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Abstract: Using mobile vehicles as “data mules” to collect data generated by a huge number of
sensing devices that are widely spread across smart city is considered to be an economical and
effective way of obtaining data about smart cities. However, currently most research focuses on
the feasibility of the proposed methods instead of their final performance. In this paper, a latency
and coverage optimized data collection (LCODC) scheme is proposed to collect data on smart cities
through opportunistic routing. Compared with other schemes, the efficiency of data collection is
improved since the data flow in LCODC scheme consists of not only vehicle to device transmission
(V2D), but also vehicle to vehicle transmission (V2V). Besides, through data mining on patterns
hidden in the smart city, waste and redundancy in the utilization of public resources are mitigated,
leading to the easy implementation of our scheme. In detail, no extra supporting device is needed in
the LCODC scheme to facilitate data transmission. A large-scale and real-world dataset on Beijing
is used to evaluate the LCODC scheme. Results indicate that with very limited costs, the LCODC
scheme enables the average latency to decrease from several hours to around 12 min with respect to
schemes where V2V transmission is disabled while the coverage rate is able to reach over 30%.

Keywords: smart city; data collection; VANET; opportunistic routing; data mining

1. Introduction

The Internet of Things (IoT) envisions a promising future for the traditional Internet industry
and society [1–3]. Full intelligentialization can be considered as the ultimate goal of the Internet of
Things [1,2]. However, one key issue related to achieving such intelligentialization is how to leverage
the ubiquity of sensor-equipped devices to collect data at low cost and on a large scale [1,4,5]. Further
organization, integration, and management of collected big data [6,7] enable the construction of
knowledge-based decision systems, providing a new intelligent paradigm for solving complex
applications with urgent demands, such as surveillance systems, remote patient care systems,
intelligent traffic management, and automated vehicles in intelligent transportation systems [1,8,9].

The smart city is one precise realization of intelligentialization in the Internet of Things, which is
able to monitor and sense various kinds of objects through a large number of low-cost sensing devices
deployed in the city [10,11]. These sensing devices (e.g., wireless sensor nodes) tend to have simple
structures, limited energy, and small transmission distances [12,13], on the other hand, some security
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issues [14–18] still exist among them—being easily attacked by clone attack, DdoS [15]. Nevertheless,
due to the lower price and the convenience of deployment [19–22], they are still widely used in
many applications for data collection and environment surveillance [4,10,23–25]. After the process of
collecting data from devices, the smart city will refine and process the data, and finally make smart
decisions to improve the overall quality of the smart city [1,7]. Due to the rich kinds of sensing devices
and communication protocols, people have great confidence in realizing smart cities. However, one
key premise for this realization is successfully obtaining the data sensed by devices [2,10]. In other
words, the so-called intelligence in the smart city depends heavily on the collected data.

With the continuous developments in sensing devices, we have witnessed a great increase in the
number of methods related to data collection [4,26]. For example, some sensing devices are connected
to decision-making institutes in smart cities (called data centers below) through wired networks.
The reliability and high-speed of wired networks enable real-time monitor and data collection from
sensing devices. However, many problems faced by a smart city cannot be easily solved through
using sensing devices with wired connections. In many situations, the monitored or sensed objects are
temporary or located at remote areas without infrastructures that allow wired transmission. Building
specialized infrastructures for monitoring and sensing these objects can be extremely costly [4,10].
Taking the development of a city as an example, the construction and reconstruction of the fundamental
infrastructures in the city (e.g., streetlights, garbage cans) tend to face the problem above. In order to
sense the states of these infrastructures, sensing devices are usually embedded into them. For instance,
through embedding sensing devices into garbage cans, people are able to trace their trash levels and
report their states to a data center; through sensing devices deployed on streetlights, people are able to
know whether they are damaged [4]. In conclusion, deploying sensing devices makes it possible for the
smart city to effectively monitor and manage a large number of fundamental infrastructures, providing
a better environment to people. However, apart from the great number of these infrastructures, they
are also widely distributed in the smart city and deployed dynamically with the development of city.
Therefore, building wired connections for sensing devices deployed on such infrastructures can be
costly and hard to maintain in the future.

Another kind of method related to data collection in a smart city is using wireless connections,
for which one feasible solution is equipping each sensing device with a SIM card. With the help of
SIM cards, sensing devices are able to directly upload sensed data to data centers. However, such
solutions also have disadvantages. Generally, the cost of one SIM card is about a few dollars, almost
equivalent to the cost of one sensing device. More importantly, apart from the costs of the SIM cards,
transmission service fees also need to be taken into consideration. Therefore, investments in SIM
cards and their subsequent data transmission can easily exceed that in the sensing devices themselves.
Besides, wireless transmission with SIM cards consumes more energy, which reduces the lifetime of
the sensing devices.

In conclusion, obtaining real-time data in a smart city requires large investments, regardless of
whether sensing devices with wired connections or wireless connections are used. However, a great
proportion of the data in a smart city has the characteristic of being latency-tolerant. Take sensing
devices used to monitor green plants in the city as an example, there is no need for the data related to
soil moisture to be transmitted to data centers instantly. Briefly speaking, the time spent on transmitting
latency-tolerant data may be longer than one day in a smart city, but such latency is still considered
to be acceptable. Besides, some kinds of data on smart city is loss-tolerant. For example, with air
pollution sensors deployed on mobile vehicles, these vehicles are able to collect data on air pollution
(e.g., PM2.5) when moving around the city [27]. Air pollution data then can be obtained by data centers
through near field wireless communications when mobile vehicles pass by data centers. Due to the
fact that data on air pollution related to one specific area will be collected by all vehicles that enter this
area, the possibility that these data can be obtained by smart city will still increase even if there exists
no reliable connection between mobile vehicles and data centers, as many copies on these data exist
among the mobile vehicles (reliable connection means that schemes on retransmitting are adopted
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when data loss happens). Even in the worst case that no data related to this area is available, people
are still able to make an estimation provided that data on neighbor areas has already been obtained by
data centers.

In consideration of the characteristics of latency-tolerance and loss-tolerance, transmitting this
kind of collected data through real-time methods will represent a great waste of public resources.
One effective and economical solution that adapts to these data is using mobile vehicles as “data
mules” [16]. Broadly speaking, mobile vehicles serve as carriers of collected data. When these mobile
vehicles pass by sensing devices, the collected data will be transmitted to and stored in them. On the
other hand, data centers are also able to receive collected data when mobile vehicles pass by the data
center. Through analyzing real-world trajectories of taxis, Bonola et al. demonstrated the feasibility on
this kind of solution [10], which will be further explained in the following section.

Although there have already been researches on using mobile vehicles as “data mules” to collect
data, several key issues deserve further study: (1) in previous studies, collected data will only be
transmitted to data centers when mobile vehicles pass by data centers. However, in a large-scale smart
city, a great number of mobile vehicles tend not to pass by data centers within a relatively short time.
As to these vehicles, data collected by them cannot be fully utilized. Therefore, one important problem
is how to obtain data collected by those mobile vehicles without passing by data centers; (2) as far
as we know, the latency of collected data was rarely considered in previous studies. The latency is
defined as difference between one data packet’s collection time and its time of being received by data
centers. Intuitively, a smart city is able to respond to incidents faster with a relatively smaller latency,
leading to improvements on the overall quality of service. However, how to reduce the latency of
collected data in smart cities is rarely covered by previous studies; (3) the problem of the coverage of
collected data is also neglected by previous studies. Assume that using mobile vehicles as “data mules”
is able to collect data on k different areas while the total number of areas in smart city is n. Coverage
of collected data is defined as the ratio of k to n. Applications related to environment monitoring in
smart city (e.g., PM2.5, noise) are associated with coverage directly. With a large coverage, detailed
distributions on these data can be obtained, along with better decisions on environment protection.

Based on the analysis above, a latency and coverage optimized data collection (LCODC) scheme
is proposed in this paper to effectively collect data on smart city with opportunistic communication
style. The main contributions of the LCODC scheme include:

• A LCODC scheme is established to collect data from sensing devices through “data mules” (taxis
or other vehicles). Apart from transmission between mobile vehicles and data center (V2D), the
LCODC scheme also enables mobile vehicles to exchange data with each other. Compared with
previous schemes with V2D transmission alone, vehicle to vehicle transmission (V2V) further
mitigates the problem of the deficiency of collected data and increases the coverage rate.

• We propose two important performance metrics (latency and coverage) to evaluate the
performance of large-scale opportunistic data collection, along with a series of optimization
algorithms to improve the performance on collecting data. Briefly speaking, the LCODC scheme
converts the initial problem into dual-optimization under constrained situations: (a) in the LCODC
scheme, the internal memory of mobile vehicles is considered to be limited. When there is no space
for newly collected data, mobile vehicles need to discard data with less importance. Therefore,
the LCODC scheme converts the trade-off between data into an optimization problem under the
reality of limited internal memory size of mobile vehicles; (b) when mobile vehicles meet each
other, they need to decide whether to transmit data to the neighboring vehicle will improve the
overall data collection performance or not. The LCODC scheme converts this problem into an
optimization problem of calculating the priority for each vehicle to achieve a better performance.

• Compared with previous studies, a large-scale and real-world dataset is used to evaluate the
LCODC scheme. Our comprehensive simulation demonstrates that the LCODC scheme can
reduce the average latency of data from several hours to 12 min, and the coverage rate of the
whole city is able to reach over 30%.
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The remainder of this paper is organized as follows: in Section 2, related works are reviewed.
The system model and problem statement are described in Section 3. In Section 4, details on the LCODC
scheme are presented. In Section 5, experimental results, comparisons, and impacts of parameters are
discussed. We finally conclude the paper in Section 6.

2. Related Work

In this part, we give a brief overview on proposed methods that show superiority on collecting
data on smart cities [10,28,29]. Specifically, Long-Range, Wide-Area Network (LoRaWAN), Wi-SUN,
Airborne Sensors, and Data Mules are introduced.

2.1. LoRaWAN

LoRaWAN is a kind of wireless communication network that has characteristics of low power
consumption, large coverage rate, and low data rate. In LoRaWAN, fixed gateways in the network are
used to forward data from sensing devices to data centers. Technical reports have claimed that with
gateways deployed in the network, LoRaWAN can easily cover hundreds of square kilometers. Besides,
due to low data rate, battery lifetime of sensing devices can reach multi-year [29]. One important
contributor of the long range of LoRaWAN is its use of the sub-GHz ISM (Industrial Scientific Medical)
band, which has inherent advantages for coverage and penetration compared with other bands like
2.4 GHz and 5 GHz.

Although with alluring benefits, one problem occurs when building LoRaWANs: the sub-GHz ISM
band is available only in a third of the world, and many countries don’t have any band available [30].
Therefore, it can be nearly impossible to extensively adopt technologies like LoRaWAN. Besides,
problems still remain in countries with the sub-GHz ISM band in that apart from LoRaWAN, many
technologies or companies also occupy this good-quality and free band, leading to even more serious
transmission collisions and degraded performance of the LoRaWAN.

2.2. Wi-SUN

Like LoRaWAN, the Wireless Smart Utility Network (Wi-SUN) is another kind of wide area
network based on IEEE 802.15.4 g. Apart from the sub-GHz ISM band, Wi-SUN also supports the
2.4 GHz ISM band, which greatly increases its practicability. However, this also leads to a smaller range
(5–10 km) than the aforementioned LoRaWAN (up to 100 km) [31]. To expand its coverage, Wi-SUN
enables sensing devices to communicate with each other. For example, when one sensing device is out
of the range of gateways, it is still able to upload data with the help of relay devices between itself and
gateways [31]. Besides, the participation of relay devices also increases the flexibility of Wi-SUN.

However, this process also increases the energy consumption of the relay devices, leading to a
shorter lifetime of these devices. To make it worse, some relay devices may have to forward data
collected by a large number of other sensing devices considering the complex topology, which will
aggravate the unbalance energy distribution of sensing devices. Furthermore, once these relay devices
run out of energy, other sensing devices will be unable to upload data even if they can still collect it [32].
This phenomenon leads to a decrease on the efficiency of data collection. Although with existing
methods, this problem can be mitigated, the complexity of communication also increases [33,34].

2.3. Airborne Sensors

Using airborne sensors to collect remote data is another viable method. Information on remote
areas can be extracted from optical images or Light Detection and Ranging (LIDAR) data sensed by
airborne sensors [35]. Compared with LoRaWAN, one advantage of using airborne sensors is that it
requires no wireless communication between sensing devices and data centers. Therefore, remote data
collection costs can be greatly reduced. However, this also limits the number of data types that can be
obtained. For example, data on streetlights is much harder to collect than PM2.5 data with this method.
Besides, weather conditions will severely disrupt its ability to collect data and it is time-consuming
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and challenging to extract information from optical images and LIDAR data. These disadvantages
reduce the practicality of using airborne sensors to collect remote data on smart cities.

2.4. Data Mules

One architecture used to collect data in sensor network was proposed in [28], where mobile entities
in the environment will collect data, store it, and finally drop off the data at fixed locations, which are
thus vividly called “data mules”. Through reasonable controls on data mules, the architecture is able
to effectively collect data from sensors deployed over a large geographical area. Using data mules
to collect data has advantages of low power consumption and low cost on building infrastructures.
However, one important disadvantage of this architecture is high latency, which remains undiscussed
in [28] due to lack of space.

Bonola et al. extended the concept of data mules in [10], leading to a more realistic mobile
entity called oblivious data mules. Compared with original data mules, oblivious data mules have no
controls, which conforms better to real-world mobile entities. Taking taxis as an example, which can be
considered a typical kind of oblivious data mules, they move independently in the city and according
to customers’ needs. In other words, their movements have the characteristics of being random and
not following planned paths. Apart from the advantage of being more real, the collected data coverage
rate can also increase with oblivious data mules. In [10], Bonola et al. used a real-world dataset
on Rome to illustrate that even with a very limited number of oblivious data mules, the coverage
of downtown areas in the city was able to reach over 80% within a day. However, the coverage of
remote areas, which is of great importance in many applications, was not taken into consideration
in [10]. Intuitively, the number of times that data mules enter remote areas is much smaller than that of
downtown areas, leading to a lower coverage of remote areas. Besides, time spent on entering remote
areas and returning back into downtown areas can be very long, which aggravates the problem on
high latency with this method.

Compared with the aforementioned three methods, using data mules to collect remote data
is free from long range wireless transmission problems. In fact, this method requires only near
field communications between sensing devices and data mules, and between data mules and data
centers. Besides, these mobile data mules are easier to manage and maintain compared with fixed
gateways deployed in the network. In addition, the number of data types and data availability are not
constrained like when using airborne sensors.

3. System Model and Problem Statement

3.1. System Model

In this section, we first introduce three important components of the LCODC scheme: (1) mobile
vehicles; (2) data packets; (3) data centers, along with the key parameters used to define them. After
then, a usage scenario is presented, based on which the experiment is conducted.

3.1.1. Mobile Vehicles

Mobile vehicles indicate mobile entities in the smart city (e.g., taxi), along with the sensors
deployed on them. When entering a new area, sensors deployed on mobile vehicles will autonomously
collect data of interest related to this area. These data will then be encapsulated into data packets and
stored in the internal memory of the mobile vehicles. Apart from data collection and storage capacities,
mobile vehicles also have the ability to communicate with neighboring vehicles. To effectively
distinguish differences between mobile vehicles, priorities used to measure the reliability are
introduced in LCODC scheme. The definition of reliability will be further explained in Section 4.5.
Assume that the total number of mobile vehicles in the smart city is M, then they can be represented
by two different sets {S1, S2, . . . , SM} and {P1, P2, . . . , PM}, where S denotes the unique IDs of mobile
vehicles while P denotes their priorities. Since there is a one-to-one correspondence between mobile
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vehicles and sensors, they are represented by mobile vehicles alone in the following subsections, under
the premise of causing no ambiguity.

3.1.2. Data Packets

Due to the limited internal memory size of mobile vehicles, the number of data packets that can
be stored in one mobile vehicle has an upper limit. When there is no space for newly generated data
packets, mobile vehicles will discard packets of less importance in the LCODC scheme. Generally,
a weight is calculated for each data packet stored in internal memory and the newly generated data
packets, and mobile vehicles will discard data packets with relatively smaller weights. Assume
that the upper limit is N, then the data packets stored in mobile vehicle i can be represented by{

D(i)
1 , D(i)

2 , . . . , D(i)
N

}
and

{
W(i)

1 , W(i)
2 , . . . , W(i)

N

}
, where D(i)

j is the unique packet ID of the j-th data

packet stored in mobile vehicle i, and W(i)
j is the weight on data packet D(i)

j .

3.1.3. Data Centers

Data centers are considered to be fixed devices in the smart city, and also the destinations
of the transmitted data packets in the LCODC scheme. Data will be refined by data centers for
real applications. For example, in VTrack [36], data centers are able to provide omnipresent traffic
information and NoiseTube [37] can make noise maps if enough data is available. Generally, in order
to increase the possibilities of communication between mobile vehicles and data centers, they should
be deployed in areas where mobiles vehicles pass by most frequently. Such areas are called urban areas
in this paper. Assume that there are a total number of K data centers being deployed in a smart city,
then they can be denoted as one set {C1, C2, . . . , CK}.

3.1.4. Application of the LCODC Scheme

The quintuple (S, P, D, W, C) consists of all elements used to illustrate and implement the LCODC
scheme. One usage scenario is presented in Figure 1. Moving taxis in smart city are considered to be
mobile vehicles with sensors deployed on them (S). After collecting data packets (D), mobile vehicles
will transmit these packets to neighbor vehicles or data centers (C). Upon successfully receiving data
packets, data centers will refine them for real applications. Note that apart from interested data on
areas (e.g., PM2.5, noise, and traffic), key information on collected data is also integrated into data
packets, such as collection time and location.
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3.2. Problem Statement

Nowadays, much real-time information is available in smart cities. For example, people can
request information on PM2.5 and NoiseTube through browsing government sites. Real-time traffic
flow information is also available through mobile map applications. However, owing to the large costs
of constructing and maintaining these sensing devices, currently most of them tend to be deployed
in urban areas, such as business districts and main streets. This uneven distribution causes real-time
information on remotes areas to be inaccurate or unavailable.

Using mobile vehicles in smart city to obtain information on remote areas is an economic and
effective data collection pattern. Taking taxis as an example, when taxis enter remote areas, sensors
deployed on them can autonomously collect data on these remote areas. After returning back into
urban areas, taxis can transmit the collected data to data centers. Such kind of collaboration enables
data centers to obtain data about remote areas without building additional infrastructure. In other
words, the collected data coverage is improved.

In conclusion, the goal of the LCODC scheme is to obtain real-time data on remote areas through
the movement and transmissions of mobile vehicles, under the premise that the number of data centers
in the smart city is limited. Below are some formal definitions on the goal of the LCODC scheme:

• Assuming that the smart city can be divided into Na areas, implementing the LCODC scheme
enables data centers to obtain data from Nm different areas. The first goal is to maximize the
coverage rate Nm/Na of the LCODC scheme.

• Assuming that the collection time of data packet i is ts
(i), and it is received by a data center at

time te
(i). The second goal of the LCODC scheme is to minimize the latency of data packets i,

which is the difference between te
(i) and ts

(i):

li = ts
(i) − te

(i), te
(i) ≥ ts

(i). (1)

Therefore, the average latency of data packets in smart cities Laverage can be obtained according to
Equation (2), where D is the total number of data packets received by data centers:

Laverage = (
D

∑
i=1

li)/D. (2)

Equation (3) gives a summary of aforementioned goals:{
max Nm/Na

min Laverage
, (3)

We then present several problems to be solved before achieving the goal of the LCODC scheme.

• The problem of measuring the importance of different data packets.

Intuitively, data packets are generated at different locations and times. According to the
aforementioned goals, packets from remotes areas and with low latency should have higher weights
compared with other packets. Therefore, one problem in the LCODC scheme is how to correctly
measure the importance of data packets.

• The problem of making sure data packets with higher weights have the priority of being
transmitted to data centers.

After correctly measuring the importance of different data packets, an effective scheme for
transmission between mobile vehicles is needed to make sure that important packets can be transmitted
to data centers as soon as possible. The typical problem depicted in Figure 1 is described as follows:
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After collecting data on remote areas, a mobile vehicle remains in the remote areas. At the same
time, another vehicle approaches and intends to return to the urban areas. Transmission between
two vehicles should enable the data stored in the first vehicle to have a higher possibility of being
transmitted to and stored by the second vehicle. Therefore, in order to solve this problem, an important
part of the LCODC scheme is designing vehicle to vehicle (V2V) transmission.

• The problem of avoiding aggravating broadcast storm problems in urban areas.

One common problem on V2V transmission is known as the broadcast storm problem [38].
Specifically, there tend to exist many mobile vehicles in an urban area at the same time. Simultaneous
transmission between them will cause severe channel collisions, leading to a decrease of channel
utilization. Besides, owing to the highly dynamic topology formed by mobile vehicles, it is very likely
that receivers have already left the transmission range of senders after a previous transmission failure.
Therefore, in order to improve the latency and coverage performance, any designed scheme should
have solutions to mitigate the broadcast storm problem.

4. LCODC Scheme

4.1. Overview

The LCODC scheme is a kind of data collection scheme in vehicular ad hoc networks that is
specialized for optimizing the coverage and latency of collected data. One important feature of
the LCODC scheme is that collected data in a smart city is considered to be latency-tolerant and
loss-tolerant, which enables the broadcast storm problem to be further mitigated. On the other hand,
data related to instantaneity (e.g., information about car accidents) may not perform well if transmitted
through the LCODC scheme.

Compared with other proposed schemes, the LCODC scheme has the advantages of requiring
no extra supporting devices and information related to smart city, along with its simplicity and
easy implementation. For example, broadcast devices located at intersections are needed in several
schemes to facilitate data transmission, which is costly to build and difficult to maintain. Besides,
some schemes rely heavily on information related to roads, such as average speed and traffic flow [39].
Considering the large scale of smart city, such information on remote areas can be hard to obtain.
In addition, average speed and traffic flow cannot be simply viewed as constant parameters in a
smart city. Intuitively, great differences exist between the traffic flow at rush hour and midnight.
The time-dependency greatly escalates the complexity of schemes based on such information and
influences their final performance.

The information needed by the LCODC scheme is only the GPS trajectories of mobile vehicles
in smart cities. With enough data on trajectories, the LCODC scheme is able to correctly find out the
distributions in urban areas and remote areas using big data analysis approaches, along with patterns
related to the movements of mobile vehicles. These information serves as the foundation of the LCODC
scheme. With one comprehensive study on the patterns in the smart city, waste and redundancy in
the utilization of public resources can be reduced, leading to a simpler and more economical data
collection scheme.

In general, the LCODC scheme consists of three primary sub-schemes: (1) scheme for deciding
the location of data centers; (2) scheme for vehicle to vehicle (V2V) transmission; (3) scheme for vehicle
to device (V2D) transmission, which will be illustrated in details in the following sections.

4.2. Running States of Mobile Vehicles

Before formally presenting the design details of the LCODC scheme, an explanation of the
running states of mobile vehicles is provided to facilitate further discussions. In the LCODC scheme,
the running states of mobile vehicles can be divided into four different kinds: (1) collection state;
(2) sensing state; (3) dumping state; (4) transmitting state. Switching between these states enables the
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collected data to be exchanged between mobile vehicles or transmitted to data centers, and finally
achieves the goal of obtaining recent data about remote areas. Below are detailed explanations of the
four different states:

• Collection state

When mobile vehicles enter a new area, the sensors deployed on them will autonomously switch
into collection state and collect data of interest about this area. These data will then be stored in the
internal memory of the mobile vehicles.

• Sensing state

The process of sensing neighboring mobile vehicles and receiving data packets is called the
sensing state. Specifically, periodic beacon messages are sent by mobile vehicles in the sensing state.
As a result, every vehicle is able to detect neighboring vehicles according to these beacon messages.
Apart from receiving beacon messages, mobile vehicles also receive data packets transmitted by
neighboring vehicles when in this state.

• Dumping state

Mobile vehicles will switch into dumping state when passing by data centers. In this state, mobile
vehicles will attempt to transmit the data stored in their internal memory to the data centers. Since
data centers are considered to be the data destinations, there is no need for these data to be further
transmitted between mobile vehicles. Therefore, mobile vehicles will free up internal memory after
finishing transmitting data to data centers. This process is vividly named the dumping state.

• Transmitting state

Upon detecting neighboring vehicles, mobile vehicles will autonomously switch into transmitting
state. When in this state, it is possible for vehicles to exchange data with neighboring vehicles.
However, the broadcast storm problem will aggravate acutely when these vehicles are located in urban
areas. Therefore, the sub-scheme for transmission between mobile vehicles should take actions to
mitigate the broadcast storm problem. A brief state transition diagram of the running states of mobile
vehicles is shown in Figure 2.
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4.3. Deciding the Location of Data Centers

The first sub-scheme is used to find the locations of data centers through data mining on historical
GPS trajectories of mobile vehicles. With historical GPS trajectories, distributions in urban areas
and remote areas in the smart city can be found. Building data centers in those urban areas can
effectively increase the frequency of transmission between mobile vehicles and data centers, enabling
more collected data to be received by the data centers. However, choosing areas with mobile vehicles
passing by most frequently ignores the coverage rate performance.

Real-world information on the trajectories of mobile vehicles is usually represented by a series of
trace points in the map. Therefore, the first sub-scheme can be converted into a clustering problem
that aims to find out the internal structure of trace points [40]. Clustering will divide these trace
points into different classes, with a high similarity between points in the same class and a low
similarity between points in different classes. In the first sub-scheme of the LCODC scheme, Euclidean
distance is adopted to measure similarities while different classes are represented by data centers.
In conclusion, the LCODC scheme converts the sub-scheme for deciding the location of data centers
into a clustering problem.

For convenience, the LCODC scheme will first divide the smart city into square areas of the same
size. Compared with other methods, such a partition requires no information about the layout of the
smart city, and thus is much easier to implement. In the following sections, the word “area” is replaced
by “grid” to reflect the partition method adopted by the LCODC scheme.

In the LCODC scheme, location information about different grids alone is used to decide the
locations of data centers. Assume that the historical GPS trajectories cover a total number of M grids
in the smart city, with each grid represented by its center’s longitude and latitude, then the location
information of these grids can be expressed as a matrix with size M × 2. Each row in the matrix
corresponds to one specific grid while the first and second column separately denote information
about longitude and latitude.

Clustering will divide the grids into K different classes, with each of these grids xi belonging
to the class that corresponds to the nearest data center. The goal of this sub-scheme is to decide the
locations of data centers that attempt to minimize square error E:

E =
K

∑
i=1

∑
xεDi

(‖ x− Di ‖2)
2, (4)

where ‖ ∗ ‖2 is L2-norm, x in the parenthesis indicates grids whose nearest data center is Di, and the
final location of data center Di can be obtained through averaging locations of x. The value of E can be
viewed as a measurement on the similarity among grids that belong to the same data center.

In conclusion, clustering algorithms are adopted in this sub-scheme to decide the locations of
data centers. Before clustering, location information alone is used to construct the feature vector for
each grid covered by historical GPS trajectories. The final locations of data centers can be obtained
through averaging the locations of grids in the corresponding class. Section 5.3.1 shows clustering
results on a real-world, large dataset with different clustering algorithms.

4.4. Vehicle to Device Transmission

In vehicle to device transmission (V2D), device refers to data centers deployed in the smart city.
V2D transmission happens when mobile vehicles pass by data centers. Therefore, this sub-scheme
denotes actions taken by mobile vehicles in the dumping state. With the help of the widely used global
positioning system, we assume that mobile vehicles in the smart city can easily obtain information
about their current locations. Therefore, when passing by data centers, they will autonomously switch
into the dumping state shown in Figure 2. Besides, we assume that vehicle to device transmission is
instantaneous, which can be achieved through technologies like Ultra-Wideband (UWB). Researchers
have reported that with UWB, the measured peak transmission speed can reach over 50 Mbps within a
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short range [41]. When passing by data centers, the distance between mobile vehicles and data centers
can be regarded as relatively short. Therefore, mobile vehicles are able to finish transmitting data
within several time slots with UWB. To simplify the model, we make this assumption and focus on
transmission between mobile vehicles.

Due to the existence of vehicle to vehicle transmission, there tends to be many copies of a specific
data packet among mobile vehicles. Therefore, the possibility that a specific data packet can be received
by data centers will be improved through transmitting copies by different mobile vehicles. To avoid
aggravating the broadcast storm problem in grids where data centers are located, mechanisms related
to Quality of Service (QoS), such as sending ACKs (ACKnowledgements) as a feedback, are not
adopted during V2D transmission.

Since the range of wireless transmission is very limited, it can be difficult for vehicles to detect
potential collisions because of signal attenuation, leading to the so called hidden terminal problem.
However, in our model, V2D transmission happens when mobile vehicles and the data center are
located in the same grid. With a reasonable grid size, the hidden terminal problem can be mitigated.
Therefore, we adopt P-Persistent Carrier Sense Multiple Access with Collision Detection (P-Persistent
CSMA/CD) protocol in V2D transmission to avoid collisions when all mobile vehicles attempt to
transmit data to the data center, which is briefly expressed as below:

When a mobile vehicle finishes preparing data to be transmitted, it will first intercepts the channel.
If the channel is idle, data will be transmitted with the probability p or is pushed off to the next time
slot with the probability 1− p. The situation on the next time slot is similar to the current time slot.
When transmitting, it will keep detecting potential collisions. If they exist, the transmission process
will be terminated immediately and restarted after a random time interval.

In conclusion, when passing by data centers, mobile vehicles will switch into the dumping state
and start transmitting the data stored in their internal memory according to the P-Persistent CSMA/CD
protocol. After transmission, the mobile vehicles will clear their internal memory and switch back into
a collecting state. Algorithm 1 shows the pseudo-code of V2D transmission from the perspective of
mobile vehicles:

Algorithm 1: Vehicle to Device Transmission (V2D)

1: While true
2: If passing by data centers
3: switch into dumping state;
4: start transmitting data to data centers;
5: If finishing transmitting
6: clear internal memory;
7: Else
8: attempt to transmit at next time slot;
9: go to step 5;
10: End
11: switch into collecting state;
12: End
13: End

4.5. Vehicle to Vehicle Transmission

Compared with the aforementioned two sub-schemes, vehicle to vehicle transmission (V2V)
can be considered as the core of the LCODC scheme. On the one hand, the participation of V2V
transmission greatly facilitates data flow in the smart city compared with other schemes equipped with
V2D transmission alone. On the other hand, mobile vehicles will discard data with less importance
according to this sub-scheme when there is no memory space for newly collected data, which directly
influences the final performance of LCODC scheme. Before formally describing the sub-scheme for
V2V transmission, we first present several assumptions made in the LCODC scheme:
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• Each mobile vehicle has access to information on its current location through triangulation or the
global positioning system (GPS).

• Traffic flow information about each grid in the smart city is pre-stored in mobile vehicles.
Therefore, mobile vehicles are able to easily obtain such information and encapsulate it into
the header of data packets.

• Neighboring vehicles can be detected by mobile vehicles in sensing state through receiving beacon
messages broadcast by them, along with key information about neighboring vehicles (e.g., ID,
weight), which is integrated into beacon messages.

Considering the current widely used navigation systems of mobile vehicles and developments
in equipped vehicle devices (e.g., microcomputers integrated into mobile vehicles), we assume that
the assumptions above are reasonable and feasible. Besides, mobile vehicles can then easily locate
their corresponding grid using location information and pre-stored grid information. Particularly, we
assume that the current location of a mobile vehicle is (m, n) while that of the bottom-left corner of the
smart city is (m0, n0), then the corresponding grid index of this mobile vehicle along the longitude
IndexX and latitude IndexY can be calculated as follows:

IndexX = d(m−m0)/gsizee, m ≥ m0 (5)

IndexY = d(n− n0)/gsizee, n ≥ n0 (6)

where gsize is the side length of grids. Note that m, n, m0, n0 are not original longitude and latitude
information. However, they can be easily obtained through transformation provided that the longitude
and latitude information of the mobile vehicles and the corner of the smart city is available.

Intuitively, if one mobile vehicle never has any communication with a data center (known as
black holes among mobile vehicles), there is no need for other vehicles to transmit data to it. Therefore,
a weight used to reflect the reliability of mobile vehicles is introduced in V2V transmission. Besides,
the avoidance of such useless transmission also helps mitigate the broadcast storm problem.

Assume that the weight on the i-th mobile vehicle is Pi, its value will increase by one when
every time this mobile vehicle communicates with a data center. In addition, the initial value of Pi is
designated as 1.

When a mobile vehicle Si detects neighboring vehicles, it will autonomously switch into
transmitting state according to Figure 2. Besides, Si is also able to obtain information on the ID
and weight of neighboring vehicles through beacon messages. After that, Si will compare its own
weight Pi with the weights of all neighboring vehicles, denoted as the set P. The possibility that Si will
broadcast collected data to neighbor vehicles is calculated according to the following equation:{

max(P)
Pi

, Pi ≥ max(P)
1, Pi < max(P)

, (7)

where max(P) denotes the largest weight of the neighboring vehicles. According to Equation (7), if
the weight of mobile vehicle Si is much larger than that of the neighboring vehicles, there is a high
possibility for Si to reserve its own data and transmit it to data centers individually, leading to a
mitigation of the broadcast storm problem. Algorithm 2 is the pseudo-code of transmission between
mobile vehicles according to the descriptions above from the perspective of sender Si:
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Algorithm 2: Vehicle to Vehicle Transmission (Sender)

1: While true
2: If detecting neighbor mobile vehicles;
3: switch into exchanging state;
4: find max(P) according to beacon messages;
5: If Pi ≥ max(P)
6: broadcast data with probability max(P)/Pi;
7: Else
8: broadcast data with probability 1;
9: End
10: End
11: End

Since the neighboring vehicles of Si will also go through the process above, it is possible for
more than one vehicle to broadcast their stored data. Therefore, transmission schemes used to avoid
collisions are also introduced in V2V transmission.

Apart from sending data, mobile vehicles also need to receive data during V2V transmission.
After successfully receiving data packets broadcast by other vehicles, mobile vehicles will store it in
their internal memory. However, if there is no free space for the received data packets, schemes will be
used to decide which data packet should be discarded.

Specifically, mobile vehicles will calculate weights for the received data packets and data packets
stored in their internal memory according to the following equation:

W(i)
j = k× 1

Bj
(i)

+
1

∆Tj
(i)

, (8)

where W(i)
j is the weight of the jth data packet stored in mobile vehicle Si, Bj

(i) is one parameter related

to the grid where this data is collected, and ∆Tj
(i) is the difference between the collection time of this

data packet and the time that V2V transmission happens. k serves as an adjustment factor used to
make sure that Bj

(i) and ∆Tj
(i) have relatively similar impacts on the weight of data packets.

The exact value of Bj
(i) corresponds to the traffic flow information of grids, which refers to the

number of times that mobile vehicles enter a grid within a period of time. Assume that within H
hours, the number of times that mobile vehicles enter grid i is N, then the traffic flow information
of grid i is N/H per hour. Intuitively, remote areas tend to have a smaller value of Bj

(i), leading to
a greater increase on the weight of data packets, which indicates that in the LCODC scheme, data
packets collected from remote areas have a superior chance of being accepted by other vehicles.

As to the value of ∆Tj
(i), Equation (9) is used to obtain its real-time value:

∆Tj
(i) = tnow − tj

(i), (9)

where tj
(i) is collection time of this data packet while tnow is the current time. According to Equation (9),

data collected recently tends to have a smaller value of ∆Tj
(i) compared with data collected a long

time ago, which indicates that in the LCODC scheme, recent data packets have a superior chance of
being accepted by other vehicles.

After methods on measuring importance of data packets are presented, the pseudo-code of
transmission between mobile vehicles from the perspective of receiver Si is described in Algorithm 3.
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Algorithm 3: Vehicle to Vehicle Transmission (Receiver)

1: While true
2: If receiving data packets from other mobile vehicles;
3: For each received data packet D;
4: If internal memory still has spare space;
5: store D;
6: Else
7: compute weights for all packets according to Equation (8);
8: discard the packet with minimum weight;
9: End
10: End
11: End
12: End

Figure 3 shows data transmission between three different mobile vehicles {A, B, C}. Then, another
mobile vehicle D enters the grid at time t. In the beginning, A, B, and C detect each other according
to beacon messages. After that, they switch from sensing state into transmitting state and start to
exchange data. Detailed information on the following transmission is shown in the figure. At time t,
mobile vehicle D enters this grid. Since A, B, and C no longer broadcast beacon messages at time t, D
still remains in sensing state but is able to receive data transmitted by other vehicles. Note that at first,
it successfully receives part of the first data packet transmitted by A, along with the end tag. D then
makes the judgement that this data packet is incomplete and discards it. The subsequent situations on
receiving data packets are same for A, B, and C.
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4.6. QoS Requirements

Although the proposed LCODC scheme focuses on latency-tolerant and loss-tolerant data in smart
cities, in this section we demonstrate that Quality of Service (QoS) requirements can also be fulfilled
with additional mechanisms. However, this inevitably increases the complexity of the LCODC scheme.

Intuitively, different types of data generated in smart cities have different transmission
requirements [9]. For example, congestion and accident information should be transmitted to data
centers as soon as possible. Therefore, data packets are classified into classes with different hierarchies
in many real-world networks. Assume that a 5-level partition {1, 2, 3, 4, 5} is adopted, so data packets
with greater value should be transmitted first. Several mechanisms can be added to the LCODC
scheme during V2V and V2D transmission to meet this requirement:

(1) With information on the average superiority of data packets stored in one mobile vehicle
integrated into its beacon messages, neighboring vehicles are able to know currently which
vehicle has the largest average superiority. After that, mobile vehicles in the same grid will
transmit data according to the descending order of average superiority.
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(2) Different possibilities p can be designated for mobile vehicles with different average superiorities
during V2D transmission. Specifically, the mobile vehicle with the larger average superiority is
more likely to transmit data in the current time slot.

As to the security, mechanisms on mobile vehicles authentication and data packet
evaluation [42–44] can be integrated into the LCODC scheme when detecting neighboring vehicles
and discarding data packets. Due to lack of space, design details to fulfill QoS requirements is not
explored in this paper, and will be covered in our future work.

4.7. Summary on LCODC

Figure 4 summarizes the LCODC scheme, with three mobile vehicles (S1, S2, S3) moving toward
different grids and two fixed data centers (C1, C2) located in the grid map.
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The locations of two data centers have already been determined according to clustering algorithms
and historical GPS trajectories. At present, S2 detects two neighboring vehicles through beacon
messages sent by S1 and S3, along with their weight P1, P3. S2 will autonomously switch into
transmitting state and compare P1, P3 with its own weight P2. It then uses Equation (7) to calculate the
probability of broadcasting data stored in its internal memory.

The situations of S1 and S3 are similar to that of S2. For simplicity, we assume that S1, S2, and S3

will switch to transmitting state simultaneously while the CSMA/CD protocol is adopted to avoid
possible collisions. After broadcasting and receiving data, each mobile vehicle is expected to obtain
some data from other devices (due to possible packet loss, small weights of some delivered packets,
and decisions according to Equation (7), a mobile vehicle tends not to accept all the packets sent by
other vehicles).

Since mobile vehicles keep moving during transmission, the process of broadcasting and receiving
can be interrupted unexpectedly. In practice, every data packet should start and end with special tags
to inform other devices. If mobile vehicles receive the start tag or end tag alone, they can judge that
the transmission is fragmentary.

After obtaining some data from other vehicles, S1 and S3 will pass by data centers and switch
into dumping state. All data stored in their internal memories are transmitted to data centers, which
are considered to be destinations. According to the historical trace points of S2, its internal memory
stores data collected from remote areas. The transmitting state enables these data to have a higher
probability of being transmitted to S1 and S3 since they have larger weights according to Equation (8).
Finally, they can be transmitted to data centers faster with the help of S1 and S3, which achieves the
target described in Section 3.2.
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5. Experiment on the LCODC Scheme

5.1. Overview of Experiment

To thoroughly evaluate the latency and coverage performance of the LCODC scheme, the T-Drive
dataset is adopted in the experiment, which contains the GPS trajectories of 10,357 taxis from 2 February
to 8 February 2008 within Beijing [45,46]. Specifically, trajectories are composed of about 15 million
trace points, with each of them containing information on taxi id, collection time, longitude, and
latitude. Since T-Drive has the advantage of collecting data from the real world and on a large scale,
we assume that using this dataset to prove the superiority of LCODC scheme on latency and coverage
rate is persuasive.

Figure 5 provides summary statistics of the T-Drive dataset. We assume that grids with a number
of times that mobile vehicles enter smaller than 6 are remote areas, while grids with a number of times
greater than 10 are urban areas. According to Figure 5, around 57% of the grids are remote areas while
urban areas account for 33%.
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5.2. Methodology Introduction

In this section, preprocessing methods on the T-Drive dataset are introduced, along with key
parameters used in the experiment. In general, preprocessing methods include gridding of the city
and data filtering.

5.2.1. Gridding of the City

The longitude of the smart city ranges from 115.7◦ E to 117.4◦ E while the latitude ranges from
39.4◦ N to 41.6◦ N, covering an area of over 35, 160 square kilometers. Assume that the maximum
transmission radius of taxis is r, then the size of square grid is (

√
2/2)r× (

√
2/2)r, which ensures that

taxis in the same grid are able to detect and communicate with other vehicles. Note that although we
ignore possible V2V transmission between mobile vehicles in neighbor grids for convenience in the
experiment, the proposed LCODC scheme is not constrained by this preprocessing method.

5.2.2. Data Filtering

First, points out of city range are discarded. In addition, abnormal points are picked out and
filtered, which indicate points that are considered to be too far from their previous points. Consider
that time interval between two neighboring points of one taxi is t and maximum speed limit in smart
city is v, if the distance between two points is greater than v× t, we assume the latter point to be
abnormal. Figure 6 shows the main part of the T-Drive dataset (from 2 February to 8 February) after
data filtering (v = 80 Km/h).
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Table 1 presents several key parameters used in the experiment.

Table 1. Key parameters on the experiment.

Parameter Value

Transmission Radius 100 m
Data Packet Size 20 bytes

Internal Memory Size 4 KB (about 200 data packets)
Time Interval of Trajectories 2 min

k in Equation (8) 1000

5.3. Experimental Results

5.3.1. Locations of Data Centers

After pre-processing, we obtain a total number of 241,329 grids with mobiles vehicles passing
by, which is greatly smaller than the overall size (2050× 3453). Considering the complex terrain of
Beijing (mountains, pools, and lots of historic sites), there do exist a large number of grids inaccessible
to vehicles.

First, we implement the sub-scheme for deciding the location of data centers. In this part, the
adopted clustering algorithms are k-means, k-means++, and mean-shift. In addition, the initial number
of data centers K (known as a hyper-parameter) in k-means and k-means++ is set to 50. Figure 7 shows
the final locations of data centers with different clustering algorithms. Intuitively, some data centers
determined by k-means and k-means++ overlap with each other. Besides, locations of data centers
determined by mean-shift have a sparser layout.
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Figure 7. Final locations of data centers with different clustering algorithms.

5.3.2. Performance on Latency and Coverage

According to Section 3.2, latency is defined as the difference between the data collection time and
the uploading time. Assume that a data packet is generated in time slot i and arrives at a data center in
time slot j, then its latency should be (j− i)× tinterval , where tinterval is the length of the time interval.
In our experiment, tinterval is set to 2 min according to Table 1.

Table 2 presents experimental results with three different clustering algorithms, from which we
can observe that k-means and k-means++ outperform mean-shift in both average latency and coverage.
In the light of the locations of data centers determined by mean-shift in Figure 7, this gap can be
reasonable since many data centers are located in remote areas. Also, this phenomenon indicates that
locations of data centers have a great impact on the final performance. Therefore, in Section 5.5, we will
conduct a comprehensive research on the performance of the LCODC scheme with different numbers
and layout of data centers.

Table 2. Experimental results of LCODC scheme.

Performance Metric k-Means k-Means++ Mean-Shift

Number of Uploaded Data Packets 4,578,695 5,010,783 626,863
Number of Mobile Vehicles Covered by Data Packets 6954 7059 1914

Average Latency (min) 11.8564 12.9290 37.5223
Coverage (%) 22.31 24.35 9.37

In addition, the experimental results show the effective transmission between mobile vehicles
in the LCODC scheme according to the number of mobile vehicles covered by data packets, which is
much larger than the number of mobile vehicles that pass by data centers. In fact, the exact number
of mobile vehicles involved in our experiment is 8826 after filtering, while only around half of them
have ever passed by data centers. Therefore, without V2V transmission, a great proportion of the data
collected by mobile vehicles could never be transmitted to data centers. Figure 8 shows a detailed
distribution of the covered grids with k-means++ while Figure 9 presents the distribution based on the
latency of uploaded data packets.
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5.4. Comparison

In this section, we first compare the performance of the LCODC scheme with two fundamental
data collection schemes in smart cities. Since a comprehensive comparison with other methods
mentioned in Section 2 (e.g., LoRaWAN, Airborne Sensors) can be hard, we will just give a brief
illustration of the superiority of LCODC scheme. The two fundamental data collection schemes are
described as follows:

• Scheme One

The first scheme discards vehicle to vehicle (V2V) transmission. When entering a grid, each
mobile vehicle will autonomously collect data. Upon passing by data centers, these data will be
uploaded to data centers.

• Scheme Two

The second scheme is similar to the LCODC scheme, however, instead of using Equation (8) to
calculate the weight for each data packet and discarding the data packets with minimum weight, this
scheme two discards data packets randomly. The rest is the same as the LCODC scheme.
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Table 3 presents the two schemes’ final average latency and coverage performance. From Table 3
we can observe that the LCODC scheme greatly outperforms Scheme One in both latency and coverage,
revealing the importance of vehicle to vehicle (V2V) transmission in any data collection scheme, while
the LCODC scheme greatly reduces the latency compared with Scheme Two. However, since data
collected from remote areas but with large latency will also be discarded by the LCODC scheme,
Scheme Two slightly outperforms the LCODC scheme on coverage.

Table 3. Comparison with other schemes.

Scheme Average Latency (min) Coverage (%)

LCODC (k-means) 11.8564 22.31
Scheme One 444 8.47
Scheme Two 180 27.96

As to the comparison with LoRaWAN, due to the lack of exact parameters, we assume that
the coverage radius of gateways is 500 m, which is approximately the coverage radius of a mobile
communication base station using the 900 MHz band in urban areas. According to the aforementioned
experimental results, the LCODC scheme covers an area of 269 km2. To achieve the same coverage, the
number of gateways needed can easily reach over 300. Note that we ignore the complex layout of this
area. Compared with using airborne sensors, the LCODC scheme shows great superiority in average
latency since it can be impractical to obtain data through airborne sensors within such a time interval,
let alone the fact that number of data types obtained by airborne sensors are greatly limited.

5.5. Analysis of the Experiment

In this part, we conduct a comprehensive analysis on the performance of the LCODC scheme and
the impacts of key parameters. First, we dig into the experimental results of the LCODC scheme. Then,
the impacts of the number of data centers and their locations are presented. Finally, a study of the
impact of the internal memory size of mobile vehicles is conducted. Besides, to obtain more information
on the performance of the LCODC scheme, an additional part is included in this section. Specifically,
we separately pick out two sub-datasets according to their collection time (10:00 p.m.–6:00 a.m. and
8:00 a.m.–8:00 p.m.) to study the difference in the performance of the LCODC scheme at different times
of a day.

5.5.1. Analysis on Experimental Results

According to Figure 5, we define grids with traffic flow information smaller than 6 as remote
areas, while grids with that greater than 10 are defined as urban areas. Therefore, we first find out the
exact distribution of uploaded data packets. Figure 10 presents the detailed distribution of the average
latency and Figure 11 presents the number of remote and urban areas (grids) covered by uploaded data
packets. Besides, Figure 12 shows the distribution of remote and urban areas covered by data packets.

Intuitively, Figure 10 shows that data packets related to urban areas tend to arrive at data centers
faster than data packets related to remote areas, as compared with peaks of remote areas, peaks of
urban areas have a greater proportion (higher) and a smaller latency (ahead of). Figure 12 also shows
that the distribution of remote areas has a sparser layout than that of urban areas. Besides, according
to Figure 11, there is not a great difference between the number of remote areas and urban areas, which
indicates that the LCODC scheme does optimize the data collection coverage.
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changes of the total number of uploaded data packets while Figure 14 shows changes of average 
latency and coverage of the LCODC scheme with different number of data centers. Besides, Figure 
15 presents the distribution on grids covered by uploaded data packets when the number of data 
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According to Figures 13 and 14, the coverage still improves when the total number of uploaded 
data packets decreases (when the number of data centers ranges from 50 to 70), which cannot be 
clearly illustrated when taking the impacts of the number of data centers alone into consideration. 
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increase on the number of data centers brings no improvement on the average latency according to 
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5.5.2. Impacts of Data Centers

In the LCODC scheme, the number of data centers directly determines the hyper-parameter K in
k-means and k-means++. On the other hand, Figure 8 clearly demonstrates the correlation between the
locations of data centers and the final performance of the LCODC scheme. Therefore, it is necessary to
analyze the impact of the number and locations of data centers. Figure 13 presents changes of the total
number of uploaded data packets while Figure 14 shows changes of average latency and coverage of
the LCODC scheme with different number of data centers. Besides, Figure 15 presents the distribution
on grids covered by uploaded data packets when the number of data centers is set to 100.
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To begin with, we describe three different methods on deciding the locations of data centers for 
comparison with the LCODC scheme: (1) locations with random distribution, which indicates that 
we randomly pick out 50 different grids as the locations of data centers; (2) locations with even 
distribution, which indicates that data centers are evenly distributed, with 10 data centers along the 
longitude and five data centers along latitude; (3) locations with circular distribution, which indicates 
that data centers present a circular shape. Besides, we modify the location of the centers of circles to 
conform to the real layout of Beijing. Figure 16 presents detailed information on the layout of these 
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According to Figures 13 and 14, the coverage still improves when the total number of uploaded
data packets decreases (when the number of data centers ranges from 50 to 70), which cannot be clearly
illustrated when taking the impacts of the number of data centers alone into consideration. Therefore,
in the next part, we conduct an analysis on the locations of data centers. Besides, an increase on the
number of data centers brings no improvement on the average latency according to Figure 14.
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To begin with, we describe three different methods on deciding the locations of data centers
for comparison with the LCODC scheme: (1) locations with random distribution, which indicates
that we randomly pick out 50 different grids as the locations of data centers; (2) locations with even
distribution, which indicates that data centers are evenly distributed, with 10 data centers along the
longitude and five data centers along latitude; (3) locations with circular distribution, which indicates
that data centers present a circular shape. Besides, we modify the location of the centers of circles to
conform to the real layout of Beijing. Figure 16 presents detailed information on the layout of these
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As in Table 2, experimental results of data centers with three different distributions are shown in
Table 4. Since a bigger proportion of data centers with circular distribution are located in urban areas
compared with that in Figure 7, the number of uploaded data packets is much larger than with the
original LCODC scheme. However, the original LCODC scheme greatly outperforms that scenario on
coverage. Besides, due to the fact that the LCODC scheme optimizes the latency of data packets, data
centers with circular distribution have no superiority in average latency.

Table 4. Experimental results of LCODC scheme with different locations of data centers.

Performance Metric Random Distribution Even Distribution Circular Distribution

Number of Uploaded
Data Packets 26,450 86,201 11,254,529

Average Latency (min) 72.3788 63.7886 11.6063
Coverage (%) 1.44 4.50 11.24

5.5.3. Impact of the Size of Internal Memory

The internal memory size directly determines the number of data packets that can be stored by
mobile vehicles. Therefore, the number of packets uploaded to data centers is expected to increase with
the growth on internal memory size, leading to an improvement on the coverage of the LCODC scheme.
However, with more data packets to be exchanged between mobile vehicles, the time consumption will
also increase. Figure 17 presents the impact of internal memory size on average latency and coverage.



Sensors 2017, 17, 888 24 of 27

Sensors 2017, 17, 888 22 of 25 

 

 
Figure 16. Locations of data centers with three different distributions. 

As in Table 2, experimental results of data centers with three different distributions are shown 
in Table 4. Since a bigger proportion of data centers with circular distribution are located in urban 
areas compared with that in Figure 7, the number of uploaded data packets is much larger than with 
the original LCODC scheme. However, the original LCODC scheme greatly outperforms that 
scenario on coverage. Besides, due to the fact that the LCODC scheme optimizes the latency of data 
packets, data centers with circular distribution have no superiority in average latency. 

Table 4. Experimental results of LCODC scheme with different locations of data centers. 

Performance Metric 
Random 

Distribution 
Even 

Distribution 
Circular 

Distribution 
Number of Uploaded Data Packets 26,450 86,201 11,254,529 

Average Latency (min) 72.3788 63.7886 11.6063 
Coverage (%) 1.44 4.50 11.24 

5.5.3. Impact of the Size of Internal Memory 

The internal memory size directly determines the number of data packets that can be stored by 
mobile vehicles. Therefore, the number of packets uploaded to data centers is expected to increase 
with the growth on internal memory size, leading to an improvement on the coverage of the LCODC 
scheme. However, with more data packets to be exchanged between mobile vehicles, the time 
consumption will also increase. Figure 17 presents the impact of internal memory size on average 
latency and coverage. 

 
Figure 17. Average latency and coverage of LCODC scheme with different internal memory sizes 
(measured by the number of data packets). 
Figure 17. Average latency and coverage of LCODC scheme with different internal memory sizes
(measured by the number of data packets).

5.5.4. Performance at Different Times in One Day

In this part, we separately pick out two sub-datasets according to the collection time of historical
trajectories in the T-Drive dataset (10:00 p.m.–6:00 a.m. and 8:00 a.m.–8:00 p.m.) to study the
performance of the LCODC scheme at different times in one day. Table 5 shows the experimental results
based on these two sub-datasets. Intuitively, due to a decrease on the number of active mobile vehicles,
the average latency and coverage of the LCODC scheme from 8:00 a.m. to 8:00 p.m. simultaneously
outperform those from 10:00 p.m. to 6:00 a.m. Besides, a great difference exists between the number of
uploaded data packets at different times in a day. Figure 18 presents detailed distributions of covered
grids at the two time intervals separately.

Table 5. Experimental results at different time in one day.

Performance Metric 10:00 p.m.–6:00 a.m. 8:00 a.m.–8:00 p.m.

Number of Uploaded Data Packets 1,090,251 3,593,755
Average Latency (min) 14.0951 11.3083

Coverage (%) 10.87 20.67
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6. Conclusions

In this paper, we have presented a latency and coverage optimized data collection scheme for
smart cities. Apart from vehicle to device transmission alone, this new scheme also includes vehicle to
vehicle transmission to improve the efficiency of data collection. Besides, through mining historical
trajectories of mobile vehicles to find out patterns in the smart city, this new scheme requires less
public resources. We have shown through a large-scale simulation that with very limited cost, our
LCODC scheme greatly reduces the latency while guaranteeing an acceptable coverage rate. In our
future work, we plan to further improve the performance of the LCODC scheme through mining more
kinds of historical information and developing additional mechanisms to fulfill QoS requirements.
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