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Abstract: Gaze-based interaction (GBI) techniques have been a popular subject of research in the last
few decades. Among other applications, GBI can be used by persons with disabilities to perform
everyday tasks, as a game interface, and can play a pivotal role in the human computer interface
(HCI) field. While gaze tracking systems have shown high accuracy in GBI, detecting a user’s gaze
for target selection is a challenging problem that needs to be considered while using a gaze detection
system. Past research has used the blinking of the eyes for this purpose as well as dwell time-based
methods, but these techniques are either inconvenient for the user or requires a long time for target
selection. Therefore, in this paper, we propose a method for fuzzy system-based target selection for
near-infrared (NIR) camera-based gaze trackers. The results of experiments performed in addition to
tests of the usability and on-screen keyboard use of the proposed method show that it is better than
previous methods.
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1. Introduction

The field of gaze-based interaction (GBI) has witnessed a significant growth in recent years, in
response to certain long-standing challenges in gaze-tracking research. GBI helps persons with disabilities
communicate with other people or devices. In 1982, Bolt first showed that the gaze can facilitate
human-computer interface (HCI) implementation [1]. Using gaze input to perform tasks or computer
operations eventually became popular among users with motor disabilities. Mauri et al. proposed
the idea of using computer-assistive technologies, i.e., joysticks, trackballs, virtual keyboards, and eye
tracking devices, to interact with computers [2]. These technologies, however, do not work well for
severely disabled people who cannot use certain parts of their body. Alternative communication devices
such as electromyogram (EMG), electroencephalogram (EEG), and electro-oculogram (EOG) [3,4] are
better options, but are expensive and unavailable to most people. They may also be frustrating for users
as they require electrodes to be attached to the body. Hence, camera-based gaze detection methods
are a desirable alternative. Gaze tracking methods on the 2D monitor of a desktop computer have
been widely studied [5–7]. However, there are some limitations to these methods, i.e., the inability to
control 3D space, and significant degradation in accuracy due to variations in the Z-distance between
the monitor and a user’s eyes. Therefore, to control home appliances in 3D space, a non-wearable gaze
tracking system has been proposed [8]. Increasing the accuracy of gaze detection has primarily been
emphasized in past studies on gaze detection, but few have tackled target selection using a detection
system. To the best of our knowledge, past research used methods based on the clicks of a mouse
or a keyboard, the dwell time of the gaze position, and target selection by number of eye blinks.
However, these methods have limitations in terms of selection speed as well as user convenience.
A detailed summary past research on target selection in gaze trackers is provided in the next section.
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2. Related Work

To select the target of interest according to a user’s intention, approaches to locating the target
of his/her gaze can be categorized into gaze-based and visual saliency-based methods. The former
category includes eye blinks, dwell time, on- and off-screen buttons, keystrokes, eyebrow raises, and
speech. Blinking can be used to select letters from the alphabet that can solve issues in eye typing where
gaze direction is utilized to point to these letters [9]. Blinking for commands and normal blinking are
usually difficult to discriminate [10]; thus, eyes that are closed for a lengthy period may be required for
such discrimination, which can affect performance and the user’s convenience. The dwell time-based
method seems to be a better and more natural approach compared to the blinking-based method [11].
However, for this approach, the gaze tracking system requires knowledge of the position and duration
of the user’s gaze on the selected object. Past research [12–14] has considered methods that use the
dwell time of the position of a user’s gaze. Further, an approach proposed by Huckauf et al., instead of
using dwell time and blink-based selection, accomplishes target selection by using antisaccades [15].
Ware et al. proposed selecting the object of interest by fixation and subsequent saccade towards on/off
buttons [16].

In past research [11–23], one modality has been used to point to or to select the object of interest.
However, these methods typically suffer from problems whereby the object is selected every time the
user looks at it, intentionally or unintentionally. This problem was first pointed out as the “Midas
touch problem” [17]. It needs to be avoided, and the object of interest to a user should be discriminated
from unintentionally gazes at points. The selection of the object of interest by eye blink encounters
difficulty in discriminating intentional from unintentional blinks. Likewise, dwell time-based selection
encounters the same type of problem, i.e., if the dwell time is very short, it faces the same problem
described above: the Midas touch problem; on the other hand, if dwell time is too long, it can degrade
performance as well as become tire the user [18]. A possible solution is to use graphical on/off screen
buttons, but this too can be problematic, as it can interfere with the user’s intention with regard to the
relevant object and deviate from the object of interest. Some past work [19,20] has proposed the use of
manual inputs, such as keystrokes, combined with gaze control for pointing at and selecting objects of
interest. Surakka et al. introduced the idea of a frowning face to selecting the object of interest [21].
The method based on eye blinks or eyebrow raises was proposed by Grauman et al., where these
were used to point at and select the object and convey the relevant command [22]. Tuisku et al. used
gazing and smiling to this end, where gazing was used to point to the object and smiling as a selection
tool [23]. Although these techniques performed well for their intended purposes, they have limited
accuracy and speed of selection according to the user’s intention.

To solve the problems of single modality-based methods, multiple modality-based methods need
to be explored. The authors of [24] proposed the idea of a multiple modality-based method based
on pupil accommodation and dwell time. However, because they did not consider information from
the monitor image (textural or high-frequency information in the area of the monitor image at which
a user gazes), there is room for further improvement in detecting the user’s gaze for target selection.
Furthermore, the accurate measurement of pupil accommodation and dwell time is dependent on the
correct detection of pupil size and the centers of the pupil and the corneal glint. Therefore, incorrect
detection can affect system performance.

Researchers have also shown considerable interest in visual attention models that can be
implemented to classify of intentional and unintentional gazes [25]. Saliency-based models have been
used to measure the possibility of a location to attract the observer’s attention. A saliency map can be
obtained from a visual image for gaze points. Attaining visual information is a low-cost preprocessing
step through which visual systems (biological or artificial) select the most noticeable information
from a given scene [26]. Saliency prediction with higher accuracy has a number of applications in
salient object detection, automatic vehicle guidance, scene understanding, robot navigation, specifically
fast regions of interest (ROI) selection in complex visual scenes, and so on [27]. A large number of
saliency-based methods for detecting intentional gazes have been proposed [28–36]. Most models of
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saliency are based on bottom-up image cues as they are biologically inspired. Many theoretical models
are based on the feature integration theory proposed by Treisman and Gelade [37]. They analyzed
the visual features that are combined to direct human attention over conjunction search tasks. A feed
forward model to combine these features with the concept of saliency map was proposed by Koch and
Ullman [38], which was implemented and verified by Itti et al. [39]. Different saliency models are based
on low-, middle-, and high-level features. All models have different assumptions and methodologies
focusing on different aspects of human visual behavior. These models can mainly be categorized into
bottom-up, top-down, and learning-based approaches [27].

In the bottom-up approach [39–45], saliency models use biologically reasonable low-level features
depend on computational principles proposed by Itti et al. [39]. On the basis of image features, i.e., color,
intensity, and orientation, they derived bottom-up visual saliency based on center-surround differences
across multi-scale image features. Bruce and Tsotsos [40] proposed attention for an information
maximization (AIM) saliency model, but it is weak in detecting local dissimilarities (i.e., local vs.
global saliency). A graph-based visual saliency (GBVS) model was proposed by Harel et al. based
on the assumption that image patches that are different from surrounding patches are salient [41].
Like Itti et al.’s method, GBVS also fails to detect global visual saliency. Liu et al. [42] identified ROI by
conditional random fields (CRF) using three types of features: multi-scale contrast, center-surround
histogram, and color spatial distribution. Kong et al. proposed the idea of a multi-scale integration
strategy to combine various low-level saliency features [43]. Fang et al. proposed compressed domain
saliency detection using color and motion characteristics [44]. Jiang et al assumed that the area of
interest of visual attention has a shape prior, and detected salient regions using contour energy
computation [45]. Low-level feature-based methods perform well in general but do not consider
semantic information, such as faces, humans, animals, objects, and text.

To solve this problem, the top-down approach has been researched [46–49]. Several studies
have adopted this approach and attained performance improvement by adding high-level features.
Cerf et al. [46] added a high-level factor, face detection, to Itti’s model and showed that it enhances
performance. Judd et al. [47] proposed a saliency detection model by learning the best weights for all
combined features using support vector machines (SVMs). Chang et al. [48] subsequently proposed the
idea of an object-based saliency model by relying on the claim that observers tend to look at the centers
of objects. Hence, top-down models have highlighted the importance of high-level and semantic
features, e.g., faces, animals, the image-centric bias, and the object-centric bias. A major problem with
this approach is that it is training dependent, and often fails to detect salient features if its models are
not trained. To consider the limitations of the bottom-up and top-down approaches, the learning-based
method has been researched [50–57]. An AdaBoost-based model for feature selection was proposed by
Borji [52]. It models complex input data by combining a series of base classifiers. Reingal et al. observed
that there were different statistics for fixated patches compared to random patches [53]. Borji et al. [56]
later combined two simple methods (multiplication and sum) using normalization schemes (identity,
exponential, and logarithmic) to combine saliency models. The evolutionary optimization algorithm
has been used by some researchers to find optimal sets of combination weights [57].

All saliency-based methods can provide only information concerning regions where people tend to
gaze with higher probability, instead of accurate intentional gaze position. Therefore, to overcome the
limitations of past work on gaze-based methods as well as visual saliency-based methods, we propose
a fuzzy system-based target selection method for near-infrared (NIR) camera-based gaze trackers
by fusing the gaze-based method with the bottom-up visual saliency-based method. Our method
combines multi-modal inputs, i.e., pupil accommodation measured by template matching, short dwell
time, and Gabor filtering-based texture information of visual saliency using a fuzzy system. In the
following four ways, our research is novel compared to past research. The first, second, and third
points represent major novelties whereas the fourth is a minor one:
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- First, a new and improved method based on the Chan–Vese algorithm is proposed for detecting
the pupil center with a boundary as well as the glint center.

- Second, we use three features, i.e., change in pupil size using template matching (to measure pupil
accommodation), change in gaze position during short dwell time, and Gabor filtering-based
texture information of monitor image at gaze target. A fuzzy system is then used with these
three features as inputs, and the decision concerning the user’s target selection is taken
through defuzzification.

- Third, an optimal input membership function for fuzzy system can be obtained based on the
maximum entropy criterion.

- Fourth, through comparative experiments using an on-screen keyboard on a previous dwell
time-based method, the performance and usability of our method were verified in a real
gaze-tracking environment.

In Table 1, we summarize the comparison of the proposed with existing methods.

Table 1. Comparison of previous and proposed methods.

Category Method Advantages Disadvantages

Gaze-based methods

Use a single modality, i.e.,
eye blink [9,22], dwell
time [12–14],
antisaccades [15], on and off
screen buttons [16], key
strokes [19,20], face
frowning [21], eye brow
raises [22], and smiling [23]

- Single sensing modality
is used, and so is simpler
in design compared to
the method based on
multiple modalities

- Fewer input data items
are required compared
to multiple modalities

- Lower accuracy of selection of
target than methods based on
multiple modalities

- Completely dependent on a single
modality; minor errors in sensing
data can badly affect overall results

- Some methods using a single
modality are not feasible for users
with high levels of motor
disabilities, especially for those who
can only move their eyes [19–23]

Use multiple modalities, i.e.,
pupil accommodation and
dwell time [24]

- Accuracy of intentional
object selection is high
compared to methods
based on single modality

- There is room for further
enhancement of detecting user’s
gaze for target selection

- Incorrect detection of pupil size and
the centers of pupil and corneal
glint can significantly
affect accuracy

Visual saliency-based
methods

Bottom-up approach [39–45]
- Performs well for

detecting
low-level features

- Semantic information is
not considered

Top-down approach [46–49]
- Performs well for

high-level features

- Performance can be affected by the
correct detection of high-level
features, i.e., face detection

Learning-based
method [50–57]

- Efficient for complex
input data

- Performs well for particular
category of data on which it
is trained

Fusing gaze-based
method with visual
saliency-based method

Combining pupil
accommodation with
template matching, short
dwell time, and the texture
information of visual
saliency by fuzzy system
(proposed method)

- Higher accuracy of
target selection

- Less affected by the
incorrect detection of
pupil and corneal glint

- More input data needs to be
processed compared to gaze-based
and visual saliency-based methods

The remainder of this paper is organized as follows: in Section 3, our proposed system and
methodology are introduced. The experimental setup is explained and the results are presented in
Section 4. Section 5 contains our conclusions and discussion of some ideas for future work.
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3. Target Selection by Using Pupil Accommodation with Template Matching, Change in Gaze,
and Texture Information from a Monitor Image of Gaze Target

3.1. Overview of Proposed Method

In the proposed method, images of the eye were taken using an image acquisition system on
a commercial Web camera, i.e., a Logitech (Lausanne, Switzerland) C600 [58] with a universal serial
bus (USB) interface, and near-infrared (NIR) was used as source of illumination, with 8 × 8 NIR
light-emitting diodes (LEDs) for our gaze tracker. The use of NIR illuminator served three important
purposes [59,60]: first, it minimized the impact of different ambient light conditions; second, it
distinguished the boundary of the pupil; third, as NIR is barely visible, it can minimize any interference
while using the device in applications. In detail, the NIR light of shorter wavelength (shorter than
800 nm) has the tendency of making the iris darker (compared to the case using NIR light of wavelength
greater than 800 nm). Therefore, the boundary between the pupil and the iris in the image becomes
less distinct, and the error associated with locating the pupil boundary increases. On the other hand,
NIR light of longer wavelength (longer than 800 nm) has the opposite tendency of making the iris
brighter. Therefore, the boundary between the pupil and the iris in the image becomes more distinct,
and the error associated with locating the pupil boundary is reduced. However, the camera image
sensor is usually less sensitive to light according to the increase in wavelength, which means that the
image captured by light of wavelength longer than 900 nm becomes darker, and the correct detection
of the pupil boundary is consequently difficult. By considering all these factors, an NIR illuminator of
850 nm was adopted in our gaze tracking system.

Images of 1600 × 1200 pixels were captured at a rate of 30 frames per second (fps). Larger eye
images were required to analyze pupil size variations during the user’s gaze for target selection.
Thus, we used a zoom lens to obtain these images. For pupil accommodation, we need a gaze tracking
system that can measure changes in pupil size. Unfortunately, not all commercial gaze tracking systems
provide this function [61–64]. Therefore, we implemented our own system.

Figure 1 shows the flowchart of our proposed system. An image of the user’s face is first captured
by our gaze tracking camera, and the search area of the left or right eye is defined (as shown in
Figure 2b). Within this area, the pupil center with boundary and the glint center are found (see the
details in Section 3.2). The bright spot on the corneal surface caused by the NIR light is referred
to as glint. In the initial step, the user is instructed to observe four positions on the monitor for
user-dependent calibration. Pupil size is then measured based on the accurate boundary of the pupil
region (see the details in Section 3.3). The features are then calculated to detect the user’s gaze for target
selection. Feature 1 (F1) represents pupil accommodation, i.e., it is measured by template matching
with the graph of change in pupil size with respect to time (see the details in Section 3.3). The change
in gaze position calculated over a short dwell time is referred to as feature 2 (F2) (see the details in
Section 3.4). Furthermore, the texture information of the image on the monitor at the gaze target is
measured by Gabor filters and is used as feature 3 (F3) (see the details in Section 3.5). These three
feature values are combined using a fuzzy system, and the user’s gaze for target selection can be
detected based on the fuzzy output (see the details in Section 3.6).
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Figure 2. Example of detecting pupil and glint of right eye. (a) Input face image; (b) Search area of
right eye; (c) Binarized image; (d) Approximate pupil area detected by CHT, and eye ROI defined on
the basis of approximate pupil area; (e) Pupil and glint boundaries detected by Chan–Vese algorithm
with adaptive mask.
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3.2. Detection of Pupil and Glint Centers

The correct detection of the pupil region and the glint center is a prerequisite for obtaining
accurate feature values for detecting the user’s gaze for target selection. In our research, the pupil
and glint regions (with geometric centers) were detected as shown in Figure 3, which corresponds to
Steps 2–4 of Figure 1.

The approximate pupil area is first extracted as follows: to find dark pixels in the acquired
image, binarization based on histogram thresholding is performed (Step 1 in Figure 3). Morphological
operations and media filtering operations are executed to remove noise (Step 2 in Figure 3), and
the approximate pupil area is detected (Step 3 of Figure 3) based on the circular Hough transform
(CHT) [65]. The CHT is a basic technique for detecting circular objects in an image. The concepts of
voting and local maxima, i.e., an accumulator matrix, are used to select candidate circles. The ROI
including the eye is defined in the input image on the basis of the approximated pupil region (Step 4 of
Figure 3). The accurate boundaries of the pupil and the glint are then located within the ROI using the
Chan–Vese algorithm [66] based on an adaptive mask (Steps 5–10 of Figure 3). It depends on global
properties, i.e., gray-level intensities, contour lengths, and regional areas, rather than local properties
such as gradients. The main idea behind the Chan–Vese algorithm is active contour models to evolve
a curve from a given image uo to detect objects in the image. In the classical active contour and snake
models [67], an edge detector is used that depends on the gradient of image uo to stop the evolving
curve on the boundary of the required object. By contrast, in the Chan–Vese algorithm, the model is
based on trying to separate the image into regions based on intensities. We minimize the fitting terms
and add some regularizing terms like the length of the curve C and/or the area of the region inside C.
We want to minimize the energy function using level set φ(x, y) formulation [66]:

C = ∂ω =

{(
x, y
)

ε Ω : φ
(

x, y
)
= 0

}
cin = ω =

{(
x, y
)

ε Ω : φ
(

x, y
)
> 0

}
cout = Ω/ω =

{(
x, y
)

ε Ω : φ
(

x, y < 0
} (1)

where C = ∂ω is the curve where ω ε Ω, and Ω is the planar domain. cin = ω, cout = Ω/ω represent
regions inside and outside curve C, respectively. The energy function F(cin, cout, C), is defined by:

F(cin, cout, C) = µ·Length(C) + λin
∫

in(C)|uo(x, y)− cin|2dxdy

+λout
∫

out(C)|uo(x, y)− cout|2dxdy
(2)

In the above, λin, λout, and µ are the positive constants, and uo(x, y) is the given input image.
In order to enhance processing speed and accuracy, we propose an enhanced Chan–Vese algorithm
with an adaptive mask based on the approximate pupil region (Steps 9 and 10 of Figure 3) (we use the
constraint where (x, y) of Equation (2) belongs to the approximated pupil area). The mask parameters
change according to pupil size and location. The CHT provides the rough radius and center of the pupil
area of Step 3 in Figure 3. Based on this information, an accurate pupil boundary can be obtained by
the Chan–Vese algorithm with adaptive mask, as shown in Steps 10 and 11 of Figure 3. Moreover, the
rough size and location of the glint are detected by histogram thresholding and CHT, as shown in
Steps 5 and 6 of Figure 3. Based on this information, an accurate glint boundary can be obtained by the
Chan–Vese algorithm with adaptive mask as shown in Steps 8 and 11 of Figure 3 (we use the constraint
whereby (x, y) of Equation (2) belongs to the approximated glint area). Using the boundaries of the
pupil and the glint, their geometric centers are determined as shown in Step 12 of Figure 3.
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Figure 2 shows the resulting images of the procedure. Based on these detection results of the pupil
and glint areas, two features for inputs to the fuzzy system are calculated, as shown in Sections 3.3
and 3.4.

3.3. Calculating Feature 1 (Change in Pupil Size w.r.t. Time)

As the first feature used to detect the user’s gaze for target selection, the change in pupil size
with respect to time is measured by template matching. The authors of [24] measured pupil size based
on the lengths of the major and minor axes of an ellipse fitted along the pupil boundary. The actual
shape of the pupil is not elliptical, as shown in Figure 2e, and, according to [68], pupil detection based
on ellipse fitting can yield incorrect pupil size. Therefore, in our research, pupil size is measured
by counting total number of pixels inside the pupil boundary detected by the enhanced Chan–Vese
method. A graph representing the in pupil size with respect to time is then constructed, and a moving
average filter consisting of three coefficients is applied to it to reduce noise.

As mentioned above, the speed of image acquisition of our gaze tracking camera was 30 frames
per second. Hence, an image frame was captured in 33.3 ms (1/30 s). To increase the speed of target
selection, we used a window of size 10 frames (approximately 333 ms) to measure pupil dilation and
constriction over time. Even with a short time window, our method can detect the user’s gaze for
target selection because three features are simultaneously used.
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Past research has shown that cognitive tasks can affect changes in pupil size [69,70]. Based on this
concept, the size of the pupil usually decreases in case the gaze is used for target selection, and we
can define the shapes resulting from changes in pupil size as shown in Figure 4. Using these shapes,
template-based matching is performed with a given window size. Template-based matching is the
measure of the similarity between the graph of dilation and constriction in pupil size with respect to
time and the expected graph of pupil behavior (template graph shown in Figure 4) employing the
user’s gaze for target selection. Template-based matching compares these two graphs using the sum
of square differences (SSD). The SSD and the final template matching score can be obtained by the
following equations:

SSD(pj, qij) =
10

∑
j=1

(
pj − qij

)2
(3)

Template matching score = min
i=1, 2, 3

SSD
(

pj, qij

)
(4)

In the above, pj is the jth value of pupil size in the graph of the input, and qij is the jth value of the
pupil size of the ith template graph. We used three template graphs as shown in Figure 4. The starting
position of the template matching window was detected based on changes in gaze position, i.e., change
in the horizontal and vertical gaze directions. The template matching score of Equation (1) decreased
in case the user’s gaze was employed for target selection and increased in other cases. The template
matching score was used as feature 1. Since the maximum and minimum values of pupil size can show
individual variation according to people, the value of pupil size was normalized by min-max scaling
before template matching, as shown in Figure 4. Although one previous study [24] used a similar
concept to measure the change in pupil size through peakedness, this method has the disadvantage
whereby the accurate position of the peak needs to be detected in advance in the graph for pupil size,
which can be affected by noise in the input data. In contrast to this, our method does not need to detect
the position of the peak, and is more robust against noise in the input data (see Section 4).
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3.4. Calculating Feature 2 (Change in Gaze Position within Short Dwell Time)

The detected pupil center and glint center (explained in Section 3.2) are used to calculate the gaze
position, i.e., feature 2. Initial user calibration is performed to calculate gaze position. For calibration,
each user is instructed to examine four positions close to the corners of the monitor [24]. From this,
four pairs of pupil centers and glint centers are obtained, as shown in Figure 5.
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As the two positions are obtained from the left and the right eyes, the final gaze position is 
calculated by taking the average of these two gaze positions. Gaze position is not usually moved in 

Figure 5. Four images showing the detected centers of glint and the pupil, when a person is looking at
the (a) upper-left; (b) upper-right; (c) lower-left; and (d) lower-right calibration positions on a monitor.

The position of the center of the pupil is compensated for by that of the glint center, which can
reduce the effect of head movement on the variation in gaze position. A geometric transform matrix
can be calculated with these four pairs of detected pupil centers and glint centers [24]. This matrix
defines the relationship between the region occupied by the monitor and that by the movable pupil, as
shown in Figure 6.
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Then, geometric transform matrix is calculated using Equation (5), and the position of the user’s
gaze (Gx, Gy) is calculated by Equation (6):

[
Mx0 Mx1 Mx2 Mx3

My0 My1 My2 My3

]
=

[
a b
e f

c d
g h

]
Px0 Px1 Px2 Px3

Py0 Py1 Py2 Py3

Px0Py0 Px1Py1 Px2Py2 Px3Py3

1 1 1 1

 (5)

[
Gx

Gy

]
=

[
a b c d
e f g h

]
P′x
P′y

P′xP′y
1

 (6)

As the two positions are obtained from the left and the right eyes, the final gaze position is
calculated by taking the average of these two gaze positions. Gaze position is not usually moved in
case of the user’s gaze for target selection. Therefore, the Euclidean distance (∆zi) of gaze positions
between the given (xi, yi) and the previous image frames (xi−1, yi−1) is calculated as shown in the
Equation (7). Then, feature 2 (change in gaze position within a short dwell time) is calculated from the
estimated starting (time) position of the gaze, i.e., S of Equation (8), over a specified short dwell time
(the window size W of Equation (8)), and feature 2 becomes smaller in case of the employment of the
user’s gaze for target selection:

∆zi =
√
(xi − xi−1)

2 +
(
yi − yi−1

)2 (7)

Feature 2 (change in gaze position within short dwell time) =
W+S−1

∑
i=S

∆zi (8)

Although a previous study [24] used a similar concept to measure changes in gaze position, this
method involves measuring the change in gaze position by selecting the larger of two changes in
gaze position along the horizontal and the vertical directions. For example, if the changes in gaze
position are, respectively, 3 and 4 along the horizontal and vertical directions, feature 2 measured by
this method is 4 instead of 5 (

√
32 + 42). By contrast, our method measures the change in gaze position

both along the horizontal and the vertical directions, and feature 2 is measured as 5 in this case.

3.5. Calculating Feature 3 (the Texture Information of Monitor Image at Gaze Target)

Baddeley et al. and Yanulevskaya et al. found that edge frequencies are strong contributors to the
location of the user’s gaze, and have higher correlations to it than other factors [71,72]. Based on this
concept, we extract edge-based texture information from the expected gazing location using a Gabor
filter [73], and use this information as feature 3 to detect the user’s gaze for target selection. The region
where the object of interest is located has a larger amount of texture than where it is not. A 2D Gabor
filter in the spatial domain is defined as follows:

g(x, y) =
(

1
2πσxσy

)
exp
[
−1

2

(
x2

σx2 +
y2

σy2

)
+ 2π jWx

]
(9)

where g(x, y) is defined as the Gabor function along the x- and y-axes. σx and σy are standard
deviations of the function along the x- and y-axes, respectively. W is the radial frequency of a sinusoid.
We consider only the real part of the Gabor filter for fast processing. To obtain the Gabor wavelet,
g(x, y) in Equation (9) is used as the mother Gabor wavelet. The Gabor wavelet is then obtained by
the scaling and rotation of g(x, y) as shown in Equation (10):

gs(x, y) = a−mg
(

x′, y′
)

,
(

x′ = xcos θ + ysin θ, y′ = −xsin θ + ycos θ
)

(10)
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where θ is the filter orientation expressed by θ = nπ/K, K is the number of the filter orientations (n is
the integer number), a−m is the filter scale, and m = 0, . . . , P, P + 1 is the number of scales. In order to
extract the accurate texture, we use 16 Gabor wavelet filters with K = 4 and P = 3, as shown in Figure 7.
The average number of magnitudes obtained using Gabor wavelet filters within the ROI is used as
feature 3. For this, the ROI for the application of the Gabor filter is defined based on the user’s gaze as
shown in Figure 8. According to the gaze position, the magnitude of texture in the ROI varies, and the
user’s gaze shows a high value for feature 3, due to the complex texture of the monitor image.Sensors 2017, 17, 862 12 of 37 
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3.6. Fuzzy Logic System for Detecting User’s Gaze for Target Selection

3.6.1. Explanation of Fuzzy Membership Functions

To detect the user’s gaze for target selection, our method uses a fuzzy system with three input
features, i.e., features 1–3 (explained in Sections 3.3–3.5), as shown in Figure 9. As explained in
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Sections 3.3–3.5, features 1 and 2 are smaller, whereas feature 3 is larger in case the user’s gaze is
used. Through normalization based on min-max scaling, these three features are made to range from
0 to 1. To make these three features consistent with one another, features 1 and 2 are recalculated by
subtracting them from the maximum value (1). Therefore, features 1–3 are larger in when the user’s
gaze is used, and are used as inputs to the fuzzy logic system. Based on the output of the fuzzy system,
we can determine whether the user is gazing at the selected target.Sensors 2017, 17, 862 13 of 37 
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Figure 10 shows the membership functions for the three input features 1–3. The input values were
classified into two classes in the membership function: Low (L) and High (H). In general, these value
classes are not separated, and the membership functions are defined to have overlapping areas, as
shown in Figure 10. With a small number of input data items, we obtained the distributions of features
1–3 as shown in Figure 10 and, based on the maximum entropy criterion [74], designed the input
membership functions. For fair experiments, these data were not used for all experiments reported in
Section 4.

We first define the rough shape of the input membership functions as linear by considering
processing speed and the complexity of problem because such functions have been widely used in
fuzzy applications [75–77]. The defined input membership functions are as follows:

µL_ f eature i(x) =


1 for 0 ≤ x ≤ aL_i

pL_ix + qL_i for aL_i ≤ x ≤ bL_i
0 for bL_i ≤ x ≤ 1

 (11)

µH_ f eature i(x) =


0 for 0 ≤ x ≤ aH_i

pH_ix + qH_i for aH_i ≤ x ≤ bH_i
1 for bH_i ≤ x ≤ 1

 (12)

In Equations (11) and (12), i = 1, 2, and 3. µL_ f eature i(x) is the L membership function of feature i
whereas µH_ f eature i(x) is its H membership function. Then, we can obtain the following equations:

pL_ f eature i = ∑1
x=0 mL_ f eature i(x)µL_ f eature i(x) (13)

pH_ f eature i = ∑1
x=0 mH_ f eature i(x)µH_ f eature i(x) (14)
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1 and 3.

In Equations (13) and (14), i = 1, 2, and 3. µL_ f eature i(x) is the L membership function of feature i
of Equation (11), whereas µH_ f eature i(x) is the H membership function of feature i in Equation (12).
In addition, mL_ f eature i(x) is the L (data) distribution of feature i (non-gazing data of Figure 10),
whereas mH_ f eature i(x) is the H (data) distribution of feature i (gazing data for target selection of
Figure 10). Based on Equations (13) and (14), the entropy can be calculated as follows:
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H(aL_i, bL_i, pL_i, qL_i, aH_i, bH_i, pH_i, qH_i) = −pL f eaturei log
(

pL f eaturei

)
− pH f eaturei log

(
pH f eaturei

)
(15)

where i = 1, 2, and 3. Based on the maximum entropy criterion [74], the optimal parameters
of (aL_i, bL_i, pL_i, qL_i, aH_i, bH_i, pH_i, qH_i) of feature i are obtained by being chosen when the
entropy H(aL_i, bL_i, pL_i, qL_i, aH_i, bH_i, pH_i, qH_i) is maximized. From this, we can obtain the
input membership functions of features 1–3.

These membership functions are used to convert input values into degrees of membership.
In order to determine whether the user’s gaze for target selection occurs, the output value is also
described in the form of a linear function from the membership functions, as in Figure 11 that shows
the three functions of L, M, and H. Using these output membership functions, the fuzzy rule table, and
a combination of the defuzzification method with the MIN and MAX rules, the optimal output value
can be obtained (see details in Section 3.6.3)
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3.6.2. Fuzzy Rules Based on Three Input Values

As explained in Section 3.6.1 and Figure 10, the values of features 1–3 are larger in case the user’s
gaze is employed for target selection. We define the output of our fuzzy system as “H” in case it is,
and as “L” when it is not. Based on this, we define the fuzzy rules shown in Table 2.

Table 2. Fuzzy rules based on features 1–3.

Feature 1 Feature 2 Feature 3 Output of Fuzzy System

L L L L
L L H L
L H L M
L H H H
H L L L
H L H M
H H L H
H H H H

3.6.3. Determining the User’s Gaze for Target Selection Based on Defuzzification Methods

Using the three normalized input features, six corresponding values can be acquired using the
input membership functions as shown in Figure 12. Three functions are defined as g f 1(·), g f 2(·), and
g f 3(·). The corresponding output values of the three functions with input values of f 1(feature 1),
f 2(feature 2), and f 3(feature 3) are denoted by (gL

f 1, gH
f 1), (gL

f 2, gH
f 2), and (gL

f 3, gH
f 3). For example,

suppose that the three input values for f 1, f 2, and f 3 are 0.30, 0.50, and 0.45, respectively, as shown in
Figure 12. The values of (gL

f 1, gH
f 1), (gL

f 2, gH
f 2), and (gL

f 3, gH
f 3) are (0.75(L), 0.25(H)), (0.00(L), 1.00(H)),
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and (0.32(L), 0.68(H)), respectively, as shown in Figure 12. With these values, we can obtain the
following eight combinations: (0.75(L), 0.00(L), 0.32(L)), (0.75(L), 0.00(L), 0.68(H)), (0.75(L), 1.00(H),
0.32(L)) . . . , and (0.25(H), 1.00(H), 0.68(H)).

Sensors 2017, 17, 862 16 of 37 

 

on the basis of fuzzy logic rules from Table 2 (if H, L, and H, then M), values of 0.00(M) and 0.68(M) 
are finally determined by the MIN and MAX methods, respectively. 

 
(a)

 
(b)

 
(c)

Figure 12. Finding the output value of the input membership function for three features: (a) feature 1; 
(b) feature 2; and (c) feature 3. 

Figure 12. Finding the output value of the input membership function for three features: (a) feature 1;
(b) feature 2; and (c) feature 3.



Sensors 2017, 17, 862 17 of 35

The proposed method defines which of L and H can be used as inputs for the defuzzification
step using the eight rules in Table 2. The MIN or MAX method is commonly used for this purpose.
In the MIN method, the minimum value is selected from each combination set of three members and
used as input for defuzzification. For the MAX method, the maximum value is selected and used as
defuzzification input.

For example, for a combination set of (0.25(H), 0.00(L), 0.68(H)), the MIN method selects the
minimum value (0.00) as input. For the MAX method, the maximum value (0.68) is selected. Then, on
the basis of fuzzy logic rules from Table 2 (if H, L, and H, then M), values of 0.00(M) and 0.68(M) are
finally determined by the MIN and MAX methods, respectively.

All values calculated by the MIN and MAX rules with eight combinations of this example are
listed in Table 3. We refer to these values as “inference values” (IVs). As shown in Table 3, these IVs
are used as inputs for defuzzification to obtain the output. The MIN and MAX rules were compared in
our experiments.

Table 3. IVs obtained with eight combinations.

Feature 1 Feature 2 Feature 3
IV

MIN Rule MAX Rule

0.75(L) 0.00(L) 0.32(L) 0.00(L) 0.75(L)
0.75(L) 0.00(L) 0.68(H) 0.00(L) 0.75(L)
0.75(L) 1.00(H) 0.32(L) 0.32(M) 1.00(M)
0.75(L) 1.00(H) 0.68(H) 0.68(H) 1.00(H)
0.25(H) 0.00(L) 0.32(L) 0.00(L) 0.32(L)
0.25(H) 0.00(L) 0.68(H) 0.00(M) 0.68(M)
0.25(H) 1.00(H) 0.32(L) 0.25(H) 1.00(H)
0.25(H) 1.00(H) 0.68(H) 0.25(H) 1.00(H)

Several defuzzification methods are compared on fuzzy systems. We considered five of them,
i.e., first of maxima (FOM), last of maxima (LOM), middle of maxima (MOM), center of gravity (COG),
and bisector of area (BOA) [76–79]. In each defuzzification method excluding COG and BOA, the
maximum values of IVs were used to calculate the output value. The maximum IVs were IV1(L) and
IV2(M), as shown in Figure 13a. In the FOM defuzzification method, as the name implies, the first value
after defuzzification is selected as the optimal weight value, and is represented as w1 in Figure 13a.
The last defuzzification value, i.e., w3 is the optimal weight value selected by the LOM method. The
method that shows that the optimal weight value is obtained from the middle value of the optimal
weight values of FOM and LOM is referred to as the MOM method, i.e., (wMOM = 1

2 (w1 + w3)).
The output scores for the methods using the COG and the BOA are calculated differently

from those of other defuzzification methods. The COG method is also known as center-of-area
defuzzification. It calculates the output score based on the geometrical center of the non-overlapping
regions, and is formed by the regions defined by all IVs. As shown in Figure 13b, regions R1, R2, and
R3 are defined based on all IVs, where region R1 is the quadrangle defined by connecting four points
(0, IV1(L)), (w1, IV1(L)), (0.5, 0), and (0, 0), R2 is the quadrangle defined by connecting four points (w2,
IV2(M)), (w3, IV2(M)), (1, 0), and (0, 0), and R3 is that defined by connecting four points (w4, IV3(H)),
(1, IV3(H)), (1, 0), and (0.5, 0).

Finally, the optimal weight value of the fuzzy system (w5) is calculated from the center of gravity
of regions R1, R2, and R3 (considering the overlapping regions of R1, R2, and R3 only once), as shown
in Figure 13b. The BOA is calculated by a vertical line (w6) that divides the region defined by the IVs
into two sub-regions of equal area, which is why it is called the bisector method. Following this, our
fuzzy system determines that user gazes at the position for target selection, if the output score of the
fuzzy system is greater than a threshold defined for the fuzzy system.
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4. Experimental Results

The performance of the proposed method for detecting user gaze for target selection was measured
through experiments performed with 15 participants, where each participant attempted two trials
for each of three target objects, i.e., a teddy bear, a bird, and a butterfly, displayed at nine positions
on a 19-inch monitor, as shown in Figure 14. That is, three experiments were performed with these
objects (teddy bear, bird, and butterfly) with each at nine positions on the screen. We collected 270 data
items (15 participants × 2 trials × 9 gaze positions) for gazing for target selection, i.e., true positive
(TP) data, and the same number of non-gazing data, i.e., true negative (TN) data, for each of the
three experiments. Most participants were graduate students, and some of them were faculty or staff
members of our university’s department. They were randomly selected by considering the variation
in eye characteristics with age, gender, and nationality. All participants voluntarily participated in
our experiments. Of the 15, five wore glasses and four people wore contact lenses. The remained
6 people did not wear glasses and contact lens. The ages of the participants ranged from 20 s to 40 s
(mean age 29.3 years). Nine participants were male, and the other 6 ones were female. We made
sure that participants of different nationalities were involved in our experiments: one Mongolian, one
Tanzanian, two Pakistanis, four Vietnamese, and seven Koreans. Before the experiments, we provided
the sufficient explanations of our experiments to all participants, and obtained informed (written)
consents from all the participants.
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In the first experiment, we compared the accuracy of our method, in detecting the boundary
between the pupil and the glint as well as the center of each, with a previous method [24]. As shown in
Figure 15b,c, the boundary and center of the pupil detected by our method were closer to the ground
truth than those calculated by the previous method. Moreover, as shown in Figure 15d,e, the detected
boundary and center of the glint according to our method were closer to the ground truth than the
previous method. In this experiment, the boundary and center of the ground truth were manually
chosen. Further, for all images, we measured detection errors based on Euclidean distance between
the center of the ground truth and the center as detected by our method and the previous method [24].
As shown in Table 4, our method yielded a higher accuracy (lower error) in detecting the centers of the
pupil and the glint than the previous method.
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Figure 15. Comparative examples of detection of boundaries and centers of pupil and glint by our
method, and the previous method and the ground truth. (a) Detected boundaries of pupil and glint in
eye image; (b) Comparison of detection of boundaries of pupil; (c) Comparison of detection of center
of pupil; (d) Comparison of detection of boundaries of glint; (e) Comparison of detection of center
of glint.
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Table 4. Average Euclidean distance between the center of the ground truth the detected center by our
method and previous method (unit: pixels).

Pupil/Glint Center Method Average Euclidean Distance

Pupil Center Proposed method 2.1
Previous method [24] 4.6

Glint Center
Proposed method 2.5

Previous method [24] 4.7

In the second experiment, the accuracy of the detection of the user’s gaze for target selection on
TP and TN data, according to various defuzzification methods, was compared in terms of equal error
rate (EER). Two types of errors, types I and II, were considered. The error of incorrectly classifying
TP data as TN data was defined as a type I error, and that of incorrectly classifying TN data as TP
data was defined as a type II error. As explained in the previous section, our system determines that
the user’s gaze is employed (TP) if the output score of the fuzzy system is higher than the threshold.
If not, our system determines that user’s gaze is not employed (TN). Therefore, type I and II errors
occur depending on the threshold. If the threshold is increased, type 1 error increases and type II error
decreases. With a smaller threshold, type I error decreases whereas type II error increases. When type
I and II errors are most similar to the appropriate threshold, the EER is calculated by averaging the
two errors.

Experiment 1 (Bear)

In the first experiment, a teddy bear was used as target object, as shown in Figure 14b.
The classification results of TP and TN data according to the five defuzzification methods that used the
MIN and MAX rules are listed in Tables 5 and 6, respectively. As indicated in these tables, the smallest
EER (approximately 0.19%) of classification was obtained by the COG with the MIN rule.

Table 5. Type I and II errors with EER using the MIN rule (unit: %).

Defuzzification Method Threshold No. of Type I Errors No. of Type II Errors EER

FOM 0.36 9 6 2.78
MOM 0.50 11 0 2.04
LOM 0.73 12 16 5.19
BOA 0.27 1 1 0.37
COG 0.30 0 1 0.19

Table 6. Type I and II errors with EER using the MAX rule (unit: %).

Defuzzification Method Threshold No. of Type I Errors No. of Type II Errors EER

FOM 0.09 111 98 38.7
MOM 0.50 151 0 27.96
LOM 0.89 126 124 46.3
BOA 0.50 110 98 38.52
COG 0.50 101 79 33.33

Figures 16 and 17 show the receiver operating characteristic (ROC) curves for the classification
results of TP and TN data according to the various defuzzification methods using MIN or MAX rules,
respectively. The ROC curve represents the change in type I error (%) according to the increase in
100—type II error (%).
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defuzzification methods with the MAX rule.

In case that type I and II errors were small, the accuracy of that particular method was regarded
as high. Therefore, if the ROC curve was closer to (0, 100) (“type I error” of 0% and “100—type
II error” of 100%) on the graph, its accuracy was regarded as higher. As shown in these figures,
the accuracy of classification by the COG with the MIN rule was higher than obtained by other
defuzzification methods.
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Experiment 2 (Bird)

In the second experiment, a bird was used as target object as shown in Figure 14b. The classification
results of TP and TN data according to the five defuzzification methods that used the MIN and
MAX rules are listed in Tables 7 and 8, respectively. As indicated in these tables, the smallest EER
(approximately 0%) of classification was obtained by the COG with the MIN rule.

Table 7. Type I and II errors with EER using the MIN rule (unit: %).

Defuzzification Method Threshold No. of Type I Errors No. of Type II Errors EER

FOM 0.26 7 8 2.78
MOM 0.50 14 0 2.60
LOM 0.60 19 21 7.41
BOA 0.25 0 1 0.19
COG 0.27 0 0 0

Table 8. Type I and II errors with EER using the MAX rule (unit: %).

Defuzzification Method Threshold No. of Type I Errors No. of Type II Errors EER

FOM 0.11 142 140 52.22
MOM 0.50 162 0 30
LOM 0.91 90 87 32.78
BOA 0.50 101 71 31.85
COG 0.50 85 75 29.63

Figures 18 and 19 show the ROC curves for the classification results of TP and TN data according
to the various defuzzification methods using MIN or MAX rules. As is shown, the accuracy of
classification by the COG with the MIN rule was higher than for other defuzzification methods.
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Experiment 3 (Butterfly)

In the third experiment, a butterfly was used as target object as shown in Figure 14b.
The classification results of TP and TN data according to the five defuzzification methods that used the
MIN and MAX rules are listed in Tables 9 and 10, respectively. As indicated in these tables, the smallest
EER (approximately 0.19%) of classification was obtained by the COG with the MIN rule.

Table 9. Type I and II errors with EER using the MIN rule (unit: %).

Defuzzification Method Threshold No. of Type I Errors No. of Type II Errors EER

FOM 0.35 12 13 4.63
MOM 0.47 12 0 2.22
LOM 0.71 13 15 5.19
BOA 0.37 2 0 0.37
COG 0.30 0 1 0.19

Table 10. Type I and II errors with EER using the MAX rule (unit: %).

Defuzzification Method Threshold No. of Type I Errors No. of Type II Errors EER

FOM 0.11 151 142 54.26
MOM 0.50 184 0 34.07
LOM 0.90 81 94 32.41
BOA 0.50 135 75 38.89
COG 0.50 120 89 38.7

Figures 20 and 21 show the ROC curves for the classification results of TP and TN data according
to the various defuzzification methods using the MIN or MAX rules. As is shown, the accuracy of
classification by the COG with the MIN rule was higher than by other defuzzification methods.

The above results were verified by comparing the proposed method using three features (change
of pupil size w.r.t. time by template matching, change in gaze position within short dwell time, and the
texture information of monitor image at gaze target) with the previous method [24] using two features
(change of pupil size w.r.t. time by peakedness, and change in gaze position within short dwell time).
In addition, we compared the accuracy by proposed method with that by using three features (change
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of pupil size w.r.t. time by peakedness, change in gaze position within short dwell time, and the texture
information of monitor image at gaze target). For convenience, we call the last method “Method A”.
The only difference between the proposed method and “Method A” is that change in pupil size w.r.t.
time is measured by template matching in proposed method but by peakedness in “Method A”.
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In all cases, the ROC curves of the highest accuracy among the various defuzzification methods
with the MIN or MAX rules are shown. The accuracy of by proposed method was always higher than
that of “Method A” and the previous method [24] in all cases of the three experiments, i.e., bear, bird,
and butterfly, as shown in Figure 22.

In the next experiment, we compared the accuracy of proposed method, “Method A”, and the
previous method [24] when noise was included in the input data. All features of the proposed and the
previous method was affected by the accurate detection of pupil size and gaze position, which were in
turn affected by the performance of the gaze tracking system. Thus, we included Gaussian random
noises in the detected pupil size and gaze position.
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As shown in Figure 23, noise had a stronger effect on the previous method [24] and “Method
A” than the proposed method in all three experiments. A notable decrease in accuracy with increase
in EER was observed in the latter two methods when noise caused incorrect detection of pupil size
and gaze.
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In the next experiments, we compared the usability of our system with the conventional dwell
time-based selection method [13,14]. We requested the 15 participants to rate the level of convenience
and interest in performing the target selection task of the proposed method and a dwell time-based
method by using a questionnaire (5: very convenient, 4: convenient, 3: normal, 2: inconvenient, 1: very
inconvenient, in case of a convenience questionnaire) (5: very interesting, 4: interesting, 3: normal,
2: uninteresting, 1: very uninteresting, in case of an interest questionnaire). In order to render our
results unaffected by participant learning and physiological state, such as fatigue, we provided a rest
time of 10 minutes to each participant between experiments. Based on [13,14], dwell time for target
selection was set at 500 ms. That is, when the change in the user’s gaze position for our feature 2
was lower than the threshold, and this state was maintained for longer than 500 ms, target selection
was activated.

The average scores are shown in Figure 24, which shows that our method scored higher than the
conventional dwell time-based method in terms of both convenience and interest.Sensors 2017, 17, 862 30 of 37 
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Figure 24. The comparative results of subjective tests of 15 users using the dwell time-based method
and the proposed method.

We also performed a t-test [80] to prove that user’s convenience on the proposed method was
statistically higher than that of the conventional dwell time-based method. The t-test was performed by
taking two independent samples of data: user’s convenience on our system (µ = 3.8, σ = 0.5) and with
the conventional dwell time-based method (µ = 2.8, σ = 0.7). The calculated p-value was approximately
3.4 × 10−4, which was smaller than the 99% (0.01) significance level. Hence, the null hypothesis for
the t-test, i.e., no difference between the two independent samples, was rejected. Therefore, we can
conclude that there was a significant difference, up to 99%, in user convenience between our proposed
method and the dwell time-based method.

A t-test analysis based on user interest was also performed. This also yielded similar results,
i.e., user interest on our proposed system (µ = 4.2, σ = 0.5) was higher than with the dwell time-based
system (µ = 2.6, σ = 0.9). The calculated p-value was 6.74× 10−6, i.e., smaller than the significance level
of 99% (0.01). Therefore, we concluded a significant difference in user interest between our system
and the dwell time-based system. The average score for convenience and interest was higher for the
proposed method because it is more natural than a conventional dwell time-based method.
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In order to analyze the effect of the difference in size between two groups, we performed Cohen’s
d analysis [81]. It classifies the difference as small if it is within the range 0.2–0.3, medium if it is 0.5,
and large if it is greater than or equal to 0.8. We calculated the value of Cohen’s d for convenience
and interest. For user convenience, it was 1.49, which was in the large-effect category; hence, it had
a major effect on the difference between the two groups. For user interest, the calculated Cohen’s d
was approximately 2.14, which was also in the large-effect category. Hence, we concluded that user
convenience and user interest showed a large effect in the difference between our proposed method
and dwell time-based method.

To confirm the practicality of our method, we performed additional experiments using an on-screen
keyboard based on our method, where each person typed a word through our system on an on-screen
keyboard displayed on a monitor, as shown in Figure 25. All 15 subjects from before participated in
the experiments, and a monitor with a 19-inch screen and resolution of 1680 × 1050 pixels was used.
Twenty sample words were selected based on frequency of use as shown in Table 11 [82]. As shown in
Table 11, the left-upper words “the” and “and” were more frequently used than the right-lower words
“all” and “would”. If the user’s gaze detected by our method was associated with a specific button, and
our method had determined the user’s gaze, the corresponding character was selected and displayed,
as shown in Figure 25.
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Table 11. Twenty sample words used for experiments.

the, and, that, have, for,
not, with, you, this, but,
his, from, they, say, her,

she, will, one, all, would
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We performed a t-test to prove that our method is statistically better than the conventional
dwell time-based method [13,14], as shown in Figures 26 and 27. In order to immunize our results
against participant learning and physiological state, such as fatigue, we gave a 10-min rest to each
participant between experiments. Based on [13,14], dwell time for target selection was set at 500 ms.
In all cases, our gaze detection method was used for fair comparison, and selection was performed
using our method or the dwell time-based method. We conducted our statistical analysis by using four
performance criteria, i.e., accuracy, execution time, interest, and convenience.

As shown in Figure 26a, the t-test was performed using two samples independent of each other:
the user’s typing accuracy using our system (µ = 89.7, σ = 7.4) and the conventional dwell time-based
method (µ = 67.5, σ = 6.5). The calculated p-value was approximately 1.72 × 10−9, smaller than for
a 99% (0.01) significance level. Hence, the null hypothesis for the t-test, i.e., no difference between two
independent samples, was rejected. Therefore, we concluded that there was a significant difference of
up to 99% in accuracy between the proposed method and the dwell time-based method.Sensors 2017, 17, 862 32 of 37 
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one character; (c) Average execution time for typing one word.

Similarly, a t-test analysis based on average execution time for typing one character was performed,
as shown in Figure 26b, this test yielded similar results, i.e., the average execution time for typing one
character with our system (µ = 0.67, σ = 0.013) and the dwell time-based system (µ = 2.6, σ = 0.17).
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The calculated p-value was 2.36× 10−16, i.e., smaller than the significance level of 99% (0.01). Therefore,
we concluded that there was a significant difference in execution time for typing one character on
a virtual keyboard between our system and the dwell time-based system. Although dwell time for
target selection was set at 500 ms in the dwell-time-based method, it was often case that the participant
did not wait for this long and move his or her gaze position, which increased the average execution
time for typing one character, as shown in Figure 26b.

A t-test analysis based on execution time for typing one word was also conducted as shown in
Figure 26c. We compared our proposed system (µ = 2.9, σ = 0.42) with the dwell time-based system
(µ = 8.7, σ = 0.87). The calculated p-value was 5.7 × 10−16, i.e., smaller than the significance level of
99% (0.01). Therefore, we concluded that there was a significant difference between the execution time
for typing one word on a virtual keyboard between our system and the dwell time-based system.

As shown in Figure 27, the t-test analysis for user interest compared our proposed system
(µ = 4.0, σ = 0.4) with the dwell time-based system (µ = 2.4, σ = 0.9). The calculated p-value was
6.1 × 10−7, i.e., smaller than the significance level of 99% (0.01). Therefore, we concluded that there
was a significant difference in user interest between our system and the dwell time-based system.
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Similarly, we performed a t-test with respect to user convenience. We noted that with our system
(µ = 3.9, σ = 0.5) and the conventional dwell time-based method (µ = 2.9, σ = 0.8), the calculated
p-value was approximately 3.4× 10−4, which was smaller than the 99% (0.01) significance level. Hence,
the null hypothesis for the t-test, i.e., no difference between two independent samples was rejected.
Therefore, we concluded a significant difference up to 99% in user convenience with our proposed
method and the dwell time-based method. As shown in Figure 27, the average score for convenience
and interest was higher for the proposed method because it is more natural than a conventional dwell
time-based method.

Similarly, we calculated the value of Cohen’s d for convenience, interest, average execution time
for typing, and accuracy. For user convenience and interest, they were 1.49 and 2.34, respectively,
and lay in a large category. Hence, this had a significant effect on the difference between the two
groups. For average execution times for one character, one word, and accuracy, we calculated the
value of Cohen’s d as approximately 15.92, 8.51, and 3.19, respectively, which also lay in the large-effect
category. Hence, from the p value and Cohen’s d, we concluded that user convenience, interest, average
execution time, and accuracy were significantly different for the proposed and the dwell time-based
methods [13,14].
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In our experiment, the screen resolution is 1680× 1050 pixels on a 19-inch monitor. The z-distance
between the monitor and user’s eye ranges 60 to 70 cm. Considering the accuracy (about ±1◦) of gaze
detection in our system, the minimum distance between two objects on the monitor screen should be
about 2.44 cm (70 cm × tan(2◦)) which corresponds to approximately 82 pixels.

5. Conclusions

In this study, we proposed a method for detecting the user’s gaze for target selection using a gaze
tracking system based on an NIR illuminator and a camera. The pupil center with the boundary and
the glint center were more accurately based on an enhanced Chan–Vese algorithm. We employed three
features—change of pupil size w.r.t. time measured by template matching, change in gaze position
within short dwell time, and the texture information of monitor image at gaze target. These features
as input values were combined with a fuzzy system where optimal input membership functions
were designed based on the maximum entropy criterion and the user’s gaze for target selection
was determined through defuzzification methods. Performance was evaluated by comparing the
defuzzification results with the EER and ROC curves. We verified from the results that the COG
method using the MIN rule is suitable in terms of accuracy for different objects with varying amounts
of texture. In future work, we will investigate a method to enhance performance by combining
our proposed features with various physiological ones, such as electrocardiography (ECG) data,
electroencephalogram (EEGs) data, or skin temperature (SKT).
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