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Abstract: Rapid advances in wireless communications and pervasive computing technologies have
resulted in increasing interest and popularity of Internet-of-Things (IoT) architecture, ubiquitously
providing intelligence and convenience to our daily life. In IoT-based network environments, smart
objects are embedded everywhere as ubiquitous things connected in a pervasive manner. Ensuring
security for interactions between these smart things is significantly more important, and a topic of
ongoing interest. In this paper, we present a certificateless signature scheme for smart objects in IoT-based
pervasive computing environments. We evaluate the utility of the proposed scheme in IoT-oriented
testbeds, i.e., Arduino Uno and Raspberry PI 2. Experiment results present the practicability of the
proposed scheme. Moreover, we revisit the scheme of Wang et al. (2015) and revealed that a malicious
super type I adversary can easily forge a legitimate signature to cheat any receiver as he/she wishes
in the scheme. The superiority of the proposed certificateless signature scheme over relevant studies
is demonstrated in terms of the summarized security and performance comparisons.
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1. Introduction

The boosting advances on wireless communication and sensing technologies bring universal
Internet connectivity, and a more ubiquitous and pervasive computing environment is thus created,
called Internet-of-Things (i.e., IoT). Plenty of novel smart objects with specific purposes emerge in IoT
to support various innovative applications providing higher intelligence and more convenience to our
daily life. Since IoT has attracted significant attention as a key step in furthering intelligent human
life in the future, IoT is definitely one of the most promising network paradigms in this computer
generation. In an IoT environment, numerous smart objects, such as customized sensors or wearable
intelligent devices, can be used to sense, collect, transmit, disseminate, etc., data from the field to a
server or other smart things. Unsurprisingly, IoT has wide industrial and individual applications.
However, due to the amount and nature of data and potential for exploitation, it is essential to ensure
the security of both data-in-transit and data-at-rest [1–4]. In addition, the heterogeneous nature of
the IoT network and the presence of (a large number of) specific-purpose sensors embedded within
the smart objects complicate efforts to offer effective security. One particular research challenge is to
balance the tradeoff between performance efficiency and system security when designing security
solutions for smart objects in IoT-based networks.

In the literature, researchers have dedicated significant efforts on refining traditional security
techniques as system security solutions for IoT-based network architectures, such as authentication [5–9],
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signcryption [10–13], and certificateless digital signature [14,15], respectively. First of all, due to the nature
of limited processing capability of smart objects, the design of lightweight authentication has been
thoroughly investigated as a critical security component in IoT-based network systems. In this category
of study, lightweight but robust crypto-modules, such as one way hash function, are embedded into
the operation and communication of resource-constrained IoT-based objects to support the security of
application operated by objects and backend servers (from service providers). It simultaneously focuses
on the computation efficiency and communication robustness of object-to-object and object-to-server
data exchange procedures. Secondly, the signcryption technique combines the merits from encryption
and digital signature. Most of critical security requirements, such as confidentiality, integrity,
unforgeability, and non-repudiation, can be guaranteed in a single logic step. It enjoys better security
robustness than other kinds of single-crypto-based security mechanisms. Thirdly, the refinement of
certificateless digital signature for protecting IoT-based networks has been studied because of the
benefit from the relief on the difficult certificate management in traditional public key infrastructure.
Relying on a trusted third party, certificateless public key cryptography facilitates users in establishing
a private key and the corresponding public key. It is, thus, more suitable to IoT-based network
architecture since there is no need to maintain a centralized server for key/certificate management.
In addition, with the decentralized and changed structure, it is believed that we the more efficiency
will be guaranteed due to the less of limitation on implementing security mechanism on IoT. Existing
certificateless signature schemes can be broadly categorized into certificateless signature schemes with
and without bilinear pairing. It has been proven that bilinear pairing is less efficient than ECC (elliptic
curve cryptography) point-based crypto-operations, in terms of computation costs [16], although
the use of bilinear pairing results in shorter signature message. The latter property makes bilinear
pairing-based approach particularly suitable for bandwidth-limited networks, such as traditional
wireless sensor networks. Nevertheless, owing to the recent advancements in communication
technologies, including those for sensors, the communication environment for existing IoT-based
sensors is not as limited by bandwidth restriction as before. Various techniques, such as Bluetooth
Low Energy, LoRa, and Zigbee, have been leveraged to build IoT-based communication networks
which are bandwidth-guaranteed during sensors-to-server message transmission. Hence, during the
design of an efficient and secure certificateless signature scheme for IoT-based smart objects, we argue
that computation efficiency takes priority over communication efficiency. For the above observations,
in this paper we focus on the design of a certificateless signature scheme with ECC point-based
crypto-operations for IoT-based network environments.

The rest of the paper is organized as follows. Section 2 presents relevant background materials.
In Section 3, we present the proposed certificateless signature scheme for IoT-based smart objects.
We then provide the security analysis and the system implementation of our proposed scheme in
Sections 4 and 5, respectively. In Section 6, we review related work and present a comparative summary,
in terms of security and performance. Finally, we conclude the paper in Section 7.

2. Preliminary

The objective of this study is to propose a robust and efficient certificateless signature scheme
with ECC point-based crypto-operations. ECC is one kind of public key cryptography (PKC)-based
techniques, where it is based on the algebraic structure of elliptic curves over finite fields. Normally,
ECC requires a smaller key size than other PKC-oriented approaches to provide an equivalent security
level. For example, it is generally thought that the same security can be delivered by 256-bit elliptic
curve and 3072-bit RSA. Hence, to enjoy higher computation efficiency, we would like to integrate
the ECC crypto-technique into our proposed certificateless signature scheme. Furthermore, since the
robustness of the proposed scheme is based on the hardness of solving the Elliptic Curve Discrete
Logarithm Problem (ECDLP), we present the definition of ECDLP in the following.

• The ECDLP is defined as follows: Let the notation E/Ep denotes an elliptic curve E over a prime
finite field Ep, defined by an equation: y2 = x3 + ax + b, where a, b ∈ Fp are constants such that
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∆ = 4a3 + 27b2 6= 0. All points Pi = (xi, yi) on E and the infinity point O form a cyclic group G
under the operation of point addition R = P + Q defined based on the chord-and-tangent rule.
In addition, t · P = P + P + . . . + P (t times) is defined as a scalar multiplication, where P is a generator
of G with order n. The ECDLP is that given a group G of elliptic curve points with prime order n,
a generator P of G and a point x · P, it is computationally infeasible to derive x, where x ∈ Z∗n.

The robustness of the proposed certificateless signature scheme is based on the intractability of
ECDLP. Next, for better understanding of our proposed scheme, we present the general concepts of
the certificateless signature. A certificateless signature scheme generally consists of six phases, i.e.,
Setup, PartialPrivateKeyExtract, SetSecretValue, SetPublicKey, Sign, and Verify [17]. Note that the
four phases, i.e., Setup, PartialPrivateKeyExtract, SetSecretValue, and SetPublicKey, can be treated as a
pre-processing stage. In the following, we briefly review the normal process of a general certificateless
signature scheme (Figure 1).

• Step 1 (Setup phase): A trusted KGC (key generation center) generates a master secret key s ∈ Z∗n,
a corresponding master public key PKKGC and a set of public parameters, i.e., params.

• Step 2 (PartialPrivateKeyExtract phase): With the master secret key s, params and the user i’s
identity IDi, KGC generates a partial secret key Di for the user i.

• Step 3: KGC sends Di to the user i.
• Step 4 (SetSecretValue phase): Upon receiving Di, the user i examine the correctness of Di. If it

holds, the user i randomly selects a value xi ∈ Z∗n as his/her secret. Otherwise, the session
is terminated.

• Step 5 (SetPublicKey phase): With params and xi, the user i generates and outputs his/her public
key PKi.

• Step 6 (Sign phase): With the message m, this phase outputs a signature σi which is based on m, s
and xi.

• Step 7: the user i sends σi to the verifier.
• Step 8 (Verify phase): With the signature σi of the message m, the verifier examine the correctness

of σi. If the examination holds, the signature is valid. Otherwise, the session is terminated.
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Figure 1. The normal process of a general certificateless signature scheme.

3. The Proposed Certificateless Signature Scheme for IoT-Based Smart Objects

In this section, we propose a new certificateless signature scheme with ECC point-based
crypto-operations. The security of the scheme assumes the intractability of ECDLP. In the following,
we present the proposed scheme consisting of two phases, i.e., the Pre-processing phase and
Sign/Verify phase. Note that three entities, i.e., KGC, the signer and the verifier, are involved.
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• Pre-processing phase (Figure 2):

# Steps 1–4: KGC generates a group G of elliptic curve points with prime order n and determines
a generator P of G. Then, KGC chooses a master key s ∈ Z∗n and a secure hash function
H1 : {0, 1}∗ ×G→ Z∗q . Next, KGC calculates a master public key PKKGC = s · P. Eventually,
KGC publishes params = (G, P, PKKGC, H) and keeps s securely. Next, given params, s and
the identity IDi of user i, KGC generates a random number ri ∈ Z∗n, and calculates Ri = ri · P,
hi = H(IDi, PKKGC) and si = ri + hi · s mod n.

# Steps 5–6: KGC returns a partial private key Di = (si, Ri) to the user i who checks the validity
of Di via whether the equation si · P = Ri + hi · PKKGC mod n holds or not. The correctness of
Di is presented as follows:

si · P = (ri + hi · s) · P = ri · P + hi · s · P = Ri + hi · PKKGC

# Steps 7–8: If it holds, the user i picks a random number xi ∈ Z∗n as his/her own secret
value. Otherwise, the session is terminated. Then, given params and xi, the user i computes
PKi = xi · P + Ri as his/her public key.
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• Sign/Verify phase (Figure 3):

# Steps 1–3 (Sign): Given params, Di, xi and a message m, the user i first chooses a random number
ti ∈ Z∗n. Then, the user i computes Ti = ti · P, ki = H(m, hi, PKi, Ti) and τi = ti + ki · (xi + si)

mod n. Note that the computation of hi is performed at the Pre-processing phase and thus the
cost can be removed. Finally, the user i outputs σi = (Ti, τi) as the signature of the message m.

# Steps 4–5 (Verify): Given params, IDi, PKi, and σi = (Ti, τi), the verifier first computes
hi = H(IDi, PKKGC) and ki = H(m, hi, PKi, Ti). Next, the verifier examines if τi · P = Ti + ki ·
(PKi + hi · PKKGC) holds. The signature σi is accepted if the equation holds. The correctness
of the signature σi = (Ti, τi) is presented as follows:

τi · P = (ti + ki · (xi + si)) · P

= ti · P + ki · (xi + ri + hi · s) · P

= Ti + ki · (xi · P + ri · P + hi · s · P)

= Ti + ki · ((xi · P + Ri) + hi · PKKGC)

= Ti + ki · (PKi + hi · PKKGC)
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4. Security Analysis

We will now define the adversary model we used to prove the security of our scheme, prior to
presenting the security analysis.

4.1. Adversary Model for Certificateless Signature

In the proposed certificateless signature scheme, we considered type I adversary and type II
adversaries as defined in [18]. Due to the lack of certificate verification, it is possible for adversaries to
replace an entity’s public key with one of its choice. Therefore, the type I adversary models an external
adversary capable of replacing any entity’s public key with specific values chosen by the adversary
itself. Nevertheless, the type I adversary does not know the private key of KGC. On the other hand,
the type II adversary models a malicious KGC who is able to access the master key, but cannot replace
the public keys of other entities. In addition, type I and II adversaries can be further classified into
three categories of power levels [17,19], i.e., normal adversary, strong adversary, and super adversary.
A normal-level adversary only has the ability to learn a valid verification message. A strong-level
adversary is able to replace a public key in order to forge a valid verification message when the
adversary possesses a corresponding private value. A super-level adversary is able to learn valid
verification messages for a replaced public key without any submission. Normally, the super adversary
may issue the following queries.

• CreateUser(IDt): The oracle takes as input a query (IDt), where IDt is the party t’s identity,
and then runs algorithms PartialPrivateKeyExtract, SetSecretValue, and SetPublicKey to obtain
the partial private key Dt, the secret value xt, and the public key PKt.

• RequestPublicKey(IDt): The oracle takes as input a query (IDt). It browses the list L and returns
the party t’s public key PKt.

• ReplacePublicKey
(

IDt, PKt, PK′t
)
: The oracle takes as input a query

(
IDt, PKt, PK′t

)
. This oracle

replaces the party t’s public key with PK′t and updates the corresponding information in the list L.
• ExtractSecret(IDt): The oracle takes as input a query IDt. It browses the list L and returns the

secret values xt. However, if the party t has been asked the ReplacePublicKey query, it returns ⊥.
• ExtractPartialSecret(IDt): The oracle takes as input a query IDt. It then browses the list L and

returns the partial private key Dt = (st, Rt).
• SuperSign(IDt, mt): The oracle takes as input a query (IDt, mt), where mt denotes the

message to be signed. This oracle outputs a signature σt = (Rt, Tt, τt) such that
true← Veri f y(mt, σt, params, IDt, PKt) . If the public key has not been replaced, i.e., PKt = PKt,
PKt is the public key returned from the oracle RequestPublicKey(IDt). Otherwise, PKt = PK′t ,
where PK′t is the latest public key value submitted to the oracle ReplacePublicKey

(
IDt, PKt, PK′t

)
.

The following two games, i.e., Games 1 and 2, are against super type I and type II adversaries,
respectively. Type I adversary models an external adversary who is able to replace any entity’s
public key with specific values chosen by the adversary itself. On the other hand, type II adversary



Sensors 2017, 17, 1001 6 of 17

simulates a malicious KGC who holds the master key and might engage in adversarial activities, such
as eavesdropping on signatures and asking signing queries.

Game 1. This game is performed between a challenger C and a super type I adversary SA1 interacting
within the proposed certificateless signature scheme. First, in the “Initialization” stage, the challenger C
runs the Setup algorithm and generates a private key s, and public system parameters params. Next,
C keeps s, but gives params to the adversary SA1. Second, in the “Query” phase, SA1 can adaptively
access oracle queries CreateUser(IDt), RequestPublicKey(IDt), ReplacePublicKey

(
IDt, PKt, PK′t

)
,

ExtractSecret(IDt), ExtractPartialSecret(IDt) and SuperSign(IDt, mt), of C, where t may be the user
i. After all necessary queries have been asked, SA1 outputs a forged signature (IDt, mt, σt). SA1 wins in Game
1 if the following three conditions hold:

(1) SA1 has never queried the oracle ExtractPartialSecret(IDt).
(2) SA1 has never queried the oracle SuperSign(IDt, mt).
(3) true ← Verify(mt, σt, params, IDt, PKt) where PKt is the current public key of party t and it may be

replaced by SA1.

Definition 1. The proposed certificateless signature scheme is existentially unforgeable against a super type
I adversary SA1, if SA1 runs in polynomial time pt, makes at most qH queries to the oracle Hash(.), qCU
queries to the oracle CreateUser(IDt), qEPS queries to the oracle ExtractPartialSecret(IDt), qES queries
to the oracle ExtractSecret(IDt), qPK queries to the oracle RequestPublicKey(IDt), qRPK queries to the
oracle ReplacePublicKey

(
IDt, PKt, PK′t

)
and qSS queries to the oracle SuperSign(IDt, mt) and SuccSA1 is

negligible, where SuccSA1 is the success probability that SA1wins in Game 1.

Game 2. This game is performed between a challenger C and a super type II adversary SA2 interacting
within the proposed certificateless signature scheme. First, in the “Initialization” phase, the challenger C
runs the Setup algorithm and generates a private key s, and public system parameters params. Then,
C keeps s, but gives params to the adversary SA2. Second, in the “Query” phase, SA2 can adaptively
access the oracle queries CreateUser(IDt), RequestPublicKey(IDt), ReplacePublicKey

(
IDt, PKt, PK′t

)
,

ExtractSecret(IDt), ExtractPartialSecret(IDt) and SuperSign(IDt, mt), of C, where t may be the user i.
After all necessary queries have been asked, SA2 outputs a forged signature (IDt, mt, σt). SA2 wins in Game 2
if the following three conditions hold:

(1) SA2 has never queried the oracle ExtractSecret(IDt).
(2) SA2 has never queried the oracle SuperSign(IDt, mt).
(3) true← Verify(mt, σt, params, IDt, PKt), where PKt is the original public key of party.

Definition 2. The proposed certificateless signature scheme is existentially unforgeable against a super type
II adversary SA2, if SA2 runs in polynomial time pt, makes at most qH queries to the oracle Hash(.), qCU
queries to the oracle CreateUser(IDt), qEPS queries to the oracle ExtractPartialSecret(IDt), qES queries
to the oracle ExtractSecret(IDt), qPK queries to the oracle RequestPublicKey(IDt), qRPK queries to the
oracle ReplacePublicKey

(
IDt, PKt, PK′t

)
and qSS queries to the oracle SuperSign(IDt, mt) and SuccSA2 is

negligible, where SuccSA2 is the success probability that SA2 wins in Game 2.

4.2. Formal Analysis

Assuming the hardness of solving ECDLP, we prove that our proposed scheme is existentially
unforgeable against the super type I adversary and super type II adversary, respectively.

Theorem 1. The proposed certificateless signature scheme is existentially unforgeable against a super type I
adversary in the random oracle model, assuming the hardness of solving ECDLP. That is, if there exists a super
type I adversary SA1 who can submit queries to random oracles and win in Game 1 with probability SuccSA1 ,
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then there is an algorithm β which can solve a random instance of ECDLP in polynomial time with success

probability Succβ ≥ 1
qCU+qH

(
1− 1

qCU+qH

)qEPS
SuccSA1 .

Proof. Let SA1 be a super type I adversary SA1 which can compromise our proposed certificateless
signature scheme with a non-negligible probability SuccSA1 . We then construct a polynomial-time
algorithm β which can utilize SA1 to solve ECDLP. At first, β contains a hash list LH1 and a key list
LK1 , which are initially empty.

• Initialization phase: β picks an identity ID∗ as the challenged identity in Game 1, sets PKKGC and
sends params = (G, P, PKKGC, H) to SA1.

• Query phase:

â CreateUser(IDt): The oracle takes as input a query (IDt). If IDt has been created,
nothing happens. Otherwise, β runs algorithms PartialPrivateKeyExtract, SetSecretValue,
and SetPublicKey to obtain the partial private key Dt, the secret value xt and the public
key PKt. Next, β returns PKt to SA1.

â Hash query:

(1) When SA1 accesses a hash query on (IDt, PKKGC), if the list LH1 contains
< ht, IDt, PKKGC >, β returns ht to SA1. Otherwise, β picks a random number ht ∈ Z∗n,
returns ht to SA1, and adds < ht, IDt, PKKGC > to LH1 .

(2) When SA1 accesses a hash query on (m, ht, PKt, Tt), if the list LH1 contains
< kt, m, ht, PKt, Tt >, β returns kt to SA1. Otherwise, β picks a random number
kt ∈ Z∗n, returns kt to SA1, and adds < kt, m, ht, PKt, Tt > to LH1 .

â RequestPublicKey(IDt): Upon receiving a RequestPublicKey query with an identity IDt

from SA1, β performs the following steps.

(1) If IDt 6= ID∗, β selects three random numbers at, bt, xt ∈ Z∗n, and performs st ← at ,
ht ← bt , Rt ← at · P− bt · PKKGC , and PKt = xt · P + Rt. Then, β adds 〈IDt, Rt, ht〉 to
list LH1 , and 〈IDt, st, Rt〉 and 〈IDt, PKt, xt〉 to list LK1 , respectively. Finally, β returns
PKt to SA1.

(2) Otherwise, β generates three random numbers at, bt, xt ∈ Z∗n, and sets Rt ← at · P ,
ht ← bt , st ← ⊥ and PKt = xt · P + Rt. Then, β adds 〈IDt, Rt, ht〉 to list LH1 ,
and 〈IDt,⊥, Rt〉 and 〈IDt, PKt, xt〉 to list LK1 , respectively. Finally, β returns PKt to SA1.

â ExtractPartialSecret(IDt): Upon receiving an ExtractPartialSecret query for an identity
IDt from SA1, β performs the following steps.

(1) If IDt = ID∗, β stops the session.
(2) Otherwise, β looks at LH1 for < IDt, st, Rt >. If there exists a record of such a tuple, β

returns st to SA1; otherwise, β makes a RequestPublicKey query with IDt and returns
st to SA1 accordingly.

â ExtractSecret(IDt): When β receives an ExtractSecret query for an identity IDt from SA1, β

looks for 〈IDt, PKt, xt〉 in the list LK1 . If there is such a tuple, β returns xt to SA1. Otherwise,
β makes a ExtractPartialSecret(IDt) query and returns xt to SA1.

â ReplacePublicKey
(

IDt, PKt, PK′t
)
: Once β receives a query for some

(
IDt, PKt, PK′t

)
from

SA1, β looks for 〈IDt, PKt, xt〉in the list LK1 . If there exists such a record, β sets PKt = PK′t
and xt = ⊥. Otherwise, β makes a RequestPublicKey query with IDt and then sets
PKt = PK′t and xt = ⊥.

â SuperSign(IDt, mt): Upon receiving a SuperSign query with (IDt, mt) from SA1, β looks
for < IDt, st, Rt > and 〈IDt, PKt, xt〉 in the lists LK1 . Next, β generates a random number
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ct ∈ Z∗n, and computes τt ← ct and Tt = τt · P − kt · (PKt + ht · PKKGC). After that, β

returns σt = (Tt, τt) to SA1.

Finally, SA1 outputs a forged but valid signature (IDt, mt, σt). If IDt = ID∗, β terminates
the simulation. Otherwise, β looks for < ht, IDt, PKKGC >, < kt, m, ht, PKt, Tt >, 〈IDt, st, Rt〉,
and 〈IDt, PKt, xt〉 in the lists LH1 and LK1 . On the other hand, based on the forking lemma [20],
if we have the polynomial replay of β with the same random tape and different choices of hash oracle,
SA1 is able to output another two valid signatures. Eventually, we will have three valid signatures,
i.e., σt

(j) = (Tt
(j), τt

(j)) with j = 1, 2, 3, satisfying the equations, i.e., τt
(j) = tt

(j) + kt
(j) · (xt + st

(j)) =
tt
(j) + kt

(j) · (xt + rt + ht
(j) · s) mod n, where j = 1, 2, 3. Note that winning Game 1 requires that SA1

has never queried the oracles ExtractPartialSecret and SuperSign. Based on the above three equations,
β can derive the three unknown values xt, rt, and s, and outputs s as the solution of a random instance
(P, Q = s · P) of ECDLP. So far, we have shown that β can solve the given instance of ECDLP. Next, we
analyze β’s success probability Succβ of winning in Game 1.

E1: β does not abort in all of the ExtractPartialSecret queries.
E2: SA1 successfully forges a valid signature (IDt, mt, σt).
E3: The forged signature (IDt, mt, σt) satisfies IDt = ID∗.

The corresponding probabilities of the above three events are presented. That is, Pr[E1] ≥(
1− 1

qCU+qH

)qEPS
, Pr[E2|E1] ≥ SuccSA1 and Pr[E3|E1 ∧ E2] ≥ 1

qCU+qH
, where qCU , qH and qEPS

are the numbers of CreateUser queries, Hash queries and ExtractPartialSecret queries. In that
case, the probability of β solving the given instance of ECDLP is Succβ = Pr[E1 ∧ E2 ∧ E3] =

Pr[E1]Pr[E2|E1]Pr[E3|E1 ∧ E2] ≥ 1
qCU+qH

(
1− 1

qCU+qH

)qEPS
SuccSA1 . Clearly, β can solve ECDLP with

a non-negligible probability Succβ because SuccSA1 is non-negligible. This contradicts the hardness
of ECDLP. �

Theorem 2. The proposed certificateless signature scheme is existentially unforgeable against a super type
II adversary in the random oracle model, assuming the hardness of solving ECDLP. That is, if there exists a
super type II adversary SA2 who can submit queries to random oracles and win in Game 2 with probability
SuccSA2 , then there is an algorithm β which can solve a random ECDLP instance in polynomial time with

success probability Succβ ≥ 1
qCU+qH

(
1− 1

qCU+qH

)qes
SuccSA2 .

Proof. We assume that there is a super type II adversary SA2 breaking our proposed scheme with
a non-negligible probability SuccSA2 . Then we want to build a polynomial-time algorithm β which
uses SA2 to solve ECDLP. That is, β receives a random ECDLP instance (P, Q = xt · P), with β’s goal
being to derive the secret xt. Similarly, in the Initialization phase, β picks an identity ID∗ as the
challenged identity in Game 2, sets PKKGC and sends master key s and params = (G, P, PKKGC, H) to
SA2. Meanwhile, β maintains two lists, i.e., LH2 and LK2 . Next, in the Query phase, β can issue the
following oracle queries to SA2. Here, we skip the same oracle queries as those, i.e., CreateUser, Hash,
ReplacePublicKey and SuperSign, set out in Theorem 1. In addition, β simulates other oracle queries
of SA2 as follows:

â RequestPublicKey(IDt): When SA2 makes this query with an identity IDt, β acts as follows:

(1) If IDt 6= ID∗, β generates two random numbers rt, xt ∈ Z∗n, and computes Rt = rt · P, ht =

H(IDt, PKKGC), st = rt + ht · s mod n and PKt = xt · P + Rt. Then, β adds 〈IDt, Rt, ht〉,
〈IDt, st, Rt〉 and 〈IDt, PKt, xt〉 to the lists LH1 and LK1 , respectively. Finally, β returns
PKt to SA2.

(2) Otherwise, β selects a random value rt ∈ Z∗n, and sets Rt = rt · P, ht = H(IDt, PKKGC),
st = rt + ht · s mod n and PKt = xt · P + Rt. Then, β adds 〈IDt, Rt, ht〉, 〈IDt, st, Rt〉 and
〈IDt, PKt,⊥〉 to the lists LH1 and LK1 respectively. Finally, β returns PKt to SA2.
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â ExtractPartialSecret(IDt): When SA2 makes this query with an identity IDt, β looks for
〈IDt, st, Rt〉 in LK1 . If there exists a record of such a tuple, β returns st to SA2; otherwise, β

makes a RequestPublicKey query with IDt and returns st to SA2 accordingly.
â ExtractSecret(IDt): When SA2 makes this query with an identity IDt, β acts as follows:

(1) If IDt = ID∗, β terminates the session.
(2) Otherwise, β looks for 〈IDt, PKt, xt〉 in LK1 . If there is such a record, β returns xt to SA2;

otherwise, β makes a RequestPublicKey query with IDt and then returns xt to SA2.

Finally, SA2 outputs a forged but valid signature (IDt, mt, σt). If IDt 6= ID∗, β stops the simulation.
Otherwise, β looks for 〈IDt, st, Rt〉 and 〈IDt, PKt, xt〉 in the list LK1 . Based on the forking lemma [20],
if we have the polynomial replay of β with the same random tape and different choices of hash
oracle, SA2 can further generate another signature. Eventually, we have two valid signatures, i.e.,
σt

(j) = (Tt
(j), τt

(j)) with j = 1, 2, satisfying the equations, i.e., τt
(j) = tt

(j) + kt
(j) · (xt + st

(j)) =
tt
(j) + kt

(j) · (xt + rt + ht
(j) · s) mod n, where j = 1, 2. Note that winning Game 2 requires that the

oracles ExtractSecret and SuperSign had never been queried by SA2. With the above two linear and
independent equations, β can derive the two unknown values rt and xt, and outputs xt as the solution
of the random ECDLP instance (P, Q = xt · P). We then analyze β’s success probability Succβ of
winning in Game 2. We present the events which result in β’s success:

E1: β does not abort in all of the ExtractSecret queries.
E2: SA2 successfully forges a valid signature (IDt, mt, σt).
E3: The forged signature (IDt, mt, σt) satisfies IDt = ID∗.

The probabilities of the following equations are presented. That is, Pr[E1] ≥
(

1− 1
qCU+qH

)qES
,

Pr[E2|E1] ≥ SuccSA2 , and Pr[E3|E1 ∧ E2] ≥ 1
qCU+qH

, where qCU , qH , and qES are the numbers of
CreateUser queries, Hash queries and ExtractSecret queries. Hence, the probability of β solving
the given instance of the ECDLP is Succβ = Pr[E1 ∧ E2 ∧ E3] = Pr[E1]Pr[E2|E1]Pr[E3|E1 ∧ E2] ≥

1
qCU+qH

(
1− 1

qCU+qH

)qes
SuccSA2 . Now, β is able to solve ECDLP with a non-negligible probability

Succβ because SuccSA2 is non-negligible. This contradicts the hardness of ECDLP. �

5. System Implementation and Performance Evaluation

To evaluate the performance of the proposed certificateless scheme, we adopt two IoT-based
testbeds, i.e., Arduino Uno and Raspberry PI 2 platforms, as the major evaluation platforms in the
experiments. The Arduino Uno is a microcontroller board based on the ATmega328P, i.e., an 8-bit
AVR RISC-based microchip with 32 KB EEPROM and 2 KB RAM. It is a tiny platform at very low
cost, and thus is suitable to evaluate the performance of IoT-based schemes. On the other hand,
the Raspberry PI is a card-sized single-board computer which offers an ARM GNU/Linux kernel and
1 GB RAM and 16 GB storage. Generally speaking, the Arduino Uno platform is usually simulated
as a resource-constrained device while the Raspberry PI platform is simulated as a smart object
which is more powerful on computation efficiency. Hence, in our experiment the Arduino Uno is
adopted as resource-constrained objects in IoT networks and the Raspberry PI 2 platform is operated
as smart objects (or the mobile IoT-based gateway associated with the resource-constrained objects).
The implementation environment is outlined in Table 1. It is known that current techniques for solving
ECDLP need O

(√
n
)

steps, which depend on the size of the underlying field. NIST has recommended
five levels of prime fields for certain prime n of sizes, i.e., 192, 224, 256, 384, and 512-bit [21] with
associated and recommended elliptic curves. A prime field is the field GF(n), which contains a prime
number n of elements, and the security strength of which is dependent on the length of the binary
expansion of n. Normally, an elliptic curve over GF(n), where n ≈ 2256, can be contrasted with
finite-field cryptography (e.g., DSA) with a 3072-bit public key and a 256-bit private key, and integer
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factorization cryptography (e.g., RSA) with a 3072-bit value of n. Therefore, to strike the best balance
between protocol efficiency, security robustness and system scalability, the following two conditions
are considered in our system implementation.

(1) Condition (1). For the Arduino Uno, we adopt elliptic curve points over a prime field GF(n) with a
192-bit prime n, a random number generator with a 96-bit output sequence and a secure one-way
hash function, i.e., SHA-3 (512-bit) [22] as the underlying crypto-modules in our proposed
certificateless scheme.

(2) Condition (2). For the Raspberry PI 2 platform, the elliptic curve is with a 384-bit prime n and
the random number generator is with 96-bit output sequence. In addition, SHA-3 (512-bit) is
implemented as the one-way hash function.

Table 1. Implementation environment.

Environment Description

Arduino Uno Atmel ATmega328P 8-Bit 16MHz AVR Architecture
Memory 2 KB RAM/32 KB EEPROM

Raspberry PI 2 Broadcom BCM2836 @ 1 GHz Quad-Core ARM Cortex-A7 Architecture with 1 GB
DDR2 RAM and SanDisk 16 GB Class 10 SD Card

Programming Language (For Raspberry PI 2) Eclipse 3.8 with Oracle Java 8 ARM
(For Arduino Uno) ANSI C

Crypto API (For Raspberry PI 2) The Bouncy Castle Crypto APIs [23]
(For Arduino Uno) Fackelmann/SHA3 [24], Kmackay/micro-ecc [25], AESLib [26]

Table 2 describes the computation cost of our proposed certificateless signature scheme implemented
on the Arduino Uno with a 192-bit elliptic curve, a 96-bit random number generator and a 512-bit SHA-3,
in terms of execution time of required computation components. In the pre-processing phase, we need
4.414 ms for generating four random numbers, 0.2 ms for computing hi = H(IDi, PKKGC) via a SHA-3
operation with a 288-bit input sequence, 14.4 s for calculating four values PKKGC, Ri, si and PKi via
ECC scalar multiplication operations, and 8.64 s for verifying the equation si · P = Ri + hi · PKKGC.
The total computation cost of the pre-processing phase is 23.044 s. Next, during each normal operation
of our proposed scheme, we require 11.537 s and 14.416 s for the sign phase and the verify phase,
respectively. In the sign phase, we require 1.104 ms to generate a 96-bit ti, and 2.88 s and 16.2 ms
to compute Ti and ki, respectively. Note that we assume that the size of the signed message m is
512-bit and, thus, the input sequence of ki is 1408-bit. Finally, 8.64 s is needed to compute the signature
value τi. On the other hand, in the verify phase, we need 16.4 ms to complete the executions of hi
and ki, and 14.4 s to verify the equation, i.e., τi · P = Ti + ki · (PKi + hi · PKKGC). Thus, we require
25.953 s in total to execute the processes of our proposed certificateless signature scheme. According
to the above simulation results, we can see that the practicability of the proposed scheme is not
convinced. However, in a general IoT scenario, resource-constrained sensors usually perform simple
task (or command), such as the sensing and transmission of environmental parameters. This kind of
data is always meaningless when it is transmitted alone. Therefore, we argue that only reasonable
security density is required to guarantee basic robustness. Based on our implementation results, we
find that the execution of ECC scalar multiplication operations dominates the computation cost of the
proposed scheme. For better performance efficiency, we suggest that the elliptic curve points with a
64/96/160-bit prime n, the 64/96-bit random number generator and the SHA-3 128/256-bit can be
considered during the implementation of practical applications. Table 3 shows the implementation
results of the experiment with the elliptic curve with a 160-bit prime n. If we adopt the elliptic
curve with a 160-bit prime n, a 96-bit random number generator and a SHA-3 with 512-bit output,
around 53% of computation cost can be deducted from the case with the 192-bit elliptic curve. That
is, as shown in Table 3, we only require 10.812 s, 5.421 s, and 6.771 s for executing the pre-processing
phase, the sign phase, and the verify phase of our proposed scheme, respectively. It is believed that
the best balance of system robustness and performance efficiency can be achieved by appropriately
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adjusting the system parameters of the adopted crypto-modules. Furthermore, when higher security
robustness is needed, the proposed certificateless signature method can be adopted to support a
key exchange (or key agreement) process and produce a session key for later secure communication
via symmetric encryption (e.g., the performance of AES implementation on Arduino Uno is shown
in Table 4). It is obvious that both higher security and better performance can, thus, be delivered.
In brief, for resource-constrained devices, we suggest to exploit our proposed certificateless signature
mechanism with 160-bit elliptic curve to construct a robust key exchange (or key agreement) process,
and enjoy the performance efficiency from the symmetric encryption with an exchanged (or agreed)
session key while preserving the security. Note that the same security level can be achieved via 160-bit
elliptic curve and 1028-bit RSA, respectively [27].

Table 2. The computation cost of our proposed certificateless signature scheme implemented on the
Arduino Uno with Condition (1).

Phase Computation Cost Execution Time Total

Pre-processing

Generate s, ri, xi, IDi (96-bit) 4.414 ms

23.044 s
Compute hi (SHA-3 with 288 bit input sequence) 0.2 ms
Compute PKKGC, Ri, si, PKi (ECC 192-bit) 14.4 s
Verify si · P = Ri + hi · PKKGC (ECC 192-bit) 8.64 s

Sign

Generate ti (96-bit) 1.104 ms

11.537 s
Compute ki (SHA-3 with 1408-bit input sequence) 1 16.2 ms
Compute Ti (ECC with 192-bit) 2.88 s
Compute τi = ti + ki · (xi + si) (ECC 192-bit) 8.64 s

Verify
Compute hi (SHA-3 with 288-bit input sequence) 0.2 ms

14.416 sCompute ki (SHA-3 with 1408-bit input sequence) 1 16.2 ms
Verify τi · P = Ti + ki · (PKi + hi · PKKGC) (ECC 192-bit) 14.4 s

1 Suppose the size of message m is 512-bit.

Table 3. The computation cost of our proposed signature scheme implemented on the Arduino Uno
with a 160-bit elliptic curve, a 96-bit random number generator, and a 512-bit SHA-3.

Phases of the Proposed Scheme Total Execution Time

Pre-processing phase 10.812 s
Sign phase 5.421 s

Verify phase 6.771 s

Table 4. The computation cost of AES implemented on the Arduino Uno.

Input Sequence of AES Encryption/Decryption

AES-128 with 32/64/128/256 Bytes Input Sequence 0.63 ms
AES-256 with 32/64/128/256 Bytes Input Sequence 0.87 ms

Similarly, Table 5 describes the computation cost of our proposed certificateless signature scheme
implemented on the Raspberry PI 2 platform in which the elliptic curve points is with a 384-bit
prime n, the random number generator is a 96-bit output sequence, and the one-way hash function
is SHA-3 (512-bit). In the pre-processing phase, 0.276 ms is required for four random number
generations, 0.0051 ms is required for computing a SHA-3 operation with a 480-bit input sequence,
i.e., hi = H(IDi, PKKGC), 0.355 ms is required for the calculation of four values, i.e., PKKGC, Ri, si
and PKi via ECC scalar multiplication operations, and 0.213 ms is required for verifying the equation
si · P = Ri + hi · PKKGC. In total, we need 0.895 ms to execute the pre-processing phase. Next,
1.549 ms and 1.556 ms are required for executing the sign phase and the verify phase, respectively.
In the sign phase, we require 1.336 ms to generate a 96-bit ti, and to compute Ti and ki. Note that
the input sequence of ki is 1792-bit. Finally, 0.213 ms is needed for computing the value τi. In the
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verify phase, we need 1.2011 ms to compute hi and ki, and 0.355 ms to verify the equation, i.e.,
τi · P = Ti + ki · (PKi + hi · PKKGC). In brief, we require 3.105 ms in total to execute the processes of
our proposed certificateless signature scheme.

Based on our implementation results, the performance bottleneck occurs at the execution of the
SHA-3 hash function with a 1792-bit input sequence, i.e., about 77% (≈ (1.196× 2)/(1.549 + 1.556))
of total computation cost is dominated by this operation. Nevertheless, the computation cost of
executing hi, derived via a SHA-3 hash function with a 480-bit input sequence, is almost negligible
when compared to the total computation cost. This observation inspires us to further investigate the
performance evaluation of the SHA-3 hash function on the Raspberry PI 2 platform. From Table 6, we
observe that the performance of SHA-3 hash function will degrade once the input sequence exceeds
multiple of 576-bit, which is one of the defaulted block sizes of the SHA-3 hash function. In other
words, it appears that SHA-3 hash function is more suitable for communication protocols with short
messages. Normally, in a sensor-based IoT environment, communication messages operated by sensors
cannot be too long, due to power consumption limitations. We, thus, argue that the proposed scheme
is suitable for current IoT-based communication networks.

Table 5. The computation cost of our proposed certificateless signature scheme implemented on the
Raspberry PI 2 with Condition (2).

Phase Computation Cost Execution Time Total

Pre-processing

Generate s, ri, xi, IDi (96-bit) 0.276 ms

0.895 ms
Compute hi (SHA-3 with 480-bit input sequence) 0.0051 ms
Compute PKKGC, Ri, si, PKi (ECC 384-bit) 0.355 ms
Verify si · P = Ri + hi · PKKGC (ECC 384-bit) 0.213 ms

Sign

Generate ti (96-bit) 0.069 ms

1.549 ms
Compute ki (SHA-3 with 1792-bit input sequence) 1 1.196 ms
Compute Ti (ECC with 384-bit) 0.071 ms
Compute τi = ti + ki · (xi + si) (ECC 384-bit) 0.213 ms

Verify
Compute hi (SHA-3 with 480-bit input sequence) 0.0051 ms

1.556 msCompute ki (SHA-3 with 1792-bit input sequence) 1 1.196 ms
Verify τi · P = Ti + ki · (PKi + hi · PKKGC) (ECC 384-bit) 0.355 ms

1 Suppose the size of message m is 512-bit.

Table 6. The computation cost of SHA-3 with different length input sequences on Raspberry PI 2.

SHA-3 Operation Execution Time

SHA-3 with 576-bit input sequence 0.412 ms
SHA-3 with 1152-bit input sequence 0.939 ms
SHA-3 with 1728-bit input sequence 1.194 ms
SHA-3 with 2304-bit input sequence 1.726 ms
SHA-3 with 2880-bit input sequence 2.260 ms
SHA-3 with 3456-bit input sequence 2.407 ms
SHA-3 with 4032-bit input sequence 2.807 ms
SHA-3 with 4608-bit input sequence 3.215 ms
SHA-3 with 5184-bit input sequence 4.084 ms
SHA-3 with 5760-bit input sequence 4.430 ms

Based on the above results, we find that there exists one limitation in our experiment. In order
to examine the practicability of the proposed scheme, the experiment adopts the Arduino Uno and
Raspberry PI 2 as the evaluation platforms. However, the adopted crypto-libraries are not consistent in
which Bouncy Castle Crypto APIs [23] is adopted for the Raspberry PI 2, and Fackelmann/SHA3 [24],
Kmackay/micro-ecc [25] and AESLib [26] are for the Arduino Uno. In general, the evaluation platforms
with different processors certainly influence the performance. On the other hand, the crypto-library
may also be elegantly-tuned to fit specific processors and gain better performance efficiency. In our
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experiment, the Bouncy Castle Crypto APIs are generic crypto-libraries for general processors and the
others (i.e., Fackelmann/SHA3 [24], Kmackay/micro-ecc [25], and AESLib [26]) are well-configured for
the feasible implementation on the Arduino Uno. The performance evaluation is, thus, not under the
same evaluation criteria. Fortunately, the practicability and feasibility of the proposed certificateless
signature scheme is demonstrated by the experiments. Nevertheless, this limitation existed. Therefore,
we suggest that this limitation can be as one of the future research directions. In addition, to pursue
the best balance between the performance efficiency and security robustness, we suggest that, in
the resource-constrained objects, the proposed scheme with 160-bit elliptic curve can be exploited
to construct a robust key exchange process and support secure communications. Tuning the ECC
crypto-module with a 192-bit (or 224/256/384/512-bit) elliptic curve to fit the resource-constrained
objects is suggested as another interesting future research direction.

6. Related Work

In recent years, designing certificateless signature schemeswithout bilinear pairings has been
extensively studied due to its effectiveness in solving the key escrow problem in identity-based
cryptography, and its potential for deployment in an environment comprising resource-limited mobile
devices. In this section, we first present the state-of-the-art of certificateless signature before revealing a
previously unknown weakness in a recent certificateless signature mechanism proposed by Wang et al. [28].
We then present a comparative summary of our proposed scheme and relevant schemes.

6.1. Review of Certificateless Signature Schemes

Since Al-Riyami and Paterson [18] first proposed certificateless public key cryptography in 2003 to
solve the key-escrow problem in identity-based public key cryptography, certificateless cryptography
has been widely investigated for different network types. Huang et al. [17], in 2007, refined the security
model presented by Al-Riyami and Paterson, and introduced type I and type II adversaries with
three different power levels, namely: a normal adversary, strong adversary, and super adversary.
The authors then presented a robust scheme based on bilinear pairing, and proved the security of
the scheme against type I and II adversaries. Later, Gong and Li [29] introduced a provably-secure
certificateless signature scheme without the use of bilinear pairing. The authors claimed that their
proposed scheme is more robust than previous schemes, in terms of resilience to super type I and
II adversaries. While security proof in the random oracle was presented, Yeh et al. [30,31] pointed
out that the scheme is vulnerable to super type I attacker, contrary to the claims. The authors then
proposed a countermeasure for the identified attacks in which the robustness against super type I and
II adversaries can be guaranteed. In a latter work, Wang et al. [28] re-designed the communication
procedures of the certificateless signature mechanism proposed by Yeh et al. [30,31] to enhance the
computation efficiency. Specifically, costs associated with ECC-based scalar multiplication and addition
operations of points are removed. However, in the next subsection, we reveal that a malicious super
type I adversary can easily forge a legitimate signature to cheat any receiver as he/she wishes in
this scheme.

There have been other attempts to design lightweight certificateless signcryption schemes for
low-cost sensors. For example, in a 2014 work, Shi et al. [32] proposed a certificateless signcryption
scheme without bilinear pairing, and proved the security of the scheme against type I and II
adversaries assuming the hardness of the discrete logarithm problem. Shingh et al. [14] and
Sharma et al. [15] demonstrated a RSA-based certificateless signature scheme for wireless sensor
networks, which attempted to integrate RSA cryptography in certificateless signature scheme for
securing resource-limited sensors. However, an exponential multiplication operation under a discrete
logarithm is less efficient than point multiplication operations on elliptic curves over GF(n) under the
same security level [27]. Hence, there is potential to improve the performance in the schemes reported
in [14,15,32] without invalidating the security claims. Pang et al. [33] presented a bilinear pairing-based
certificateless signature scheme and proved its security in the standard model. However, the proposed
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scheme requires significant computation due to the inherent nature of bilinear pairing. In [16],
Tsai proposed a certificateless short signature scheme using bilinear pairing. It was claimed that the
proposed scheme is suitable for low-bandwidth communication environment (or power-constrained
devices). However, the tradeoff between communication and computation costs is not rigorously
investigated, in terms of power consumption of target devices. Hence, this claim is debatable. Moreover,
the current sensor-based communication environment is not as bandwidth-limited compared to a
decade ago, as we have previously discussed. Therefore, we posit that computational efficiency should
be prioritized over communication efficiency when designing an efficient certificateless signature
scheme for IoT-based smart objects.

6.2. Previously Unknown Weakness in Wang et al’s (2015) CLS Scheme

We now revisit Wang et al.’s certificateless signature scheme [28], and demonstrate that the scheme
is insecure against a super type I adversary.

• Revisiting the scheme:

â In the Setup phase, KGC generates a group G of elliptic curve points with prime order n
and determines a generator P of G, prior to randomly selecting a master secret key s ∈ Z∗p
and computing the master public key PKKGC = s · P. Then, KGC chooses two secure hash
functions H1 : {0, 1}∗ × G× G → Z∗q and H1 : {0, 1}∗ × {0, 1}∗ × G× G× G× G → Z∗q ,
and publishes a set of system parameters, i.e., params = (G, P, PKKGC, H1, H2).

â In the PartialPrivateKeyExtract phase, given params, s and the user i’s identity IDi, KGC
selects a random number ri ∈ Z∗n, and computes Ri = ri · P, hi = H1(IDi, Ri, PKKGC) and
si = ri + hi · s mod n. Next, KGC returns the partial private key Di = (si, Ri) to the user i.
Upon receiving Di, i is able to verify Di by examining whether two values, i.e., si · P and
Ri + hi · PKKGC, are identical or not since si · P = (ri + hi · s) · P = Ri + hi · PKKGC.

â In the SetSecretValue phase, given params, the user i randomly selects xi ∈ Z∗n as his/her
secret value.

â In the SetPublicKey phase, given params and xi, the user i computes his/her public key as
PKi = xi · P.

â In the Sign phase, given params, Di, xi and a message m, the user i selects a random
value ti ∈ Z∗n, and outputs a signature σi = (Ri, Ti, τi) with a series of computed values
Ti = ti · P, ki = H2(IDi, m, Ti, PKi, Ri, PKKGC) and τi = ti + ki · xi + si mod n.

â In the Verify phase, Given params, IDi, PKi, m and σi = (Ri, Ti, τi), the verifier computes
hi = H1(IDi, Ri, PKKGC) and ki = H2(IDi, m, Ti, PKi, Ri, PKKGC), and then checks whether
the equation τi · P = Ti + ki · PKi + Ri + hi · PKKGC holds. Note that σi is accepted if
the equation holds. That is, τi · P = (ti + ki · xi + si) · P = ti · P + ki · xi · P + si · P =

ti · P + ki · xi · P + (ri + hi · s) · P = Ti + ki · PKi + Ri + hi · PKKGC.

• Cryptanalysis

â Suppose there exists a malicious super type I adversary j which seeks to forge a valid
signature σi =

(
Ri, T′i , τ

′
i
)

on a message m’ chosen by the adversary j. The adversary
j eavesdrops a valid signature σi = (Ri, Ti, τi) with message m issued by the user i
from any previous session, where Ti = ti · P, Ri = ri · P, PKi = xi · P, PKKGC = s · P,
hi = H1(IDi, Ri, PKKGC), ki = H2(IDi, m, Ti, PKi, Ri, PKKGC), si = ri + hi · s mod n,
and τi = ti + ki · xi + si mod n.

â Since the adversary j is a super type I adversary, j is able to issue an oracle query of
ExtractSecretValue(i) and replace any entity’s public key including KGC’s public key.
With the eavesdropped values, i.e., Ti, Ri and τi, and public values, i.e., PKi and
PKKGC, the adversary j chooses a random number ta ∈ Z∗n, and derives Ta = ta · P,
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T′i = Ta + Ti, k′i = H2
(

IDi, m′, T′i , PKi, Ri, PKKGC
)

and τ
′
i = τi − ki · xi + k′i · xi + ta =

(ti + ki · xi + si)− ki · xi + k′i · xi + ta = (ti + ta) + k′i · xi + si mod n. Note that the secret
xi is retrieved via ExtractSecretValue(i) oracle query.

â So far, the adversary j can forge a valid signature σ
′
i =

(
Ri, T′i , τ

′
i
)

on the chosen message
m’. It is obvious that the equation τ

′
i · P =

[
(ti + ta) + k′i · xi + si

]
· P = (ti + ta) · P+ k′i · xi ·

P+ (ri + hi · s) · P = (Ta + Ti) + k′i · PKi + ri · P+ hi · s · P = T′i + k′i · PKi + Ri + hi · PKKGC
holds. Therefore, the resistance to signature forgery attack cannot be guaranteed under the
assumption of existing a malicious super type I adversary.

6.3. Security and Performance Comparative Summary

We now benchmark the security and performance of the proposed certificateless signature with
those of Gong and Li [29], Wang et al. [28] and Tsai [16]. From Table 7, we observe that our proposed
scheme and Tsai’s scheme [16] enjoy the same security level–resilience to super type I and II adversaries.
However, Gong and Li’s scheme [29] still suffers from vulnerability to signature forgery attack via
super type I adversary [30] as does Wang et al.’s scheme [28], as presented in Section 6.2.

A comparative summary of performance efficiency is presented in Table 8, where the evaluation
metrics are of the inverse operation (Tinv), bilinear pairing operation (Tbp), ECC-based scalar multiplication
operation for points (Tem), ECC-based addition operation for points (Teadd), multiplication operation
(Tm), addition operation (Tadd), one-way hash function (Th), and random number generator operation
(Tg). It is clear that our proposed scheme outperforms Gong and Li’s scheme [29] and Wang et al.’s
scheme [28] by eliminating the computation costs of (1Tm, 1Th, 2Teadd, 2Th) and (1Teadd), respectively.
When compared to Tsai’s scheme [16], the tradeoff between the computation cost (1Tm, 1Tadd, 1Th)
and (1Tinv, 2Tbp) is observed. It is clear that bilinear pairing operation is more inefficient than ECC
point-based operations, i.e., scalar multiplication and addition. Hence, we can claim that our proposed
scheme is more efficient and practical than Tsai’s scheme [16] with a better performance efficiency.

Table 7. A comparative summary: security.

Gong & Li’s
Scheme [29]

Wang et al’s
Scheme [28]

Tsai’s
Scheme [16]

Our proposed
Scheme

Resistance to Super Type I Adversary No No Yes Yes
Resistance to Super Type II Adversary Yes Yes Yes Yes

Table 8. A comparative summary: performance.

Sign Phase Verify Phase In Total

Gong & Li’s scheme [29] 1Tem + 2Tm + 2Tadd + 2Th + 1Tg 4Tem + 3Teadd + 3Th 5Tem + 2Tm + 3Teadd + 2Tadd + 5Th + 1Tg
Wang et al’s scheme [28] 1Tem + 1Tm + 2Tadd + 1Th + 1Tg 3Tem + 3Teadd + 2Th 4Tem + 1Tm + 3Teadd + 2Tadd + 3Th + 1Tg

Tsai’s scheme [16] 1Tinv + 1Tem + 1Tm + 1Tadd + 1Th 2Tbp + 2Tem + 2Teadd + 2Th 1Tinv + 2Tbp + 3Tem + 1Tm + 2Teadd + 1Tadd + 3Th
Our proposed scheme 1Tem + 1Tm + 2Tadd + 1Th + 1Tg 3Tem + 2Teadd + 2Th 4Tem + 1Tm + 2Teadd + 2Tadd + 3Th + 1Tg

7. Conclusions

In this paper, we presented a new certificateless signature scheme for IoT-based smart objects.
We proved the security of the proposed scheme against the super type I and II adversaries, as well as
demonstrating the utility of the scheme in IoT-oriented testbeds. For passive objects with constrained
computation ability and limited power capability, we argued that the proposed certificateless signature
scheme with 160-bit elliptic curve can be exploited to construct a key exchange (or key agreement)
process with a reasonable security robustness. Around 5.421 s and 6.771 s are required for performing
the sign phase and the verify phase of our proposed scheme, respectively. For active objects with
powerful computation efficiency, we suggested considering the proposed certificateless signature
scheme with at least 384-bit elliptic curve and SHA-3 (512-bit) to pursue the highest security due the
affordability of computation cost on the Raspberry PI platform. Findings from the implementation
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showed that low computation cost, i.e., 1.549 ms and 1.556 ms, is required to perform the execution
processes of the sign phase and verify phase, respectively. Moreover, we compared the security and
performance of our scheme with those of Gong and Li [29], Wang et al. [28] and Tsai [16], as well as
revealing a previously unknown vulnerability in Wang et al.’s scheme [28] (where a malicious super
type I adversary can easily forge a valid signature on any message and cheat receivers at will).
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