the gestures defined in our work are periodic, so we use sinusoidal
fitting to show how much the received data fit into the sinusoid. For the small gestures (Gestures 1,
2 and 3), the input data used for sinusoidal fitting are the magnitude data at the maximum variance
index in the fast time index, as shown in Figure 5. However, for the big gestures (Gestures 4 and 5),
the input data used for sinusoidal fitting are the TOA of each radar scan, as shown in Section 2.2.3.
The R-square value is used for finding the fit of the signal, which is defined as follows.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

In Equation (3), “ŷi” represent the estimated values of “yi” by the fitting algorithm, whereas “y”
shows the mean of “yi” [27]. The value of R-square lies between zero and one. The higher value of
R-square shows that the prediction model is more accurate, and hence, the motion is due to the gesture
signal, whereas the lower value of R-square shows unintended hand motion. The following Figure 5
shows the fitting algorithm result for the gesture signal. The resulting R-square value for the signal in
the Figure 5 has some higher value, as it is a very accurate prediction model.
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2.2. Features Extraction

The next step is to extract the features of interest from the gesture signal matrix. We extracted
three features, i.e., the spread of the pdf of the gesture matrix histogram, the frequency of the hand
gesture and the variance of the TOA of the gesture signal. The above three features are the parameters
that can represent the characteristics of the human hand gesture. When an ordinary person carries out
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a repetitive hand gesture, each person has his or her own unique movements. This intrinsic motion is
related to the movement range of the hand gesture, the speed of the hand gesture and the shape and
size of the hand. The range of motion of the hand gesture is related to the variance of TOA; the speed
of the hand gesture is related with frequency; and the shape and size of the hand are related to the
spread of the magnitude histogram.

2.2.1. Variance of the Magnitude Histogram

The magnitude histogram of the gesture matrix is found, and we use the data fitting technique to
find the normal distribution pdf of the histogram. The variance “σ” of the resulting pdf is used as a
feature for the classification of the gestures.

In Figure 6, the magnitude histogram over the gesture duration is shown, and Figure 7 shows
the pdf of the magnitude histogram. By using the pdf fitting method, the sigma value turns out to be
a specific value. The sigma value is different for different gestures, as shown in the Results section.
A large value of sigma means that the received signal has a higher magnitude over a certain period
of time, which means a large hand gesture. Using the sigma method rather than simply using some
received signal magnitudes makes the algorithm more robust because it statistically represents the
magnitude characteristics of the reflected signal of each gesture over a certain period of time rather
than the magnitude at a particular time or distance. The concrete method of calculating the spread of
the histogram of the gesture matrix is shown in Algorithm 1.
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Figure 6. Magnitude histogram for a slow time of gesture duration.
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Algorithm 1. Calculation of the spread of the histogram.

1. Find the magnitude histogram of the gesture matrix, as shown in Figure 6.
2. Although the small values appear the most in the histogram, we ignore those values, as these smaller

values distort the shape of the histogram, and the most important values for classification of gestures are
the higher values. We set the threshold on trial and error to discard the smaller values.

3. Fit the resulting histogram to a normal pdf distribution, as shown in Figure 7. The histogram is
considered the best way for density estimation, as discussed in reference [28].

4. Find the spread “σ” of the normal pdf, as shown in Figure 7.

2.2.2. Time of Arrival Variance

Time of arrival (TOA) variance represents the range of motion of a hand gesture. A hand gesture
has a different moving distance for each hand gesture. A large hand gesture has a large TOA variance,
and a small hand gesture has a small TOA variance. The gestures defined in our work have different
TOA variances. The gesture set defined in our paper has five gestures, and two of the gestures have
large variation in TOA, whereas the three gestures have very small variation of TOA. The specific
method for the estimation of TOA is explained in Algorithm 2. The center of mass concept is used
to find the centroid index of the waveform in Step 3 of Algorithm 2. The center of mass concept is a
more robust feature because it reflects the characteristics of the entire waveform as compared to simply
using the peak of the waveform as the centroid index.

Algorithm 2. TOA estimation.

1. Find the index of the maximum variation column in slow time:

nmax_var = argmaxn_ f ixed|variation{Wmn(:, n_ f ixed)}| (4)

Wmn is the gesture matrix, and the “m” represents the slow time length, whereas the “n” represents the
fast time length of the matrix.

2. Extract the size f ast data around nmax_var from one slow time scan data (the x axis is fast time, and the
y axis is magnitude), and apply the Hilbert transform to obtain the envelope of these data.

rhilbert = abs[hilbert{y
(

nmax_var −
size f ast

2
: nmax_var +

size f ast

2

)
}] (5)

y represents the background-subtracted signal after the loopback filter in Section 2.1. size f ast is basically
determined by the length of Gaussian-modulated pulses transmitted and received and adds margins
taking into account the slight length changes in Gaussian-modulated pulses that occur during reflection
from the main target.

3. Find the center of fast time index ncenter_mass using rhilbert and Equation (6).

The equation below is similar to the center of mass concept:

ncenter_mass =

∑
nmax_var+

size f ast
2

n=nmax_var−
size f ast

2

rhilbert(n) ∗ n

∑
nmax_var+

size f ast
2

n=nmax_var−
size f ast

2

rhilbert(n)
(6)

4. Find ncenter_mass using the method in Step 3 for each slow time.
5. Find the TOA variance using ncenter_mass data in Step 4:

TOA variance = variance{ncenter_mass(1 : m)} (7)

The symbol “m” represents the slow time length.
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2.2.3. Frequency of the Gesture Signal

Some hand gestures are fast, and the other hand gestures are relatively slow. This characteristic
can be modeled through the frequency of the gesture signal. The other main purpose of introducing
the frequency parameter is to distinguish between gestures and non-gesture motions of the body or
some other change in the environment. We have defined two kinds of frequencies, i.e., frequency on
the basis of magnitude variation and frequency based on the TOA variance. The magnitude-based
spectrum is used for the small gestures, while the TOA frequency is used in the case of gestures
that result in large displacement. The algorithm for obtaining frequency information using IR-UWB
radar is widely used for the measurement of biological signals, such as respiration and pulse [18–20].
In these studies, frequency information was obtained by using the magnitude change of the slow time
data at the fixed fast time point. In this study, frequency information was obtained by applying the
same method to small gestures. However, in the case of a big gesture, the conventional method does
not produce a satisfactory result. Figure 8 illustrates why existing methods do not work well in big
gestures. First, as shown in Figure 8a, when the moving distance of the gesture is small, the waveform
is similar to the sine wave. However, when the moving distance of the gesture is large, as shown
in Figure 8b, a distorted waveform is generated reflecting the waveform of the modulated Gaussian
pulse. Moreover, the real hand gestures do not have perfect periodicity, so the degree of distortion
becomes worse. To solve this problem, we proposed a new frequency acquisition method based on
TOA, as shown in Figure 8c. It estimates the optimum TOA for each slow time frame and predicts
the frequency by observing the change of this TOA. The concrete method is given in Algorithm 3
as follows.
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Figure 8. Illustrative explanation of the reason for introducing a new frequency extraction method
based on TOA. (a) Slow time domain signal by the conventional magnitude-based method for a small
gesture; (b) slow time domain signal by the conventional magnitude-based method for a big gesture;
(c) slow time domain signal by the proposed TOA-based method for a big gesture.

Algorithm 3. Finding the frequency by the TOA-based method.

1. Find the TOA of every column of the matrix Wmn using the method given by Algorithm 2.
2. Mean value subtraction: Find the mean of all of the TOA values and subtract it from each value.

The resulting signal after mean subtraction is shown in Figure 9.
3. Find the frequency domain signal by using the fast Fourier transform (FFT) algorithm.
4. Search for the peak value of the spectrum as in Figure 10.
5. The location of the peak value of the spectrum represents the frequency of the big gesture.
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Figure 9. TOA of gesture with greater displacements (big gesture).
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Figure 10. Spectrum of the TOA of gesture with greater displacements (big gesture).

2.3. Gestures Classification

There are two broad classes of learning algorithms, i.e., supervised and unsupervised learning.
In supervised learning, each output unit is told what its desired response to the input signals should be.
However, in unsupervised learning, the algorithm is based on local information, and it does not know
the target output for each input. It is also referred to as a self-organized network, as it self-organizes
the data presented to the network and detects any collective properties in the data. In order to classify
the gestures, the unsupervised learning algorithm (k-means clustering) is used. Clustering is a popular
approach to implement the partitioning operation [29–31]. The clustering algorithm partitions a set of
objects into clusters, such that the objects belonging to the same cluster have more similarity among
themselves than with different clusters based on some defined criteria [32,33]. The main idea is to
define K cluster centers. The next step is to associate each point of the given dataset to the nearest
center. After that, we recalculate the centroids by taking the mean of the clusters. Now, a loop has been
generated. We continue this process until the centers do not move their position any more. The cost
function for the K-means algorithm is given by Equation (8).

J(V) =
c

∑
i=1

ci

∑
j=1

(‖ xi − vj ‖)2 (8)

where ‖ xi − vj ‖ is the Euclidean distance between xi and vj and “ci” is the number of data points in
the i− th cluster, while “c” is number of cluster centers. The main advantage of the K-means algorithm
is that it is fast, robust and very simple to understand. It gives the best result when the datasets are
distinct and well separated.

In the case of our classification task, we train the algorithm by using the three input features
as defined in Section 2.2 and then use the newly made gesture to find to which class it belongs.
The number of centroids is the same as the number of gestures, i.e., five. The training result of the
classification is shown in Figure 11, as follows.

In our work, we are focused on gesture recognition within some area (not just a fixed point) so that
the driver can make gestures freely, which means that the training and testing locations for gestures
might be different. Therefore, we need to compensate the distance change. To this end, we have
proposed a clustering algorithm, which trains each gesture at two locations (nearest and farthest)
and use the location information along with the three features defined in Section 2.2 as an input to
the clustering algorithm. To explain the concept, we cannot show all four parameters on a plane
surface; therefore, we used only magnitude and distance parameters for the explanation, as shown in
Figure 12. In Figure 12, we used only two gestures for the explanation of our concept. The magnitude
parameter changes inversely with distance. The clustering in Figure 12a has fixed point training,
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whereas Figure 12b has training at two points for every gesture, so it has two clusters for every gesture
and uses the distance information to make decisions that are more robust.Sensors 2017, 17, 833  11 of 18 
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As is clear from Figure 12a, if the TOA is not much different for the training and testing set, as in
Case 1, then the gesture will be classified correctly as Gesture 1, as the test gesture has the nearest
distance along the features’ axis to Gesture 1. However, if the training and testing set has much
difference in TOA, as in Case 2, then the test gesture will be classified as Gesture 2 by the clustering
algorithm because it has the nearest distance to Gesture 2 along the features’ axis. The reason for the
incorrect decision in Case 2 is that training without TOA information with the algorithm does not take
into account the decrease in magnitude of the signal with increasing TOA. In Figure 12b, every gesture
is trained at two different distances, and for every gesture, two clusters are made at two different TOA
locations. In Case 1 of Figure 12b, the test gesture is correctly classified, as it is nearest to the Gesture
1-trained cluster along the gesture features’ axis. In Case 2 of Figure 12b, the test gesture is located
near the second set of clusters along the TOA line. The algorithm will check the TOA information
along with the features’ information; therefore, it is classified as Gesture 1, because it is nearer to the
second cluster of Gesture 1 as compared to the two clusters of Gesture 2. The gesture classification
results of Figure 12 are shown clearly in Table 2 as follows.

Table 2. Gesture classification results of Figure 12.

Clustering without Taking TOA as Classification Input

Case # Test Gesture (Original) Classification Result
01 1 1
02 1 2

Clustering with Taking TOA as Classification Input

Case # Test Gesture (Original) Classification Result
01 1 1
02 1 1

3. Results and Discussion

3.1. Experimental Setup

The experimental setup for gesture recognition inside the car is shown in Figure 13a. The radar
was placed in front of the driver, and the gestures were made by the right hand. The gesture area was
almost 30 cm. Figure 13b shows the shape for the radar module. The transmit antenna and receiver
antenna are connected to the IR-UWB transceiver, and a low noise amplifier (LNA) is mounted on the
receiver to increase the reception performance.
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In our experiments, we used the commercially available single-chip impulse radar transceiver
(part number=NVA6201) made by NOVELDA (Novelda AS, Kviteseid, Norway). The parameter
specifications are given in Table 3.
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Table 3. Radar parameters’ values.

Parameter Value

Centre Frequency 6.8 GHz
Pulse Repetition Frequency 100 MHz

Bandwidth 2.3 GHz
Output Power −53 dBm/MHz

Slow Time Sampling Frequency 59 samples/s

3.2. Feature Extraction Result

We removed the clutter from the gesture matrix. The gesture matrix for each gesture after
removing the clutter is plotted in Figure 14.
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Figure 14. Gesture matrices after removing the clutter: (a) Gesture 1; (b) Gesture 2; (c) Gesture 3;
(d) Gesture 4; (e) Gesture 5.

After preprocessing the signal, the next step is to extract the features. The size of the matrix Wmn

for our experiments is (100 × 256), which means that the length of radar scans to be processed for each
gesture is 100 (1.69 s), and the detection range is 256 samples or one meter. The pdf graphs for the
small and big gestures are shown in Figure 15. It is clear from the figure that the small gesture has a
low spread value as compared to the big gesture. The average spread values for all of the gestures
defined in our work are shown in Table 4.
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Figure 15. pdf graphs for small and big gestures.

The sigma values for every pdf of the magnitude histogram are given in the second column of
Table 4. The TOA variance is calculated by using the center of mass concept for finding the centroid
index of the waveform. The third column of Table 4 shows the TOA variance result for all of the gestures
averaged over the slow time. Another important feature is the frequency extraction. We conducted
experiments to find the frequency for each gesture and found that the big gestures have relatively
lower frequency as compared to the smaller gestures due to the greater displacements by the big
gestures. The red line in Figure 16 shows the frequency information graph of Gesture 3 based on the
magnitude of the signal, whereas the blue line in Figure 16 shows the frequency information graph of
Gesture 4 based on the TOA variation. The frequency results for all gestures are given in Table 4.
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Figure 16. The red line represents the magnitude variation of Gesture 3, whereas the blue line represents
the TOA variation of Gesture 4 across the slow time axis.

Table 4. Magnitude histogram, TOA variance and Frequency results.

Gesture # Spread of pdf of the
Magnitude Histogram (Sigma) TOA Variance Frequency (per Minute)

01 4.2 1.9 57
02 5.7 3.1 115
03 7.3 2.1 96
04 11.3 5.5 62
05 9.1 4.9 49
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From the results in Table 4, we noted that the big gestures (4 and 5) had relatively smaller
frequency as compared to the smaller gestures. However, the frequency of each gesture depends on
the user, and so, it can be determined during the training of gestures.

3.3. The Detection of Only Intended Gestures’ Result

The first important thing is to differentiate between the intended gesture motion and unintended
random hand motion. To this end, we used the sinusoidal fitting algorithm, and the results of
this algorithm are summarized in Table 5. We set the detection threshold of R-square as 0.2 for
differentiating between gesture motion and undesired random motion.

Table 5 shows that the sinusoid data fitting technique resulted in 100 percentage accuracy for
detecting the random motion, and hence, it can ignore the random hand motion, so that we can use
only the useful gestures’ motion in the classification step. The number of trails for each gesture in
Table 5 was 150, and we used three subjects (50 trails per subject).

Table 5. Data fitting results.

Gesture # Mean (R-Square) Detection Accuracy (% Age)

Gesture #1 0.62 100
Gesture #2 0.71 100
Gesture #3 0.61 100
Gesture #4 0.53 100
Gesture #5 0.40 100

Hand moving for steering 0.03 100
Empty gesture 0.01 100
Body moving 0.10 100

Hand moving for gear change 0.08 100
Empty gesture 0.02 100

3.4. Clustering Classification Results

From the features extraction section, it is clear that although some gestures overlap, the values for
some particular parameters, however, did not overlap in all of the parameters. Therefore, we used
the clustering technique in which we used all three parameters as inputs for the classification of
the gestures. The K-means classifier is used to cluster the gestures. The input parameters are first
normalized and then scaled before clustering by the K-means algorithm.

Figure 11 shows the sample result of the clustering in three dimensions by using the K-means
algorithm. The K-means algorithm is very sensitive to the initialized values. In our experiments,
we initialized the centroids for each gesture by using the mean values of each feature.

We conducted every gesture for 150 trials and three subjects (50 trials on one subject), calculated
the percentage accuracy of every gesture and noted how much a gesture was overlapped by other
gestures, which may result in the wrong detection. The results for the fixed point gesture training and
gesture testing are shown in Table 6. The diagonal elements in the table represent that the original and
classified gestures are the same. The off-diagonal elements represent the misdetected gestures.

Table 6. Fixed point training and testing results.

Gesture #1 Gesture #2 Gesture #3 Gesture #4 Gesture #5

Gesture #1 100 0 0 0 0
Gesture #2 0 99.33 0.66 0 0
Gesture #3 0 0 100 0 0
Gesture #4 0 0 0.66 97.33 2
Gesture #5 0 0 0 2 98
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As the driver’s hand may move in a certain area, which mean it can change its distance and
orientation, therefore we used the training of the parameters at two distant points from the radar and
integrated the distance information into the clustering algorithm.

As shown in Table 7, the performance of the algorithm deteriorates with the change in distance
and orientation; therefore, we integrated the TOA information into the clustering algorithm. Table 8
below shows the results of the algorithm when distance compensation was used.

Finally, in Table 8, the results of training the gestures by using the three features and the TOA
information are presented. By comparing the results of Table 8 with the results of Table 7, we can note
that the diagonal elements in Table 8 have higher values as compared to Table 7, which means that our
proposed clustering algorithm based on the three features, as well as TOA information is much more
accurate than the algorithm without TOA information.

Table 7. Training and testing at different distances (without distance compensation).

Gesture #1 Gesture #2 Gesture #3 Gesture #4 Gesture #5

Gesture #1 90 5.33 4.66 0 0
Gesture #2 2.66 93.33 4 0 0
Gesture #3 2.66 4.66 92.66 0 0
Gesture #4 0 20.66 10.66 58.66 10.02
Gesture #5 8 18.66 6.66 20 46.66

Table 8. Training and testing at different distances and orientation (with distance compensation).

Gesture #1 Gesture #2 Gesture #3 Gesture #4 Gesture #5

Gesture #1 98.66 0.66 0 0.66 0
Gesture #2 0 97.33 1.33 0 1.33
Gesture #3 0 0.66 99.33 0 0
Gesture #4 0 5.31 2.66 88.66 6
Gesture #5 0 4.01 0 4.66 91.33

4. Conclusions

We have presented a robust algorithm for gesture recognition. We only used a single IR-UWB
radar for our experiments. The three independent features showed better performance under different
circumstances inside the vehicle. Although, if one parameter of a gesture overlapped with another
gesture, sometimes, it was compensated by the other two parameters, resulting in an accurate result.
The magnitude-based frequency was not very accurate for gestures with larger displacements; therefore,
we defined another TOA-based frequency for the larger displacement gestures. We also integrated the
TOA information along with the features’ information into the clustering algorithm, which resulted
in much better performance, although the training and testing locations and orientations were not
the same. The unintended motion created by randomly moving of the hands or body is nullified by
using a data-fitting algorithm, and it showed accurate results. The confusion matrix showed that the
results are very accurate within a certain area, which can cover the range of the driver’s hand motion,
and therefore, the hand-based gesture recognition may be useful in practical applications to control
electronic equipment inside any vehicle; hence, it can prove as a useful technology for the future user
interface inside a vehicle.
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