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Abstract:



A novel scheme is proposed for direction finding with uniform rectangular planar array. First, the characteristics of noncircular signals and Euler’s formula are exploited to construct a new real-valued rectangular array data. Then, the rotational invariance relations for real-valued signal space are depicted in a new way. Finally the real-valued propagator method is utilized to estimate the pairing two-dimensional direction of arrival (2D-DOA). The proposed algorithm provides better angle estimation performance and can discern more sources than the 2D propagator method. At the same time, it has very close angle estimation performance to the noncircular propagator method (NC-PM) with reduced computational complexity.
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1. Introduction


Two-dimensional direction of arrival (2D-DOA) estimation has been widely used in mobile communication systems, sonar, navigation, radar, etc. [1,2,3,4,5], which is an important research branch in array signal processing. Many 2D-DOA estimation algorithms have sprung up in recent years in order to improve the performance of angle estimation, which include the two dimensional multiple signal classification(2D MUSIC) algorithm [6], the 2D Unitary estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm [7], the modified 2D-ESPRIT algorithm [8], the matrix pencil method [9], the maximum likelihood method [10,11], the parallel factor (PARAFAC) algorithm [12], and so on [13,14,15,16,17,18,19,20]. However, those 2D-DOA estimation algorithms are confronted with the problem of the high computational complexity generally and they are very difficult to apply in engineering practice. As is known to us, the propagator method (PM) algorithm uses linear operations to replace the eigenvalue decomposition of the covariance matrix [21], and it has a great advantage in resolving the amount of calculation. Therefore, the 2D-DOA estimation based on PM is becoming a hot spot of research. For example, Wu et al. have developed the 2D-DOA estimation algorithm via the rotational invariance property of propagator matrix [22]. In [23], an improved PM algorithm is proposed for 2D-DOA estimation, which not only reduces the computational complexity, but also avoids the aperture loss.



Unfortunately, all the algorithms mentioned above did not consider the characteristics of the impinging signals. In fact, many noncircular signals such as the amplitude modulated (AM), binary phase shift keying (BPSK), minimum shift keying (MSK), and Gaussian MSK (GMSK) signals are used in wireless communication or satellite systems. In recent years, some scholars use non-circular signal characteristics to improve the performance of direction estimation, which contain the noncircular MUSIC (NC-MUSIC) algorithm [24], the NC-ESPRIT algorithm [25], and the noncircular parallel factor (NC-PARAFAC) algorithm [26]. On the one hand, the angle estimation performance can be achieved by the algorithms [24,25,26]. On the other hand, the computation loads are increased greatly due to the doubled array aperture. The noncircular rational invariance propagator method has also been proposed for angle estimation in [27], which aimed at the linear array. If it is extended to the rectangular planar array for 2D-DOA estimation, the complexity would be increased greatly.



In this paper, we take advantage of the characteristics of noncircular signals and derive a novel noncircular propagator method algorithm based on the uniform rectangular planar array. The main works of this paper are listed in a straightforward manner as follows: (1) the property of the noncircular signal and Euler’s transformation are used to construct a new real-valued rectangular array data; (2) the rotational invariance relations for real-valued signal space are depicted in a new way; (3) the PM algorithm is applied to two-dimensional angle estimation for the rectangular planar array which is paired automatically; and (4) theory analysis and simulation results confirm that our algorithm has better direction finding performance and can discern more sources than 2D-PM [23]. Due to real-valued processing, it can save about 75% computational load compared with the NC-PM algorithm [27]. However, its estimation performance is close to NC-PM algorithm, which has higher computational load.




2. Data Model


In order to get the two-dimensional direction finding, we consider a uniform rectangular planar array (URA) consisting of [image: there is no content] uniform linear subarrays as shown in Figure 1, and there are [image: there is no content] sensors in each subarray. The inter-element spacing between the two sensors is [image: there is no content] in both the x-axis and y-axis. Suppose there are [image: there is no content] narrowband far-field uncorrelated sources with wavelength [image: there is no content] impinging on the array from different directions. We also assume the noise is independent of the sources and [image: there is no content]. The output signal of the ith subarray [image: there is no content] can be denoted as [26]:


[image: there is no content]



(1)




where [image: there is no content] and [image: there is no content], [image: there is no content], [image: there is no content] is the elevation angle and [image: there is no content] is the azimuth angle. [image: there is no content] and [image: there is no content]. [image: there is no content] is the noncircular signal vector. In addition, the vector of strictly second-order noncircular signals can be expressed as [28]: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]. [image: there is no content] is the additive white Gaussian noise vector of the ith subarray.


Figure 1. The structure of planar array.



[image: Sensors 17 00840 g001]






Therefore, the whole array output is


[image: there is no content]



(2)




where [image: there is no content] is the [image: there is no content] steering vector matrix, [image: there is no content] represents the Khatri–Rao product, and [image: there is no content], [image: there is no content], and [image: there is no content].




3. Real-Valued PM Algorithm for 2D-DOA Estimation


3.1. Euler Transformation


The real part and imaginary part of [image: there is no content] can be obtained by utilizing the real-valued property of noncircular signals and Euler’s formula as follows:


[image: there is no content]



(3)






[image: there is no content]



(4)




where [image: there is no content], [image: there is no content],


AR=[cosφ1cosφ2⋯cosφKcos(πv1+φ1)cos(πv2+φ2)⋯cos(πvK+φK)⋮⋮⋮⋮cos[π(M−1)v1+φ1]cos[π(M−1)v2+φ2]⋯cos[π(M−1)vK+φK]}Mcos(πu1+φ1)cos(πu2+φ2)⋯cos(πuK+φK)cos[π(v1+u1)+φ1)]cos[π(v2+u2)+φ2)]⋯cos[π(vK+uK)+φK)]⋮⋮⋮⋮cos[π((M−1)v1+u1)+φ1)]cos[π((M−1)v2+u2)+φ2)]⋯cos[π((M−1)vK+uK)+φK)]}M⋮⋮⋮⋮⋮⋮⋮cos[π(N−1)u1+φ1]cos[π(N−1)u2+φ2]⋯cos[π(N−1)uK+φK]cos[π(N−1)u1+πv1+φ1]cos[π(N−1)u2+πv2+φ2]⋯cos[π(N−1)uK+πvK+φK]⋮⋮⋮⋮cos[π(N−1)u1+π(M−1)v1+φ1]cos[π(N−1)u2+π(M−1)v2+φ2]cos[π(N−1)uK+π(M−1)vK+φK]}M]∈RMN×K










AI=[sinφ1sinφ2⋯sinφKsin(πv1+φ1)sin(πv2+φ2)⋯sin(πvK+φK)⋮⋮⋮⋮sin[π(M−1)v1+φ1]sin[π(M−1)v2+φ2]⋯sin[π(M−1)vK+φK]}Msin(πu1+φ1)sin(πu2+φ2)⋯sin(πuK+φK)sin[π(v1+u1)+φ1]sin[π(v2+u2)+φ2]⋯sin[π(vK+uK)+φK]⋮⋮⋮⋮sin[π((M−1)v1+u1)+φ1]sin[π((M−1)v2+u2)+φ2]⋯sin[π((M−1)vK+uK)+φK]}M⋮⋮⋮⋮⋮⋮⋮sin[π(N−1)u1+φ1]sin[π(N−1)u2+φ2]⋯sin[π(N−1)uK+φK]sin[π(N−1)u1+πv1+φ1]sin[π(N−1)u2+πv2+φ2]⋯sin[π(N−1)uK+πvK+φK]⋮⋮⋮⋮sin[π(N−1)u1+π(M−1)v1+φ1]sin[π(N−1)u2+π(M−1)v2+φ2]sin[π(N−1)uK+π(M−1)vK+φK]}M]∈RMN×K











Then, we define a new virtual array data as follows:


[image: there is no content]



(5)




where [image: there is no content], [image: there is no content].



Define two matrices as follows: [image: there is no content], [image: there is no content][image: there is no content]; then, we construct two matrices [image: there is no content] and [image: there is no content], and we can get the following relationship:


[image: there is no content]



(6)




where [image: there is no content] is a real-valued matrix whose diagonal elements contain the needed angle information:


J1B=[2cosπu1+2ϕ12cosπu122cosπu2+2ϕ22cosπu22⋯2cosπuK+2ϕK2cosπuK22cos2πv1+πu1+2ϕ12cosπu122cos2πv2+πu2+2ϕ22cosπu22⋯2cos2πvK+πuK+2ϕK2cosπuK2⋮⋮⋮⋮2cos2π(M−1)v1+πu1+2ϕ12cosπu122cos2π(M−1)v2+πu2+2ϕ22cosπu22⋯2cos2π(M−1)vK+πuK+2ϕK2cosπuK2}M2cos3πu1+2ϕ12cosπu122cos3πu2+2ϕ22cosπu22⋯2cos3πuK+2ϕK2cosπuK22cos3πu1+2πv1+2ϕ12cosπu122cos3πu2+2πv2+2ϕ22cosπu22⋯2cos3πuK+2πvK+2ϕK2cosπuK2⋮⋮⋮⋮2cos3πu1+2π(M−1)v1+2ϕ12cosπu122cos3πu2+2π(M−1)v2+2ϕ22cosπu22⋯2cos3πuK+2π(M−1)vK+2ϕK2cosπuK2}M⋮⋮⋮⋮⋮⋮⋮2cosπ(2N−3)u1+2ϕ12cosπu122cosπ(2N−3)u2+2ϕ22cosπu22⋯2cosπ(2N−3)uK+2ϕK2cosπuK22cosπ(2N−3)u1+2πv1+2ϕ12cosπu122cosπ(2N−3)u2+2πv2+2ϕ22cosπu22⋯2cosπ(2N−3)uK+2πvK+2ϕK2cosπuK2⋮⋮⋮⋮2cosπ(2N−3)u1+2π(M−1)v1+2ϕ12cosπu122cosπ(2N−3)u2+2π(M−1)v2+2ϕ22cosπu222cosπ(2N−3)uK+2π(M−1)vK+2ϕK2cosπuK2}M]∈RM(N−1)×K










J2B=[2cosπu1+2ϕ12sinπu122cosπu2+2ϕ22cosπu22⋯2cosπuK+2ϕK2sinπuK22cos2πv1+πu1+2ϕ12sinπu122cos2πv2+πu2+2ϕ22sinπu22⋯2cos2πvK+πuK+2ϕK2sinπuK2⋮⋮⋮⋮2cos2π(M−1)v1+πu1+2ϕ12sinπu122cos2π(M−1)v2+πu2+2ϕ22sinπu22⋯2cos2π(M−1)vK+πuK+2ϕK2sinπuK2}M2cos3πu1+2ϕ12sinπu122cos3πu2+2ϕ22sinπu22⋯2cos3πuK+2ϕK2sinπuK22cos3πu1+2πv1+2ϕ12sinπu122cos3πu2+2πv2+2ϕ22sinπu22⋯2cos3πuK+2πvK+2ϕK2sinπuK2⋮⋮⋮⋮2cos3πu1+2π(M−1)v1+2ϕ12sinπu122cos3πu2+2π(M−1)v2+2ϕ22sinπu22⋯2cos3πuK+2π(M−1)vK+2ϕK2sinπuK2}M⋮⋮⋮⋮⋮⋮⋮2cosπ(2N−3)u1+2ϕ12sinπu122cosπ(2N−3)u2+2ϕ22sinπu22⋯2cosπ(2N−3)uK+2ϕK2sinπuK22cosπ(2N−3)u1+2πv1+2ϕ12sinπu122cosπ(2N−3)u2+2πv2+2ϕ22sinπu22⋯2cosπ(2N−3)uK+2πvK+2ϕK2sinπuK2⋮⋮⋮⋮2cosπ(2N−3)u1+2π(M−1)v1+2ϕ12sinπu122cosπ(2N−3)u2+2π(M−1)v2+2ϕ22sinπu222cosπ(2N−3)uK+2π(M−1)vK+2ϕK2sinπuK2}M]∈RM(N−1)×K.











Similarly, define two [image: there is no content] Toeplitz matrices as follows: [image: there is no content], [image: there is no content].



Then, we construct two matrices [image: there is no content] and [image: there is no content] as follows: [image: there is no content] and [image: there is no content].



We also get the following relationship:


[image: there is no content]



(7)




where [image: there is no content] is a real-valued matrix whose diagonal elements also contain the desired angle information.




3.2. 2D-DOA Estimation


According to Equation (5), the estimation of covariance matrix [image: there is no content] of [image: there is no content] is denoted by collecting L snapshots:


[image: there is no content]



(8)







From Equation (8), [image: there is no content] can be denoted by [image: there is no content], where [image: there is no content], [image: there is no content]. In the noiseless case, [image: there is no content], an estimation matrix [image: there is no content] can be obtained by [21]:


[image: there is no content]



(9)







We construct a new matrix [image: there is no content], where [image: there is no content] is the identity matrix. In the noiseless case, the relationship between [image: there is no content] and [image: there is no content] can be obtained by a unique non-singular matrix [image: there is no content] as


[image: there is no content]



(10)







Substituting Equation (10) into Equation (6), we can get


[image: there is no content]



(11)







If we define [image: there is no content], we then have


[image: there is no content]



(12)







Equation (12) shows that the diagonal elements of the matrix [image: there is no content] can be obtained by performing the eigenvalue decomposition of [image: there is no content], and [image: there is no content] is the corresponding eigenvector.



Then, we can get the estimation of [image: there is no content]:


[image: there is no content]



(13)




where [image: there is no content] is the kth diagonal element of the matrix [image: there is no content].



Similarly, Substituting Equation (10) into Equation (7), we can also get


[image: there is no content]



(14)







If we define [image: there is no content], we then have


[image: there is no content]



(15)







Then, we get the estimation of [image: there is no content]:


[image: there is no content]



(16)




where [image: there is no content] is the kth diagonal element of the matrix [image: there is no content].



We note that [image: there is no content] and [image: there is no content] share the same eigenvector [image: there is no content], so the pairing is automatically formed. Thus, 2D-DOA can be obtained by


[image: there is no content]



(17)






[image: there is no content]



(18)







We have now achieved the essence of the proposed algorithm. The major algorithmic steps are as follows:

	(1)

	
Construct the matrix [image: there is no content] from Equation (5), and compute the covariance matrix [image: there is no content] of [image: there is no content] through Equation (8).




	(2)

	
Estimation of the propagator [image: there is no content] from Equation (9), and then construct the matrix [image: there is no content].




	(3)

	
Construct the matrix [image: there is no content] and [image: there is no content] and perform the eigenvalue decomposition of [image: there is no content].




	(4)

	
Similarly, construct the matrix [image: there is no content] and [image: there is no content] and perform the eigenvalue decomposition of [image: there is no content].




	(5)

	
Finally, estimate the 2D-DOA through Equations (17) and (18).









Remark 1.

In [23], the conventional PM algorithm divides the steering matrix [image: there is no content] into two matrices [image: there is no content] and [image: there is no content], and [image: there is no content] is the linear transformation of [image: there is no content], i.e., [image: there is no content], [image: there is no content] is the propagator operator. According to Equation (1), [image: there is no content], and the covariance matrix of received data [image: there is no content] is [image: there is no content]. We partition it as [image: there is no content], where [image: there is no content], [image: there is no content], and we can get the propagator estimator [image: there is no content]. In our paper, according to Equation (5), [image: there is no content], and we compute the covariance of [image: there is no content] to estimate the propagator. Apparently, the available array aperture of the proposed algorithm can be thought of as twice that of the conventional 2D-PM [23], so it has better angle performance than 2D-PM.





Remark 2.

In [23], define [image: there is no content], and then [image: there is no content], which means that the columns in [image: there is no content] span the same signal subspace as the column vectors in [image: there is no content]. Divide [image: there is no content] into [image: there is no content] and [image: there is no content], [image: there is no content], [image: there is no content] are the first [image: there is no content] rows and the last [image: there is no content] rows of [image: there is no content]. Then, get the relationship, [image: there is no content], where [image: there is no content]. Perform the eigenvalue decomposition of [image: there is no content] to obtain the diagonal elements of the matrix [image: there is no content]. Similarly, reconstruct [image: there is no content] to [image: there is no content], [image: there is no content], [image: there is no content] being the first [image: there is no content] rows and the last [image: there is no content] rows of [image: there is no content], and perform the eigenvalue decomposition of Pc1′+Pc2′ to obtain the diagonal elements of the matrix [image: there is no content], where [image: there is no content]. Finally, the 2D-DOA can be obtained from the diagonal elements of [image: there is no content] and [image: there is no content]. From the above mentioned, the row dimensions of [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content] are equal to [image: there is no content], respectively. The maximum number of the identified sources is [image: there is no content]. In our proposed algorithm, from Equation (11) and Equation (14), the row dimensions of [image: there is no content] and [image: there is no content], [image: there is no content] and [image: there is no content] are equal to [image: there is no content], respectively. Therefore, the maximum number of the identified sources is min [[image: there is no content]]. If M < N, the proposed algorithm can discern more sources than that of the conventional 2D-PM [23].





Remark 3.

In the NC-PM algorithm [27], according to Equation (2), the extended array output data is denoted as [image: there is no content], where [image: there is no content], [image: there is no content]is the [image: there is no content]exchange matrix with ones on its anti-diagnoal and zeros elsewhere, and [image: there is no content]stands for the complex conjugation of [image: there is no content], [image: there is no content]. Compute the covariance of [image: there is no content]to estimate the propagator [image: there is no content]. Similarly, the invariance equations for [image: there is no content]are constructed to estimate the 2D-DOA. As is known to us, each computation amount of the complex multiplication is four times that of the real-valued one. In our algorithm, we use Euler transformation to convert complex arithmetic of noncircular to real arithmetic. For example, according to Equation (5), [image: there is no content], [image: there is no content], and the computation amounts of covariance of [image: there is no content]with snapshots L are much lower than that of [image: there is no content] [27]. Due to real-valued processing, our algorithm can save about 75% computational load compared with the NC-PM algorithm [27].







4. Cramer-Rao Bounds and Analysis


4.1. CRB


In this section, we give the Cramer-Rao Bounds (CRB) of noncircular signal for rectangular planar array. According to Equation (5), the received data is


[image: there is no content]



(19)




where [image: there is no content], and [image: there is no content] is the noise vector. The Fisher information matrix (FIM) in relation to [image: there is no content] and [image: there is no content] can be calculated as follows [29]:


[image: there is no content]



(20)







According to [29], we know that the [image: there is no content]ith element of [image: there is no content] is given by


F(θi,θj)=2Re[trace(B˙θiSo)HΓ−1(B˙θjSo)]=2Re[trace(B˙θeieiTSo)HΓ−1(B˙θejejTSo)]=Re[trace(SoHeieiTB˙θHΓ−1B˙θejejTSo)]=Re[trace(eiTB˙θHΓ−1B˙θej)(ejTSoSoHei)]=2LRe[(B˙θHΓ−1B˙θ)ij(RsoT)ij].



(21)







Likely, we can give the [image: there is no content]ith element of [image: there is no content], [image: there is no content], [image: there is no content]:


[image: there is no content]



(22)






[image: there is no content]



(23)






[image: there is no content]



(24)




where [image: there is no content] denotes the ith column of the unit matrix, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] is the covariance of the noise. According to Equations (21)–(24), we can obtain:


[image: there is no content]



(25)






[image: there is no content]



(26)






[image: there is no content]



(27)






[image: there is no content]



(28)




where [image: there is no content] represents Hadamard product.



Then, the CRB can be denoted as:


[image: there is no content]



(29)







We present the curves of CRB versus different signal to noise ratios (SNRs) and snapshots L in Figure 2 and Figure 3. The source number K is fixed at 3 M and N represents the numbers of sensors on the x-axis and the y-axis. In Figure 2, the snapshot L is fixed at 200. It is obvious that, with the improvement of SNR, the value of CRB decreases accordingly. In Figure 3, we set SNR at 20 dB, and the curve shows that the value of CRB decreases with increase of L, and simulation results and theory analysis are consistent.


Figure 2. CRB comparison versus SNR.



[image: Sensors 17 00840 g002]





Figure 3. CRB comparison versus snapshots L.



[image: Sensors 17 00840 g003]







4.2. Complexity Analysis


In this section, we analyse the computational complexity of the algorithm specifically. First, estimation of the covariance matrix [image: there is no content] requires [image: there is no content] real-valued multiplications (RMS). In addition, the estimation of the matrix [image: there is no content] takes [image: there is no content] RMS. Then, the estimation and eigenvalue decomposition of the matrix [image: there is no content] and [image: there is no content] totally require [image: there is no content] RMS. Therefore, the overall computational complexity of our algorithm is [image: there is no content] RMS. As we know that each computation amount of the complex multiplication is four times that of the real-valued one, we can show the Chen’s noncircular propagator algorithm [27] needs [image: there is no content] RMS, J’s noncircular ESPRIT [25] needs [image: there is no content] RMS, Zhang’s 2D-ESPRIT algorithm [8] needs [image: there is no content] RMS, while Li’s 2D-PM [23] requires [image: there is no content] RMS.



The complexity comparisons with different parameters are shown in Figure 4 and Figure 5. In Figure 4, the numbers of sensor M and N on the x-axis and the y-axis are set at 8 and 6, respectively. The source number K is fixed at 3. In Figure 5, the parameters N and K are the same as Figure 4, and the snapshot L is set to 100. From Figure 4 and Figure 5, we can observe that the proposed algorithm has much lower computational load than J’s NC-ESPRIT algorithm and Chen’s NC-PM algorithm.


Figure 4. Complexity comparison versus L.



[image: Sensors 17 00840 g004]





Figure 5. Complexity comparison versus M.



[image: Sensors 17 00840 g005]






We can summarize the merits of the proposed algorithm as follows:

	(1)

	
The proposed algorithm has much lower computational load than the NC-PM and NC-ESPRIT algorithms because the proposed algorithm uses Euler transformation to convert complex arithmetic of noncircular PM to real arithmetic.




	(2)

	
The proposed algorithm has better estimation performance than the 2D-PM algorithm because the array aperture is doubled according to Equation (5).




	(3)

	
The maximum number of discerned sources of our algorithm is dependent on Equation (5) and the real-valued PM method. Obviously, the maximum number of the identified sources of our proposed algorithm is [image: there is no content], while 2D-PM is [image: there is no content].




	(4)

	
The proposed algorithm requires no extra matching calculation. The estimated 2D-DOA can automatically be matched.











5. Simulation Results


In this section, we use Monte Carlo simulations to verify the performance of the algorithm. In the simulation, the rectangular planar array is configured with N subarrays, each subarray contains M sensors, L is the snapshots of the sources, and K is the number of the sources. We assume that there are K = 3 non-coherent sources, which are BPSK modulated in Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8, where [image: there is no content], [image: there is no content] and [image: there is no content], respectively.


Figure 6. Angle estimation results.



[image: Sensors 17 00840 g006]





Figure 7. The root mean squared error (RMSE) comparison of different algorithms versus SNR. (a) M = 6, N = 8, L = 100; (b) M = 8, N = 8, L = 50.



[image: Sensors 17 00840 g007]





Figure 8. RMSE comparison at different values of L.



[image: Sensors 17 00840 g008]






The root mean squared error (RMSE) is used for performance assessment, which is defined as [image: there is no content], where [image: there is no content], [image: there is no content] are the estimated value of [image: there is no content] and [image: there is no content] for the nth trial.



Figure 6 gives the angle pairing results of the proposed algorithm with 50 Monte Carlo trials, where [image: there is no content], [image: there is no content], [image: there is no content] and SNR is 10 dB. From Figure 4, we can observe that the 2D-DOAs of all three sources are localized clearly and paired automatically, which proves the effectiveness of our algorithm.



Figure 7a,b presents RMSE comparison at different SNRs among the proposed algorithm, J’s NC-ESPRIT algorithm [25], Chen’s NC-PM algorithm [27], Zhang’s 2D-ESPRIT algorithm [8], Li’s 2D-PM algorithm [23] and CRB. In Figure 5a, we set M = 6, N = 8, L = 100. In Figure 5b, we change the numbers of sensors and snapshots and set M = 8, N = 8, and L = 50. From the curves of Figure 5a,b, we know that the proposed algorithm has better RMSE performance than Li’s algorithm [23]. Furthermore, it has close RMSE performance to Chen’s algorithm [27]. However, we should know that our algorithm has much lower computational amount than J’s NC-ESPRIT algorithm and Chen’s NC-PM algorithm owing to the real-valued processing, which means that it is more suitable for a practical application system.



Figure 8 presents RMSE performance comparisons at different snapshots L. Where M = 8, N = 6, SNR is varied from 0 dB to 20 dB. We can observe that the RMSE performance is improved with the increase of snapshot L. When L increases, we get more samples to estimate the propagator matrix more accurately, and so the angle estimation performance is enhanced.



Figure 9 and Figure 10 present RMSE versus different values of M or N, respectively. The snapshot L is fixed at 200. In addition, it is indicated that RMSE performance is improved when M or N increases. Multiple sensors enhance the aperture of the array as well as diversity gain. Therefore, it can improve the angle estimation performance.


Figure 9. RMSE comparison at different N with M = 8.
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Figure 10. RMSE comparison at different M with N = 8.
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The estimation performance for two closely spaced sources is also investigated. Figure 11 depicts the scatter plot of 2D-DOA estimation results for two closely spaced sources. Where M = 8, N = 10, SNR = 10 dB, the snapshot L is 200. It is shown that our algorithm works well for the closely spaced sources.


Figure 11. Scatter plot with closely spaced sources.
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6. Conclusions


We have presented a novel direction finding algorithm for uniform rectangular planar array. The characteristics of noncircular signal and Euler’s transformation are exploited to get the real-valued rectangular array data in a new way. The proposed algorithm can reduce the computational amount since it does not refer to plural operation and the eigenvalues’ decomposition of the covariance matrix. The theory analysis and simulation results verify that our algorithm is more suitable for real-time processing system in engineering.
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