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Abstract: Using a seed layer-free hydrothermal method, ZnO nanorods (NRs) were deposited on
ST-cut quartz surface acoustic wave (SAW) devices for ammonia sensing at room temperature. For a
comparison, a ZnO film layer with a thickness of 30 nm was also coated onto an ST-cut quartz SAW
device using a sol-gel and spin-coating technique. The ammonia sensing results showed that the
sensitivity, repeatability and stability of the ZnO NR-coated SAW device were superior to those of
the ZnO film-coated SAW device due to the large surface-to-volume ratio of the ZnO NRs.
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1. Introduction

With rapid economic growth and the development of modern industry, there are significant
negative impacts on people’s health from pollution of the air, water, and soil [1]. Ammonia is one of
the most dangerous and potentially explosive industrial gases [2,3], and the detection of ammonia is of
great importance for the safety of industry and clinical diagnostics. Among different kinds of ammonia
sensors, such as semiconductor sensors [4–6] and andelectrochemical sensors [7], surface acoustic
wave (SAW) sensors have many superior advantages including high speed, small size, high sensitivity,
low cost, good reliability, and wireless ability [8–14]. The key part of a SAW gas sensor is the sensitive
layer, whose conductivity or mass change will cause a frequency change of the SAW device [15].

ZnO is a useful semiconductor material for various practical applications due to its desirable
electronic, optical and chemical properties [16]. Recently, ZnO nanorods (NRs) have been demonstrated
to have wide applications in solar cells, biosensors, nanogenerators, ultraviolet detectors, and humidity
sensing, etc. [17–21]. The hydrothermal method is considered a promising technique to synthesize
ZnO nanorods (NRs) owing to its low cost and ease of growth. However, a conventional hydrothermal
method has two process steps [22–28]: (1) fabrication of the seed layer; and (2) growth of ZnO NRs
on this seed layer. This two-step growth method is relatively complicated and time-consuming for
growing ZnO NRs. On the other hand, temperature is one of the key parameters that affect the stability
of SAW devices due to its influences on both external and internal stresses [29]. ST-cut quartz has an
excellent temperature stability near room temperature in all the piezoelectric materials [30,31], which
makes it suitable for SAW sensing applications without external temperature compensation. To our
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knowledge, room temperature ammonia sensors based on ZnO NRs deposited on ST-cut quartz SAW
devices using a seed layer-free hydrothermal method has not yet been reported.

In this work, ZnO NRs were deposited on ST-cut quartz based SAW devices via a seed layer-free
hydrothermal method, which is easier and faster than the traditional hydrothermal process, and their
ammonia sensing performance was investigated. For a comparison, an ammonia sensor based on a
ZnO nano-layer thick film deposited on an ST-cut quartz substrate was fabricated and characterized to
compare with those from the ZnO NRs quartz SAW devices.

2. Experimental

An ST-cut quartz (42◦75′) was used as the substrate (with a dimension of 12 mm × 3 mm × 0.5 mm)
of the SAW device, in which the SAW propagation velocity along the direction perpendicular to the
crystallographic x-axis (90◦-rotated) is 3158 m/s. The interdigital transducers (IDTs) of the SAW device
were fabricated with 200-nm thick aluminum and consisted of 30 pairs of fingers with a wavelength of
16 µm using conventional photolithography and lift-off processes. The aperture of the IDTs was 3 mm,
and the distance between the IDTs was 4 mm. The SAW resonators had a center frequency of 199.95 MHz,
measured using a network analyzer (Hewlett Packard 8714C, Hewlett-Packard, Palo Alto, CA, USA).

Using the low temperature seed-free hydrothermal method, ZnO NRs were deposited on the
quartz substrate. The precursor solution contained an equal molar ratio of zinc nitrate hexahydrate
(Zn(NO3)2·6H2O) and methenamine (C6H12N4), which were dissolved into 2-methoxyethanol, then
the solution was added into a sealed bottle with a 100-mL capacity. The device with its surface facing
down and floating on the surface of the solution was kept in the solution of 5 mmol/L at 90 ◦C for 3 h.
During the process, the IDTs of the SAW device wave were covered with a polyimide tape to prevent
being etched. After the growth, the device was taken out and cleaned using deionized water to remove
the residual and dried at room temperature for further study.

ZnO nanofilms were prepared using sol-gel and spin-coating processes on the surface of the SAW
device. The way to prepare the ZnO sol was the same as that described in Reference [8]. Using a
spin-coating method with as-prepared ZnO gel at a speed of 3000 rpm for 30 s, a ZnO nanofilm with a
thickness of 30 nm was prepared on the surface of the SAW devices. Then, the coated SAW devices
were immediately transferred into the furnace to be kept at 300 ◦C for 10 min, followed by annealing
at a temperature of 500 ◦C for 1 h.

The morphology of the prepared ZnO nanofilm and NRs were characterized using a field-emission
scanning electron microscope (FE-SEM, Carl Zeiss 1530 VP, Carl Zeiss Mircoscopy, Thornwood, NY,
USA) and an atomic force microscope (AFM, Being technology 5500, Being Nano Instruments LTD.,
Beijing, China). A Rigaku D/max-2400 X-ray diffractometer (Rigaku, Tokyo, Japan) was applied to
characterize the crystallinity of the prepared nanofilm and NRs.

The SAW sensor consisted of the SAW resonator coated with ZnO nanofilm (or NRs) and the
corresponding oscillator circuits. A frequency counter (Agilent 53210, Keysight Technologises(M)
Sdn Bhd, Penang, Malaysia) was used to measure the output signal of the SAW sensors. The SAW
resonators growth with ZnO NRs had a center frequency of 199.76 MHz, and those with ZnO nanofilm
had a center frequency of 199.89 MHz. Figure 1 shows the schematic illustration of the measurement
system. The SAW sensor was placed inside a testing chamber with a volume of 2000 mL. The target gas
was the standard ammonia gas (2% purity), obtained from the National Institute of Testing Technology
of China. During the ammonia test, a dynamic volumetric method was adopted by using a syringe to
inject the gas into the testing chamber, and the time to inject ammonia into the chamber was about
10 s. When the response reached an equilibrium condition, the cover of the small chamber was
removed to be exposed to the atmosphere in the fume cupboard. The chamber was purged with air
before the chamber was covered for the next test. When the frequency of the sensor became stable
in its intrinsic frequency, the ammonia gas was injected into the testing chamber again. Ammonia
sensing characteristics of the SAW sensor were obtained at various ammonia concentrations at room
temperature. In addition, the concentrations (10, 20, 40, 60, 80 and 100 ppm) of ammonia were
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controlled by adjusting its volumes (1, 2, 4, 6, 8 and 10 mL) injected into the tasting chamber. In all the
testing, the temperature and humidity in the chamber were maintained at 25 ◦C and 25%, respectively.
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Figure 1. Measurement system of ammonia gas: (a) schematic diagram; (b) picture.

3. Results and Discussion

Figures 2 and 3 show the top-view images of the ZnO nanofilm and NRs, respectively. The surface
of the ZnO film is smooth and dense, as shown in Figure 2a,b. The sizes of nanoparticles of the film
are in the range of 20–50 nm. Figure 3a shows that the distribution of ZnO NRs is uneven and the
growth of ZnO NRs is irregular, and Figure 3b shows the sizes of NRs, whose lengths are in the range
of 1–5 µm, and diameters are in the range of about 1–2 µm. The AFM images of the ZnO nanofilm are
shown in Figure 4, and the surface roughness of the film is 4.4 nm.
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XRD results of the ZnO nanofilm and NRs are exhibited in Figure 5. The XRD pattern of the ZnO
nanofilm shows very weak peaks due to its thin thickness of 30 nm. The thicker line in Figure 5 shows
the characteristic peaks of ZnO NRs at 31.77◦ and 34.42◦, which correspond to the (100) and (002)
planes of ZnO. The peak at (100) has a relatively higher intensity than that of the peak at (002), which
indicates that the ZnO NRs have a preferred oriented orientation along the (100) direction.Sensors 2017, 17, 1142 5 of 10 
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Figure 5. XRD patterns of ZnO nanofilm and NRs. 
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Figure 6. Response of the surface acoustic wave (SAW) sensors with ZnO nanofilm and NRs to 100 
ppm ammonia. 

The ammonia gas sensing mechanism can be explained using the Equation (1) [32]: ܰܪଷ + 5ܱି → 2ܱܰ + ଶܱܪ3 + 5݁ି (1) 

The oxygen molecules adsorbed on the ZnO layer or NRs formed a depletion layer on the 
surface due to their strong oxidizability. When the device was exposed to ammonia, the reaction 
between ammonia molecules and oxygen molecules led to a recombination of electrons and holes, 
increasing the conductivity of the ZnO layer [33]. 

Accordingly, the change of SAW velocity (ߥ߂) is given by [15,34,35]: 

Figure 5. XRD patterns of ZnO nanofilm and NRs.

Figure 6 shows the responses of the SAW devices with ZnO films and NRs to 100 ppm ammonia
with an exposure time of 1000 s. The results show that the two different sensors had obvious responses
to the ammonia. The device based on the ZnO nanofilm showed a negative response of −307 Hz.
The signal decreased to 90% of its saturated value within 143 s, and then recovered to 90% of the
saturated value in 426 s. The device based on ZnO NRs showed a negative response of −1094 Hz,
increasing almost 3.6 times as much as that for the sensor with the ZnO nanofilm. As shown in Figure 6,
the sensors based on the ZnO NRs responded much faster in the first few seconds, but it took a long
time of about 151 s to reach 90% of its saturated level, and the recovery time to 90% of its saturated
value was 568 s.
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The ammonia gas sensing mechanism can be explained using the Equation (1) [32]:

NH3 + 5O− → 2NO + 3H2O + 5e− (1)

The oxygen molecules adsorbed on the ZnO layer or NRs formed a depletion layer on the surface
due to their strong oxidizability. When the device was exposed to ammonia, the reaction between
ammonia molecules and oxygen molecules led to a recombination of electrons and holes, increasing
the conductivity of the ZnO layer [33].

Accordingly, the change of SAW velocity (∆ν) is given by [15,34,35]:

∆ν

ν0
≈ −K2

2
σ2

s

σ2
s + ν2

0C2
s

(2)

where Cs is the surface capacity, σs is the sheet conductivity, K is an electromechanical coefficient,
and σ0 is the unperturbed SAW velocity. From Equation (2), the conductivity of the sensing layer (σs)
varies inversely with the SAW velocity, i.e., the resonant frequency. When the ZnO-coated devices are
exposed to the ammonia, the conductivity of the sensing layer (σs) will increase while the SAW velocity
will decrease. The ZnO NRs have larger specific surface areas than that of the ZnO film, therefore, the
ZnO NRs can absorb more oxygen species and react with more ammonia molecules than ZnO film
under the same concentration of ammonia. Therefore, the device with ZnO NRs will have a larger
surface conductivity and frequency shift.

Figure 7a shows the frequency shifts of the SAW devices based on ZnO nanofilm and NRs under
different concentrations of ammonia gas, and the sensing results are summarized in Table 1. The two
sensors showed negative responses to ammonia, and the frequency shift was much smaller but the
recovery was much faster at a lower concentration. However, when the sensor using ZnO NRs was
exposed to 10 ppm ammonia, the 90% response time and recovery time were much longer than that
of 20 ppm. Moreover, when the sensor using ZnO nanofilm was exposed to 100 ppm ammonia, the
90% recovery time was much less than that observed when exposed to 80 ppm. During the recovery
process, there were some discontinuous points observed, which probably resulted from the mechanical
disturbance when evacuating the ammonia.
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Table 1. The sensing results of ZnO nanofilm and NRs.

Ammonia Gas
Concentration

(ppm)

ZnO Nanfilm ZnO NRs

Frequency
Shift (Hz)

90% Response
Time (s)

90% Recovery
Time (s)

Frequency
Shift (Hz)

90% Response
Time (s)

90% Recovery
Time (s)

10 −30 50 34 −110 266 431
20 −75 85 457 −163 117 76
40 −120 94 562 −336 125 233
60 −193 113 583 −638 131 465
80 −269 130 932 −848 140 470
100 −307 143 426 −1094 151 568

The reproducibility of the sensors based on ZnO NRs and films were tested with 100 ppm
ammonia gas for four cycles, respectively. As is shown in Figure 7b, the fluctuation of the maximum
frequency shift for the SAW sensor with ZnO nanofilm was close to 13%. However, the fluctuation of
the maximum frequency shift of the sensor with NRs was less than 10%, and the response and recovery
time for each test was nearly the same in the four tests, showing good reproducibility.
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In Figure 7c, the frequency shift of the sensor with the ZnO nanofilm as a function of ammonia
concentration has a linear relation with a fitted equation as follows:

∆ f = −3.0×Cppm − 5.7 (Hz) (3)

where ∆f is the frequency shift and Cppm is the ammonia concentration. Similarly, the relation between
the frequency shift and ammonia concentration for the SAW sensor with ZnO NRs is given as:

∆ f = −11.3×Cppm + 50.9 (Hz) (4)

From Equations (3) and (4), it is obvious that the slope of Equation (4) is 3.8 times as much as that
of Equation (3). This indicates that the response of the sensor with ZnO NRs is 3.8 times as high as that
of the sensor based on the ZnO film with the increase in ammonia concentration.

The stabilities of the two types of SAW sensors were investigated. As showed in Figure 8,
the sensors based on ZnO NRs and the nanofilm showed stable responses to certain concentrations of
NH3 gas for 60 days, respectively.Sensors 2017, 17, 1142 8 of 10 
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4. Conclusions 

ZnO NRs were fabricated via a seed-free hydrothermal method. For a comparison, a ZnO 
nanofilm was synthetized via a sol-gel and spin-coating method. Room-temperature ammonia 
sensors based on ST-cut quartz SAW devices using ZnO NRs and nanofilm were investigated. The 
sensor with the ZnO NRs showed a good stability and reproducibility, and its frequency shift to 100 
ppm ammonia gas was −1094 Hz, increasing almost 3.6 times as much as that for the sensor with the 
ZnO nanofilm. Moreover, when the two SAW devices were exposed to ammonia with lower 
concentrations, the sensor using the ZnO NRs was much more sensitive than the sensor with the 
ZnO nanofilm. 
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4. Conclusions

ZnO NRs were fabricated via a seed-free hydrothermal method. For a comparison, a ZnO
nanofilm was synthetized via a sol-gel and spin-coating method. Room-temperature ammonia sensors
based on ST-cut quartz SAW devices using ZnO NRs and nanofilm were investigated. The sensor
with the ZnO NRs showed a good stability and reproducibility, and its frequency shift to 100 ppm
ammonia gas was −1094 Hz, increasing almost 3.6 times as much as that for the sensor with the ZnO
nanofilm. Moreover, when the two SAW devices were exposed to ammonia with lower concentrations,
the sensor using the ZnO NRs was much more sensitive than the sensor with the ZnO nanofilm.
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