Chemical Sensors and Biosensors in Italy: A Review of the 2015 Literature
Abstract
:1. Introduction
2. The Italian Association of Sensors and Microsystems
3. Gas Sensors
3.1. Gas Sensors Based on Inorganic Materials
3.2. Gas Sensors Based on Organic Materials
4. Electrochemical Sensors
5. Biosensors
5.1. Catalytic Biosensors
5.2. Affinity Biosensors
6. Bibliometric Analysis
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Di Natale, C.; Lorenzelli, L.; Dalla Betta, G.; Adami, A.; Mulloni, V. Foreword. In 2015 XVIII AISEM Annual Conference; Available online: http://ieeexplore.ieee.org/document/7066760/ (accessed on 14 April 2017).
- Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 2015, 3, 1–20. [Google Scholar] [CrossRef]
- Hjiri, M.; Dhahri, R.; El Mir, L.; Bonavita, A.; Donato, N.; Leonardi, S.G.; Neri, G. CO sensing properties of Ga-doped ZnO prepared by sol-gel route. J. Alloys Compds. 2015, 634, 187–192. [Google Scholar] [CrossRef]
- Hjiri, M.; Dhahri, R.; El Mir, L.; Leonardi, S.G.; Neri, G. Excellent CO gas sensor based on Ga-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2015, 26, 6020–6024. [Google Scholar] [CrossRef]
- Dhahri, R.; Hjiri, M.; Mir, L.E.; Bonavita, A.; Iannazzo, D.; Leonardi, S.G.; Neri, G. CO sensing properties under UV radiation of Ga-doped ZnO nanopowders. Appl. Surf. Sci. 2015, 355, 1321–1326. [Google Scholar] [CrossRef]
- Dhahri, R.; Hjiri, M.; El Mir, L.; Fazio, E.; Neri, F.; Barreca, F.; Donato, N.; Bonavita, A.; Leonardi, S.G.; Neri, G. ZnO:Ca nanopowders with enhanced CO2 sensing properties. J. Phys. D Appl. Phys. 2015, 48, 255503. [Google Scholar] [CrossRef]
- Fazio, E.; Hjiri, M.; Dhahri, R.; El Mir, L.; Sabatino, G.; Barreca, F.; Neri, F.; Leonardi, S.G.; Pistone, A.; Neri, G. Ammonia sensing properties of V-doped ZnO:Ca nanopowders prepared by sol-gel synthesis. J. Solid State Chem. 2015, 226, 192–200. [Google Scholar] [CrossRef]
- Giancaterini, L.; Cantalini, C.; Cittadini, M.; Sturaro, M.; Guglielmi, M.; Martucci, A.; Resmini, A.; Anselmi-Tamburini, U. Au and Pt nanoparticles effects on the optical and electrical gas sensing properties of sol-gel-based ZnO thin-film sensors. IEEE Sens. J. 2015, 15, 1068–1076. [Google Scholar] [CrossRef]
- Karmaoui, M.; Leonardi, S.G.; Tobaldi, D.M.; Donato, N.; Pullar, R.C.; Seabra, M.P.; Labrincha, J.A.; Neri, G. Novel nanosynthesis of In2O3 and its application as a resistive gas sensor for sevoflurane anesthetic. J. Mater. Chem. B 2015, 3, 399–407. [Google Scholar] [CrossRef]
- Epifani, M.; Comini, E.; Siciliano, P.; Faglia, G.; Morante, J.R. Evidence of catalytic activation of anatase nanocrystals by vanadium oxide surface layer: Acetone and ethanol sensing properties. Sens. Actuators B Chem. 2015, 217, 193–197. [Google Scholar] [CrossRef]
- Epifani, M.; Díaz, R.; Force, C.; Comini, E.; Manzanares, M.; Andreu, T.; Gencç, A.; Arbiol, J.; Siciliano, P.; Faglia, G.; et al. Surface modification of TiO2 nanocrystals by WOx coating or wrapping: Solvothermal synthesis and enhanced surface chemistry. ACS Appl. Mater. Interfaces 2015, 7, 6898–6908. [Google Scholar] [CrossRef] [PubMed]
- Giberti, A.; Casotti, D.; Cruciani, G.; Fabbri, B.A.; Gaiardo, A.; Guidi, V.; Malagù, C.; Zonta, G.; Gherardi, S. Electrical conductivity of CdS films for gas sensing: Selectivity properties to alcoholic chains. Sens. Actuators B Chem. 2015, 207, 504–510. [Google Scholar] [CrossRef]
- Donarelli, M.; Prezioso, S.; Perrozzi, F.; Bisti, F.; Nardone, M.; Giancaterini, L.; Cantalini, C.; Ottaviano, L. Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuators B Chem. 2014, 207, 602–613. [Google Scholar] [CrossRef]
- Imbault, A.; Wang, Y.; Kruse, P.; Strelcov, E.; Comini, E.; Sberveglieri, G.; Kolmakov, A. Ultrathin gas permeable oxide membranes for chemical sensing: Nanoporous Ta2O5 test study. Materials 2015, 8, 6677–6684. [Google Scholar] [CrossRef]
- Baratto, C.; Kumar, R.; Faglia, G.; Vojisavljević, K.; Malič, B. P-Type copper aluminum oxide thin films for gas-sensing applications. Sens. Actuators B Chem. 2015, 209, 287–296. [Google Scholar] [CrossRef]
- Zappa, D.; Bertuna, A.; Comini, E.; Molinari, M.; Poli, N.; Sberveglieri, G. Tungsten oxide nanowires for chemical detection. Anal. Methods 2015, 7, 2203–2209. [Google Scholar] [CrossRef]
- Kumar, R.; Baratto, C.; Faglia, G.; Sberveglieri, G.; Bontempi, E.; Borgese, L. Tailoring the textured surface of porous nanostructured NiO thin films for the detection of pollutant gases. Thin Solid Films 2015, 583, 233–238. [Google Scholar] [CrossRef]
- Tamvakos, A.; Calestani, D.; Tamvakos, D.; Mosca, R.; Pullini, D.; Pruna, A. Effect of grain-size on the ethanol vapor sensing properties of room-temperature sputtered ZnO thin films. Microchim. Acta 2015, 182, 1991–1999. [Google Scholar] [CrossRef]
- Tonezzer, M.; Dang, T.T.L.; Bazzanella, N.; Nguyen, V.H.; Iannotta, S. Comparative gas-sensing performance of 1D and 2D ZnO nanostructures. Sens. Actuators B Chem. 2015, 220, 1152–1160. [Google Scholar] [CrossRef]
- Afzal, A.; Andersson, M.; Di Franco, C.; Ditaranto, N.; Cioffi, N.; Scamarcio, G.; Lloyd Spetz, A.; Torsi, L. Electrochemical deposition of gold on indium zirconate (InZrOx with In/Zr atomic ratio 1.0) for high temperature automobile exhaust gas sensors. J. Solid State Electrochem. 2015, 19, 2859–2868. [Google Scholar] [CrossRef]
- Comini, E.; Galstyan, V.; Faglia, G.; Bontempi, E.; Sberveglieri, G. Highly conductive titanium oxide nanotubes chemical sensors. Microporous Mesoporous Mater. 2015, 208, 165–170. [Google Scholar] [CrossRef]
- Sainato, M.; Strambini, L.M.; Rella, S.; Mazzotta, E.; Barillaro, G. Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal-assisted etching. ACS Appl. Mater. Interfaces 2015, 7, 7136–7145. [Google Scholar] [CrossRef] [PubMed]
- Lavra, L.; Catini, A.; Ulivieri, A.; Capuano, R.; Baghernajad Salehi, L.; Sciacchitano, S.; Bartolazzi, A.; Nardis, S.; Paolesse, R.; Martinelli, E.; et al. Investigation of VOCs associated with different characteristics of breast cancer cells. Sci. Rep. 2015, 5, 13246. [Google Scholar] [CrossRef] [PubMed]
- Addabbo, T.; Bertocci, F.; Fort, A.; Gregorkiewitz, M.; Mugnaini, M.; Spinicci, R.; Vignoli, V. Gas sensing properties and modeling of YCoO3 based perovskite materials. Sens. Actuators B Chem. 2015, 221, 1137–1155. [Google Scholar] [CrossRef]
- Tamburri, E.A.; Angjellari, M.A.; Tomellini, M.; Gaya, S.; Reina, G.; Lavecchia, T.; Barbini, P.; Pasquali, M.; Orlanducci, S. Electrochemical growth of nickel nanoparticles on carbon nanotubes fibers: Kinetic modeling and implications for an easy to handle platform for gas sensing device. Electrochim. Acta 2015, 157, 115–124. [Google Scholar] [CrossRef]
- Marichy, C.; Donato, N.; Latino, M.; Willinger, M.G.; Tessonnier, J.-P.; Neri, G.; Pinna, N. Gas sensing properties and p-type response of ALD TiO2 coated carbon nanotubes. Nanotechnology 2015, 26, 024004. [Google Scholar] [CrossRef] [PubMed]
- Cattelan, M.; Giallongo, G.; Marigo, A.; Granozzi, G. Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines. Nanotechnology 2015, 26, 075501. [Google Scholar]
- Karakuscu, A.; Hu, L.-H.; Ponzoni, A.; Baratto, C.; Ceccato, R.; Sberveglieri, G.; Raj, R. SiOCN functionalized carbon nanotube gas sensors for elevated temperature applications. J. Am. Ceram. Soc. 2015, 98, 1142–1149. [Google Scholar] [CrossRef]
- Rañola, R.A.G.; Concina, I.; Sevilla, F.B.; Ferroni, M.; Sangaletti, L.; Sberveglieri, G.; Comini, E. Room temperature trimethylamine gas sensor based on aqueous dispersed grapheme. In Proceedings of the 2015 18th AISEM Annual Conference, Trento, Italy, 3–5 February 2015. [Google Scholar]
- De Maria, A.; La Ferrara, V.; Massera, E.; Miglietta, M.L.; di Luccio, T.; Fedi, F.; Di Francia, G.; Veneri, P.D. VOCs sensors based on polyaniline/graphene-nanosheets bilayer. In Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2015; Volume 319, pp. 197–201. [Google Scholar]
- Andò, B.; Baglio, S.; Di Pasquale, G.; Pollicino, A.; D’Agata, S.; Gugliuzzo, C.; Lombardo, C.; Re, G. An inkjet printed CO2 gas sensor. Procedia Eng. 2015, 120, 628–631. [Google Scholar]
- Donarelli, M.; Prezioso, S.; Perrozzi, F.; Giancaterini, L.; Cantalini, C.; Treossi, E.; Palermo, V.; Santucci, S.; Ottaviano, L. Graphene oxide for gas detection under standard humidity conditions. 2D Mater. 2015, 2, 035018. [Google Scholar] [CrossRef]
- Alfano, B.; Polichetti, T.; Massera, E.; Miglietta, M.L.; Di Francia, G.; Ricciardella, F.; Mauriello, M. Tailoring the selectivity of chemical sensors based on graphene decorated with metal nanoparticles. In Proceedings of the 2015 18th AISEM Annual Conference, Trento, Italy, 3–5 February 2015. [Google Scholar]
- Dini, F.; Magna, G.; Martinelli, E.; Pomarico, G.; Di Natale, C.; Paolesse, R.; Lundstrom, I. Combining porphyrins and pH indicators for analyte detection Direct Optical Detection. Anal. Bioanal. Chem. 2015, 407, 3975–3984. [Google Scholar] [CrossRef] [PubMed]
- Capuano, R.; Santonico, M.; Pennazza, G.; Ghezzi, S.; Martinelli, E.; Roscioni, C.; Lucantoni, G.; Galluccio, G.; Paolesse, R.; Di Natale, C.; et al. The lung cancer breath signature: A comparative analysis of exhaled breath and air sampled from inside the lungs. Sci. Rep. 2015, 5, 16491. [Google Scholar] [CrossRef] [PubMed]
- Capuano, R.; Pomarico, G.; Paolesse, R.; Di Natale, C. Corroles-porphyrins: A teamwork for gas sensor arrays. Sensors 2015, 15, 8121–8130. [Google Scholar] [CrossRef] [PubMed]
- Pizzoni, D.; Compagnone, D.; Di Natale, C.; D’Alessandro, N.; Pittia, P. Evaluation of aroma release of gummy candies added with strawberry flavours by gas-chromatography/mass-spectrometry and gas sensors arrays. J. Food Eng. 2015, 167, 77–86. [Google Scholar] [CrossRef]
- Costa, R.; Fanali, C.; Pennazza, G.; Tedone, L.; Dugo, L.; Santonico, M.; Sciarrone, D.; Cacciola, F.; Cucchiarini, L.; Dach, M.; et al. Screening of volatile compounds composition of white truffle during storage by GCxGC-(FID/MS) and gas sensor array analyses. LWT Food Sci. Technol. 2015, 60, 905–913. [Google Scholar] [CrossRef]
- Seeber, R.; Pigani, L.; Terzi, F.; Zanardi, C. Amperometric sensing. A melting pot for material, electrochemical, and analytical sciences. Electrochim. Acta 2015, 179, 350–363. [Google Scholar] [CrossRef]
- Mardegan, A.; Scopece, P.; Ugo, P.; Moretto, L.M. Ensembles of Gold Nanowires for the Anodic Stripping Voltammetric Determination of Inorganic Arsenic. J. Nanosci. Nanotechnol. 2015, 15, 3417–3422. [Google Scholar] [CrossRef] [PubMed]
- Talarico, D.; Arduini, F.; Constantino, A.; del Carlo, M.; Compagnone, D.; Moscone, D.; Palleschi, G. Carbon black as successful screen-printed electrode modifier for phenolic compound detection. Electrochem. Commun. 2015, 60, 78–82. [Google Scholar] [CrossRef]
- Arduini, F.; Zanardi, C.; Cinti, S.; Terzi, F.; Moscone, D.; Palleschi, G.; Seeber, R. Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite. Sens. Actuators B 2015, 212, 536–543. [Google Scholar] [CrossRef]
- Gualandi, I.; Scavetta, E.; Vlamidis, Y.; Casagrande, A.; Tonelli, D. Co/Al layered double hydroxide coated electrode for in flow amperometric detection of sugars. Electrochim. Acta 2015, 173, 67–75. [Google Scholar] [CrossRef]
- Valentini, F.; Roscioli, D.; Carbone, M.; Conte, V.; Floris, B.; Bauer, E.M.; Ditaranto, N.; Sabbatini, L.; Caponetti, E.; Chillura-Martino, D. Graphene and ionic liquids new gel paste electrodes for caffeic acid quantification. Sens. Actuators B Chem. 2015, 212, 248–255. [Google Scholar] [CrossRef]
- Sivalingam, Y.; Pudi, R.; Lvova, L.; Pomarico, G.; Basoli, F.; Catini, A.; Legin, A.; Paolesse, R.; Di Natale, C. The light modulation of the interaction of L-cysteine with porphyrins coated ZnO nanorods. Sens. Actuators B Chem. 2015, 209, 613–621. [Google Scholar] [CrossRef]
- Laborde, C.; Pittino, F.; Verhoeven, H.; Lemay, S.; Selmi, L.; Jongsma, M.; Widdershoven, F. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat. Nanotechnol. 2015, 10, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, G.; De Tullio, D.; Magliulo, M.; Mallardi, A.; Intrannuovo, F.; Mulla, M.; Favia, P.; Vikholm-Lundin, I.; Torsi, L. Detection beyond Debye’s length with an electrolyte gated organic field effect transistor. Adv. Mater. 2015, 27, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Arduini, F.; Moscone, D.; Palleschi, G.; Gonzalez-Macia, L.; Killard, A.J. Cholesterol biosensor based on inkjet-printed Prussian blue nanoparticle-modified screen-printed electrodes. Sens. Actuators B Chem. 2015, 221, 187–190. [Google Scholar] [CrossRef]
- Sannini, A.; Albanese, D.; Malvano, F.; Crescitelli, A.; Di Matteo, M. An amperometric biosensor for the determination of lactic acid during malolactic fermentation. Chem. Eng. Trans. 2015, 44, 283–288. [Google Scholar]
- Boffi, A.; Favero, G.; Federico, R.; Macone, A.; Antiochia, R.; Tortolini, C.B.; Sanzó, G.; Mazzei, F. Amine oxidase-based biosensors for spermine and spermidine determination. Anal. Bioanal. Chem. 2015, 407, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Ciriello, R.; Cataldi, T.R.I.; Crispo, F.; Guerrieri, A. Quantification of l-lysine in cheese by a novel amperometric biosensor. Food Chem. 2015, 169, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Strambini, L.M.; Longo, A.; Scarano, S.; Prescimone, T.; Palchetti, I.; Minunni, M.; Giannessi, D.; Barillaro, G. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosens. Bioelectron. 2015, 66, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Habtamu, H.B.; Ugo, P. Miniaturized Enzymatic Biosensor via Biofunctionalization of the Insulator of Nanoelectrode Ensembles. Electroanalysis 2015, 27, 2187–2193. [Google Scholar] [CrossRef]
- Malvano, F.; Albanese, D.; Sannini, A.; Crescitelli, A.; Pilloton, R.; Di Matteo, M. Ethanol content in must grape by alcohol dehydrogenase biosensors based on doped—Polyaniline modified screen printed electrodes. Chem. Eng. Trans. 2015, 43, 37–42. [Google Scholar]
- Tomassetti, M.; Serone, M.; Angeloni, R.; Campanella, L.; Mazzone, E. Amperometric enzyme sensor to check the total antioxidant capacity of several mixed berries. Comparison with two other spectrophotometric and fluorimetric methods. Sensors 2015, 15, 3435–3452. [Google Scholar] [CrossRef] [PubMed]
- Barberis, A.; Spissu, Y.; Fadda, A.; Azara, E.; Bazzu, G.; Marceddu, S.; Angioni, A.; Sanna, D.; Schirra, M.; Serra, P.A. Simultaneous amperometric detection of ascorbic acid and antioxidant capacity in orange, blueberry and kiwi juice, by a telemetric system coupled with a fullerene- or nanotubes-modified ascorbate subtractive biosensor. Biosens. Bioelectron. 2015, 67, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Tortolini, C.; Bollella, P.; Antiochia, R.; Favero, G.; Mazzei, F. Inhibition-based biosensor for atrazine detection. Sens. Actuators B Chem. 2016, 224, 552–558. [Google Scholar] [CrossRef]
- Grattieri, M.; Babanova, S.; Santoro, C.; Guerrini, E.; Trasatti, S.P.; Cristiani, P.; Bestetti, M.; Atanassov, P. Enzymatic Oxygen Microsensor Based on Bilirubin Oxidase Applied to Microbial Fuel Cells Analysis. Electroanalysis 2015, 27, 327–335. [Google Scholar] [CrossRef]
- Silletti, S.; Rodio, G.; Pezzotti, G.; Turemis, M.; Dragone, R.; Frazzoli, C.; Giardi, M.T. An optical biosensor based on a multiarray of enzymes for monitoring a large set of chemical classes in milk. Sens. Actuators B Chem. 2015, 215, 607–617. [Google Scholar] [CrossRef]
- Chiavaioli, F.; Biswas, P.; Trono, C.; Jana, S.; Bandyopadhyay, S.; Basumallick, N.; Giannetti, A.; Tombelli, S.; Bera, S.; Mallick, A.; et al. Sol-Gel-Based Titania-Silica Thin Film Overlay for Long Period Fiber Grating-Based Biosensors. Anal. Chem. 2015, 87, 12024–12031. [Google Scholar] [CrossRef] [PubMed]
- Tardivo, M.; Toffoli, V.; Fracasso, G.; Borin, D.; Dal Zilio, S.; Colusso, A.; Carrato, S.; Scoles, G.; Meneghetti, M.; Colombatti, M.; et al. Parallel optical read-out of micromechanical pillars applied to prostate specific membrane antigen detection. Biosens. Bioelectron. 2015, 72, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Casalini, S.; Dumitru, A.C.; Leonardi, F.; Bortolotti, C.A.; Herruzo, E.T.; Campana, A.; De Oliveira, R.F.; Cramer, T.; Garcia, R.; Biscarini, F. Multiscale sensing of antibody-antigen interactions by organic transistors and single-molecule force spectroscopy. ACS Nano 2015, 9, 5051–5062. [Google Scholar] [CrossRef] [PubMed]
- Zangheri, M.; Cevenini, L.; Anfossi, L.; Baggiani, C.; Simoni, P.; Di Nardo, F.; Roda, A. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron. 2015, 64, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Castillo, G.; Spinella, K.; Poturnayová, A.; Šnejdárková, M.; Mosiello, L.; Hianik, T. Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control 2015, 52, 9–18. [Google Scholar] [CrossRef]
- Guider, R.; Gandolfi, D.; Chalyan, T.; Pasquardini, L.; Samusenko, A.; Pederzolli, C.; Pucker, G.; Pavesi, L. Sensitivity and Limit of Detection of biosensors based on ring resonators. Sens. Biol. Sens. Res. 2015, 6, 99–102. [Google Scholar] [CrossRef]
- Scarano, S.; Dausse, E.; Crispo, F.; Toulmé, J.-J.; Minunni, M. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors. Anal. Chim. Acta 2015, 897, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tintoré, M.; Mazzini, S.; Polito, L.; Marelli, M.; Latorre, A.; Somoza, Á.; Aviñó, A.; Fàbrega, C.; Eritja, R. Gold-coated superparamagnetic nanoparticles for single methyl discrimination in DNA aptamers. Int. J. Mol. Sci. 2015, 16, 27625–27639. [Google Scholar] [CrossRef] [PubMed]
- Ravalli, A.; da Rocha, C.G.; Yamanaka, H.; Marrazza, G. A label-free electrochemical affisensor for cancer marker detection: The case of HER2. Bioelectrochemistry 2015, 106, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Fortugno, C.; van der Gronde, T.; Varchi, G.; Guerrini, A.; Bertucci, C. Species-dependent binding of new synthesized bicalutamide analogues to albumin by optical biosensor analysis. J. Pharm. Biomed. Anal. 2015, 111, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Mulla, Y.; Tuccori, E.; Magliulo, M.; Lattanzi, G.; Palazzo, G.; Persaud, K.; Torsi, L. Capacitance-modulated transistors detects odorant binding protein chiral interactions. Nat Comm. 2015, 6, 6010. [Google Scholar] [CrossRef] [PubMed]
- Di Pietrantonio, F.; Benetti, M.; Cannatà, D.; Verona, E.; Palla-Papavlu, A.; Fernández-Pradas, J.M.; Serra, P.; Staiano, M.; Varriale, A.; D’Auria, S. A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules. Biosens. Bioelectron. 2015, 67, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Giovanni, S.D.; Varriale, A.; Staiano, M.; Di Pietrantonio, F.; Notargiacomo, A.; Zeni, L.; D’Auria, S. Easy to use plastic optical fiber-based biosensor for detection of butanal. PLoS ONE 2015, 10, e0116770. [Google Scholar] [CrossRef] [PubMed]
- Compagnone, D.; Faieta, M.; Pizzoni, D.; di Natale, C.; Paolesse, R.; van Caelenberg, T.; Beheydtd, B.; Pittia, P. Quartz crystal microbalance gas sensor arrays for the quality control of chocolate. Sens. Actuators B Chem. 2015, 207, 1114–1120. [Google Scholar] [CrossRef]
- Zuccaro, L.; Tesauro, C.; Kurkina, T.; Fiorani, P.; Yu, H.K.; Knudsen, B.R.; Kern, K.; Desideri, A.; Balasubramanian, K. Real-Time Label-Free Direct Electronic Monitoring of Topoisomerase Enzyme Binding Kinetics on Graphene. ACS Nano 2015, 9, 11166–11176. [Google Scholar] [CrossRef] [PubMed]
- Mariani, S.; Scarano, S.; Spadavecchia, J.; Minunni, M. A reusable optical biosensor for the ultrasensitive and selective detection of unamplified human genomic DNA with gold nanostars. Biosens. Bioelectron. 2015, 74, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, A.; Manicardi, A.; Candiani, A.; Giannetti, S.; Cucinotta, A.; Spoto, G.; Konstantaki, M.D.; Pissadakis, S.D.; Selleri, S.B.; Corradini, R.A. Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosens. Bioelectron. 2015, 63, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, D.; Sonato, A.; Ruffato, G.; Meneghello, A.; Antognoli, A.; Cretaio, E.; Dettin, M.; Zamuner, A.; Casarin, E.; Zacco, G.; et al. A peptide nucleic acid label-free biosensor for Mycobacterium tuberculosis DNA detection via azimuthally controlled grating-coupled SPR. Anal. Methods 2015, 7, 4173–4180. [Google Scholar] [CrossRef]
- Giamblanco, N.; Conoci, S.; Russo, D.; Marletta, G. Single-step label-free hepatitis B virus detection by a piezoelectric biosensor. RSC Adv. 2015, 5, 38152–38158. [Google Scholar] [CrossRef]
- Hamidi-Asl, E.; Raoof, J.B.; Hejazi, M.S.; Sharifi, S.; Golabi, S.M.; Palchetti, I.; Mascini, M. Genosensor for Point Mutation Detection of P53 Gene PCR Product Using Magnetic Particles. Electroanalysis 2015, 27, 1378–1386. [Google Scholar] [CrossRef]
- Scopus. Available online: www.scopus.com (accessed on 24 January 2017).
Sensitive Material | Method | Analyte | Sensors Performance | Ref. |
---|---|---|---|---|
Ga-ZnO | Conductometric | CO | LOD * = 0.8 ppm CO, R0/R = 9 (50 ppm CO) T = 250 °C | [3] |
ZnO-Ca | Conductometric | CO2 | ΔR0/R = 113 (5% CO2) T = 450 °C UV light-assisted | [6] |
Ca-V-ZnO | Conductometric | NH3 | R0/R = 3 (1000 ppm NH3) T = 250 °C | [7] |
Pt-ZnO | Conductometric Optical | NO2, H2 | LOD = 20 ppb NO2, 50 ppm H2 T = 300 °C | [8] |
In2O3 | Conductometric | Sevoflurane | R0/R = 5.8 (1.5 ppm Sevoflurane) T = 100 °C | [9] |
V2O5-TiO2 | Conductometric | Acetone, Ethanol | R0/R = 9 (100 ppm Acetone) T = 300 °C | [10] |
WOx-TiO2 | Conductometric | Ethanol | R0/R = 5 (100 ppm Ethanol) T = 200 °C | [11] |
CdS | Conductometric | Alcohols | ΔR0/R = 63 (5 ppm Ethanol) T = 300 °C | [12] |
MOS2 | Conductometric | NO2 | LOD = 20 ppb NO2 R0/R = 2.7 (1 ppm NO2) T = 200 °C | [13] |
Spinel CuAl2O4 | Conductometric | O3 | LOD ≤ 1 ppb O3 ΔR0/R = 100 (70 ppb O3) T = 300 °C | [15] |
WO3 nanowire | Conductometric | CO, NH3, NO2 | LOD = CO 13 ppm, NO2 1 ppm T = 100–200 °C | [16] |
NiO thin film | Conductometric | O3 | ΔR0/R = 12.3 to 70 ppb of O3, T = 200 °C | [17] |
ZnO film | Conductometric | Ethanol | LOD = 0.61 ppm Ethanol | [18] |
Porous silicon/gold nanostructures | JFET (junction-field-effect transistor) | NO2 | ΔI/I0 = 0.64 (500 ppb NO2) T = Room temperature | [22] |
YCoO3 perovskite | Conductometric | CO, NO2, NO, CH4 | T = 160–200 °C | [24] |
SiOCN/CNT | Conductometric | NH3, NO2 | LOD = 10 ppm NH3, 2 ppm NO2; T = 100–350 °C | [28] |
Graphene/polystyrene-sulfonate (rGO/PSS) | Conductometric | TMA | LOD = 22.7 mg/L TMA | [29] |
Graphene oxide | Conductometric | NO2 | LOD
= 22 ppb NO2 | [33] |
Pd NPs/graphene | Conductometric | H2 | [ΔG/G]100 = 24 (1% H2) | [34] |
Porphyrins, pH indicators blend | Colorimetric | Volatile compounds | NA | [35] |
Porphyrins and corroles | Quartz microbalance | Volatile compounds | Classification of breath analysis and food samples | [36,38] |
Graphene/polystyrene- sulfonate | Conductometric | Trimethylamine | LOD: 23 mg/L | [29] |
Graphene/polyaniline | Conductometric | Limonene Ethanol | LOD 80 ppm/limonene LOD: 800 ppm ethanol | [30] |
Reduced graphene oxide | Conductometric | CO2 | LOD: 420 ppm | [32] |
Electrode System | Analyte | Method ** | LOD * | In Real Matrix | Ref. |
---|---|---|---|---|---|
Au nanoelectrode ensemble | As(III) | SSQWv | 5 ng/L | Yes | [47] |
CB + AuNP on SPE | Glucose, hydrogen peroxide, hydro-quinone, ascorbic acid | LSV | 0.87, 0.18, 0.012, 0.021 nM, respectively | Simulated | [48] |
Co/Al LDH | Glucose, fructose, galactose, xylose, ribose, sucrose, maltose, lactose | Chronoamperometry in FIA | 0.01 to 0.05 mM | Yes | [43] |
Graphene/ionic liquid | Caffeic Acid | Electrochemical measurement | 0.005 mM | Simulated | [44] |
ZnO nanorods coate by Co and Mn porphyrins | l-Cysteine | LSV | N.A. | [45] |
Target Analyte | Biological Element | Transducer Element | Method | Target Matrix | Ref. |
---|---|---|---|---|---|
Cholesterol | Cholesterol oxidase | Prussian Blue modified SPE | Amperometric | Human serum | [48] |
Lactate | Lactate oxidase | Prussian Blue modified SPE | Amperometric | Wine | [49] |
Polyamines | Polyamine oxidase, spermine oxidase | Prussian Blue modified SPE | Amperometric | Food | [50] |
Lysine | Lysine oxidase | Pt electrode + overoxidised polypirrole | Amperometric | Cheese | [51] |
Glucose | Glucose oxidase | Transdermal microneedles | Amperometric | Transdermal fluids | [52] |
Glucose | Glucose oxidase | Gold nanoelectrode ensembles | Amperometric mediated | Not specified | [53] |
Ethanol | Alcohol dehydrogenase | Polyaniline doped modified SPE | Amperometric | Wine | [54] |
Antioxidant capacity | Superoxide dismutase | Pt electrode | Amperometric | Fruit juices and berries | [55] |
Antioxidant capacity + ascorbate | Ascorbate oxidase | Fullerenes + nanotubes modified graphite | Amperometric, differential | Fruit juices | [56] |
Atrazine | Tyrosinase | Different carbon modified SPE | Amperometric, inhibition | Drinking water | [57] |
Oxygen profile | Biliribine oxidase | Pt electrode | Amperometric | Microbial fuel cell | [58] |
Diuron, chlorpyrifos, catechol, urea, lactose, d-lactic acid. | Acetylcholinesterase, tyrosinase, urease, β-galactosidase, d-lactate dehydrogenase, C. reinhardtii cells | Custom made fluorimeter | Fluorescense of fluorescein 5(6)-isothiocyanate, 5(6)-carboxynaphtho-fluorescein or fluorescence emission of chlorophyll inhibition | Milk safety | [59] |
Target Analyte | Biological Element | Transducer Element | Method | Target Matrix | Ref. |
---|---|---|---|---|---|
IgG | Antibody | Titania-silica-coated long period gratings optical fibers | Label-free evanescent wave | Human serum | [60] |
Prostate specific antigen | Antibody | Dense arrays of micropillars | Label-free CCD + software for imaging | Human serum | [61] |
Interleukin 4 | Antibody | Organic transistor | Label-free field effect transistor | Human serum | [62] |
Cortisol | Antibody | Mobile phone | Lateral flow ELISA, chemiluminescent | Human saliva | [63] |
Aflatoxin B1 | Aptamer | Dendrimer- modified gold electrode | Voltammetric/impedimetric | Peanuts and peanuts corn snacks | [64] |
Aflatoxin M1 | Aptamer | Multiple SiON microring resonators | Label-free with silicon detector in microfluidics | Dairy products | [65] |
Metalloproteinase 9 | Aptamers | Quartz crystal microbalance | Label-free, piezoeletric using 2 different aptamers | Human serum | [66] |
DNA methylation | Aptamers for α-thrombin | Au coated magnetic nanoparticles | Colorimetric, aggregation using 2 aptamers | DNA | [67] |
Human epidermal growth factor receptor 2 | Affibody | Au-nano-particles on SPE | Impedimetric | Human serum | [68] |
Bicalutamide analogues | Human and rat serum albumin | Gold chip | Label free surface plasmon resonance | Not specified | [69] |
Enantiomers of carvone | Odorant binding proteins | Organic transistor | Field effect transsistor in gas phase | Not specified | [70] |
Octenol and carvones | Bovine and porcine odorant binding proteins | Array of five resonators coated with different proteins | Surface acoustic wave in gas phase | food | [71] |
Butanal | Porcine odorant binding protein | Plastic fibers | Surface plasmon resonance | Food | [72] |
Off-flavours in chocolate | Short peptide sequences on AuNPs | Array of seven quartz crystals coated with different peptides | Piezolectric in gas phase | Chocolate | [73] |
Human DNA topoisomerase IB activity | Graphene monolayer | Field-effect | Not specified | [74] | |
Human genomic DNA sequences | DNA | Gold chips platform | Surface plasmon resonance imaging with Au nanostar- labelled complentary strands | Human genomic DNA | [75] |
Roundup Ready soy gene | Peptide nucleic acid | Microstructured optical fibers | Optical detection with spreptavidin coated AuNPs | Soy | [76] |
Tuberculosis mycobacterium | Peptide nucleic acid | Grating coupled surface resonators | Surface plasmon resonance | Not specified | [77] |
7 kbps clone | DNA | Quartz crystal microbalance | Piezoeletric | Not specified | [78] |
Single nucleotide mutation in p53 tumor suppressor gene | DNA | Carbon based SPE | Amperometric, biotin-avidin enzyme amplified | Not specified | [79] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Compagnone, D.; Francia, G.D.; Natale, C.D.; Neri, G.; Seeber, R.; Tajani, A. Chemical Sensors and Biosensors in Italy: A Review of the 2015 Literature. Sensors 2017, 17, 868. https://doi.org/10.3390/s17040868
Compagnone D, Francia GD, Natale CD, Neri G, Seeber R, Tajani A. Chemical Sensors and Biosensors in Italy: A Review of the 2015 Literature. Sensors. 2017; 17(4):868. https://doi.org/10.3390/s17040868
Chicago/Turabian StyleCompagnone, Dario, Girolamo Di Francia, Corrado Di Natale, Giovanni Neri, Renato Seeber, and Antonella Tajani. 2017. "Chemical Sensors and Biosensors in Italy: A Review of the 2015 Literature" Sensors 17, no. 4: 868. https://doi.org/10.3390/s17040868
APA StyleCompagnone, D., Francia, G. D., Natale, C. D., Neri, G., Seeber, R., & Tajani, A. (2017). Chemical Sensors and Biosensors in Italy: A Review of the 2015 Literature. Sensors, 17(4), 868. https://doi.org/10.3390/s17040868