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Abstract: In this paper a two-phase compressive sensing (CS) and received signal strength
(RSS)-based target localization approach is proposed to improve position accuracy by dealing with
the unknown target population and the effect of grid dimensions on position error. In the coarse
localization phase, by formulating target localization as a sparse signal recovery problem, grids with
recovery vector components greater than a threshold are chosen as the candidate target grids. In the
fine localization phase, by partitioning each candidate grid, the target position in a grid is iteratively
refined by using the minimum residual error rule and the least-squares technique. When all the
candidate target grids are iteratively partitioned and the measurement matrix is updated, the recovery
vector is re-estimated. Threshold-based detection is employed again to determine the target grids
and hence the target population. As a consequence, both the target population and the position
estimation accuracy can be significantly improved. Simulation results demonstrate that the proposed
approach achieves the best accuracy among all the algorithms compared.

Keywords: compressive sensing; positioning; received signal strength; target population; wireless
local area network

1. Introduction

With the wide deployment of the mobile wireless systems and networks, wireless positioning
has recently drawn considerable attention [1–3]. Due to government regulations and commercial
applications, the location based services (LBS) are made possible on laptops, smart phones and personal
digital assistants (PDAs) [4,5]. However, typical Global Navigation Satellite System (GNSS) cannot
perform well in urban canyons and indoor scenarios when GNSS signals are blocked. Thus, non-GNSS
positioning systems are required for these scenarios and indoor positioning has become a hot research
topic in recent years [6,7].

Currently available indoor positioning systems include cellular network-based systems [8–11],
single frequency network-based systems [12–15], ultra-wide band (UWB)-based systems [16], wireless
local area network (WLAN)-based systems [17,18], radio frequency identification (RFID)-based
systems [19,20], dead-reckoning-based systems [21], Bluetooth indoor positioning systems [22] and
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pseudolite-based systems [23]. Among them, the received signal strength (RSS)-based WLAN indoor
positioning system is the most popular technique employed [24–27]. In this paper, we will also focus
on RSS-based indoor positioning.

In general, the RSS-based methods can be classified into two broad categories, namely the distance
prediction-based and fingerprinting-based methods. Due to the complicated indoor environments,
large errors occur when using a theoretical propagation model to characterize the distance between
the emitter and the receiver [1]. Comparatively, the RSS fingerprinting method is able to achieve
acceptable indoor positioning accuracy, however, to construct and maintain the signature map is a time
consuming task [28]. Therefore, to develop alternative solutions is thus of great interest to overcome
the drawbacks of the current RSS-based WLAN indoor positioning approaches.

Recently, compressive sensing (CS) theory has been used to provide a novel framework for
sparse signal processing [29]. From the viewpoint of WLAN-based indoor positioning, the RSS vector
measured from access points (AP) changes as a mobile device moves from one position to another.
Also, the target population is usually much smaller than the number of discrete grids defined over the
location area covered by the WLAN. Thus, the problem of WLAN-based positioning can be formulated
as a sparse signal recovery problem. The target positions can be estimated in the discrete spatial
domain by solving an under-determined linear system with a limited number of RSS measurements.
CS technique positioning algorithms are typically able to achieve good accuracy and robustness when
only sparse information is available [30].

In this paper, we focus on dealing with CS-based localization in the absence of prior knowledge
of the target population. In particular, an effective two-phase localization algorithm is proposed.
The major contributions of the proposed approach are two-fold.

The first contribution is the improved accuracy in target population estimation. In the coarse
localization phase, by determining the signal recovery vector and employing the threshold- based
detection, the initial candidate target grids are determined. In the fine localization phase, based on
the updated measurement matrix, the signal recovery vector is re-estimated and the identification of
the target grids is performed again to reject the outliers or false target grids produced in the coarse
localization phase. As a result, the target population estimation is more reliable.

The second main contribution is the solution to the problem of a large target position error caused
by large grid size. In the coarse localization phase, the initial candidate target grids are identified.
In the fine localization phase, each of the candidate grids is divided into four equal grids in turn.
Through iterative partition of a grid, the position of each target is constrained to a sufficiently small
grid. As a consequence, the position accuracy can be improved greatly.

The remainder of this paper is organized as follows: Section 2 provides an overview of the related
work. The CS-based positioning model when using RSS measurements is described in Section 3.
The proposed two-phase positioning approach is presented with a detailed description in Section 4.
Simulation results are reported in Section 5. Finally, Section 6 draws our conclusions.

2. Related Work

In the literature, a variety of methods and techniques have been proposed for RSS-based WLAN
indoor positioning. In [31], a novel localization protocol was proposed to use the CS theory to
reformulate the localization problem in wireless networks and the theoretical CS-based localization
framework was described in detail. The authors of [32] provided a rigorous proof for the necessity
of Restricted Isometry Property (RIP) and conducted a comprehensive analysis about how to choose
the grid size. In [33,34], a two-step CS-based indoor positioning algorithm was proposed, which
consists of a coarse localization by cluster matching and a fine CS-based localization. In the coarse
localization step, the orthogonalization preprocessing procedure was used to induce incoherence
needed in the CS theory. In fine localization step, the AP selection techniques were utilized to decrease
computational complexity and increase accuracy. The authors of [35] extended the application scenario
from a static target to a mobile one. Specifically, the location problem was solved by first applying
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a proximity constraint to limit the distance between a coarse estimate of the current position and
a previous estimate. Then, a CS-based scheme was applied to obtain a refined position estimate by
a map-adaptive Kalman filter. In [36], issues of signal-to-noise ratio (SNR), target position refinement,
number of measurements, linear programming scheme, sensor deployment and grid topology were
investigated for CS-based positioning; it was observed that noise power had the main effect on RSS
based localization performance. In [37], the authors applied the CS technique to perform sparsity-based
indoor localization. It was an energy-constrained algorithm which can reduce the amount of information
transmitted from a wireless device with limited power, storage and processing capabilities to a central
server. In [38], a data processing technique was proposed for CS-based and fingerprinting based indoor
positioning by using the signal strength differential (SSD) measurements. To mitigate the influence
of large measurement noise, a sparse transformation model based on Gaussian kernel function was
proposed to transform the location vector into a strictly sparse one. Besides, in order to lower the
high computational complexity, several fingerprinting space filtering algorithms were also exploited to
remove some useless fingerprints in the radio map according to the real-time RSS observations.

From the above discussions, it can be seen that most of existing work on CS-based positioning
focused on theoretical modeling and analysis [31,32,36], satisfied conditions for CS theory [33–35],
computational complexity [33,34,38] and positioning performance [33–35,38]. One of the significant
advantages of CS-based positioning is that positions of multiple targets can be simultaneously estimated,
but most existing algorithms are based on the assumption of a single target [33–35]. Although there
are a few multi-target positioning methods in the literature, the number of targets is always assumed
known in advance [39]. In addition, some common CS recovery algorithms, such as BP algorithm [40]
and OMP [41], also require a known degree of sparsity. In a real network-based-positioning system,
the target population is usually an unknown variable. In [42], an unchanged residual error rule based
method was proposed to determine the unknown target population. However, there is a significant
issue when implementing such an approach, because it is difficult to choose an appropriate criterion to
terminate the search procedure. In order to apply CS theory, the localization area needs to be divided
into a number of grids. Nearly all the existing approaches simply treat the center of an identified grid
as the target position, which would produce a large position error when the grid size is large.

3. Assumptions, Measurement Model and Motivations

3.1. Assumptions

The localization area is assumed to be two-dimensional (2D) plane and is divided into N equal
grids which are the potential sites where the targets will be located. When the target appears in a grid,
the center of the grid is represented as the target position. K targets are located in K different grids
among the N grids. At every sampling time point, M APs measure the power/strength of the signals
transmitted from all K targets and the M RSS measurements, one from each AP, are forwarded to the
data fusion center to determine the positions of the K targets. The parameters N and M are the prior
information, whereas K is unknown in advance. The relationship between the parameters satisfies
M << N, and K << N.

3.2. Measurement Model

The Euclidean distance between the m-th AP and the target on the n-th grid is given by:

dm,n =

√
(xm − xn)

2 + (ym − yn)
2 1 ≤ m ≤ M, 1 ≤ n ≤ N (1)

where (xm, ym) and (xn, yn) are respectively the coordinates of the m-th AP and the center of the n-th
grid. Usually, the RSS measurements at each AP are affected by obstructions, multipath propagation, and
other indoor environmental factors. According to the indoor signal-fading model [43], when the signal is
transmitted from the target at the n-th grid, the RSS measurement at the m-th AP is described as:
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pm,n = pTx + G = pTx + G0 − n10 log(d) + XSSF + XLSF (2)

where PTx is transmitted signal power, G is the total power gain, d is the distance between the
transmitter and receiver, G0 is the path power gain in dBs at the reference distance and n is the path
loss exponent, XSSF is the small-scale fading (SSF) contribution, i.e., the random variation of signal
level due to multipath interference observed over one small-scale area, and XLSF is the large-scale
fading (LSF) contribution, i.e., the random variation in local average of receiver power observed over a
spatial extent of multiple small-scale areas.

Therefore, the total RSS measured at the m-th AP is then given by:

um =
N

∑
n=1

m,nϑn + εm (3)

where εm is the measurement noise including modeling errors, ϑn is equal to one if a target is located
in the n-th grid; otherwise, it is zero. Equation (3) can be written in a compact form as:

u = Pθ+ ε (4)

where:

u =


u1

u2
...

uM

, P =


P1,1 P1,2 · · · P1,N
P2,1 P2,2 · · · P2,N

...
...

...
...

PM,1 PM.2 · · · PM.N

, θ =


ϑ1

ϑ2
...

ϑN

, ε =


ε1

ε2
...

εM

 (5)

Here θ is the unknown vector which has K ones and N − K zeroes. N − K would generally be
much greater than K, so θ is a K-sparse vector. Therefore, the location problem can be considered as
a K-sparse signal recovery issue which can be handled using the CS theory. Note that u is the actual
measurement vector, whereas P is the theoretical measurement matrix.

Also note that in noise free condition, it can be seen that ϑi is equal to one or zero. If ϑi = 1,
it means that the i-th grid has the target and corresponding center coordinate is the target’s position
estimation. If ϑi = 0, it indicates that there is no target in the i-th grid.

3.3. Motivations

The presented work is motivated by the fact that a number of significant issues in localization
have to be considered to make a localization algorithm more accurate and practical. Specifically, three
motivations are associated with three issues as discussed below.

(1) The number of grids in a location area plays a significant role in target position estimation. Small number
of grids will result in a larger position estimation error due to the large dimensions of a grid when
treating the center of the grid as target position. Dividing the location area into smaller grids would
improve position accuracy, but this would require more APs according to the CS theory, which may not
be feasible in practice. Also, larger number of grids will lead to higher computational complexity.
Therefore, this conflict should be handled in the development of the positioning algorithm.

(2) To employ the CS theory, it is necessary to have knowledge of the target population [39]. However,
this assumption would typically not be true in reality. Thus, it is useful to develop an enhanced
CS-based positioning algorithm without any prior knowledge of target population.

(3) As mentioned earlier, regardless of the grid size the center of the grid is usually chosen as the
target position in the existing algorithms. However, the target can be at any place within the grid
and such a selection may result in a considerable error especially when the dimensions of the grid
are relatively large. Hence, it is important to develop methods to refine target positions especially
when high accuracy position information is required. To cope with the above issues, a new
two-phase CS-based positioning algorithm is proposed as described in the following section.
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4. Proposed CS-Based Positioning Algorithm

The block diagram of the proposed CS-based localization scheme for indoor environment
is illustrated in Figure 1. The approach contains two main phases: (1) coarse localization and
(2) fine localization.
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In the coarse localization, the BP algorithm is employed to estimate the vector θ using the RSS
measurements at the APs, which gives useful information to judge whether the grid has a target or
not. The grids whose coefficients in θ are above a certain threshold are chosen as the candidate grids
which have a target in each of them. That is, the number of the selected grids is the initial estimate of
target population. This is different from the previous work [33,34,39], since the chosen grids are just
the intermediate results rather than the final results.

In the fine localization, in order to reject the false grids and improve the position estimation
accuracy, each of the initial candidate grids is partitioned iteratively for a pre-defined number of times
and a smaller target grid is identified at every iteration time. As a consequence, the uncertainty of
target position in the grid and the effect of grid size are significantly reduced. The recovery vector
is then estimated again and threshold based detection is applied to determine the refined candidate
grids and generate more accurate target population estimation. More details about the two phases are
provided below.

4.1. Coarse Localization Phase

The main task of this phase is to find candidate grids where the targets may appear. Both the
`0-norm minimization and the `1-norm minimization can be utilized to solve the target detection
problem. However, the `0-norm minimization is an NP-hard problem and hence the computational
complexity is too high especially when N is large. The `1-norm minimization is thus a better option to
deal with the problem to generate an estimate of the sparse vector θ by:

θ̂ = [ϑ̂1, ϑ̂2, · · · , ϑ̂N ]
T
= argmin

θ
‖θ‖1 s.t. ||PT(u− Pθ)||∞ <

√
2 log Nσ (6)

Note that two signal recovery algorithms can be employed to estimate θ, which are convex
relaxation algorithm and greedy algorithm. One of the convex relaxation algorithms, called BP
algorithm, is utilized to achieve the goal. Interested readers are referred to [44] for details of the convex
optimization algorithm. For practical application, in order to obtain the exact reconstruction, it should
obey the four-to-one rule which needs about four incoherent measurements per unknown nonzero
term in reconstruction vector [29], i.e., M > 4K.

Based on the estimated K-sparse vector θ̂, the threshold based detection is exploited to choose the
candidate target grids with the steps given below.
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(1) A pre-defined threshold ∆1 is first determined such as based on conducting extensive simulations
and data analysis. Certainly it would be useful to investigate on how to choose the threshold
theoretically by allowing an acceptable false alarm probability in the future.

(2) If ϑ̂i ≥ ∆1, i = 1, 2, · · · , N, the corresponding grids are assumed to hold the targets and the
centers of the chosen grids are assumed to be the initial target’s position estimation. Their grid
indexes are used to form the candidate grid index set Λ1.

(3) If ϑ̂i < ∆1, the corresponding grids are assumed not to have any target so that they are excluded
from further processing.

Suppose that the size of the candidate grid index set Λ1 is L which is much smaller than N. That is,
the positions of the targets are supposedly constrained to these L grids. For convenience, according to
the order in which they appear in the estimated sparse vector θ, the candidate grids are re-indexed to
be from 1 to L based on the values of {ϑ̂i}. Also, the center position of the i-th grid is simply denoted by
(x(0)i , y(0)i ). Removing the elements whose values are below the threshold from the recovery signal
vector θ̂ and using the re-arranged grid indexes produce a new recovery signal vector:

θ̃ = [ϑ̃1, ϑ̃2, · · · , ϑ̃L]
T

(7)

Accordingly, the dimensions of the new measurement matrix are reduced to M × L, which is
defined as:

P̃ = [p̃1, p̃2, · · · , p̃L] (8)

Note that P̃ is a part of measurement matrix P whose N – L columns are removed to form P̃.

4.2. Fine Localization Phase

Taking an arbitrary candidate grid with the center coordinates (x(0)i , y(0)i ) as an example, from
Figure 2, it can be seen that, at the 1st grid partition, the grid is divided into four equal-size grids A1,
B1, C1, and D1. By defining the residual error as the squared difference between the measured RSS
and the calculated one, the grid with the smallest residual error is selected as the target grid which is
grid B1 in this case. Then, B1 is divided into four equal-size grids and the procedure continues for a
pre-defined number of times. Then, the fine positioning phase is carried out in the following steps.
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Before describing the steps, let us first initialize the residual measurement vector r and the
intermediate measurement matrix Φ as r = u and Φ = {}.

Step 1: Choose the candidate grid from the set Λ1.
It is observed that the order of grid selection from Λ1 for iterative partition affects localization

performance considerably. Thus, a new method is proposed to solve the selection order problem.
In the proposed algorithm, the desired candidate grid can be determined by:

λ̂ = argmax
λ∈Λ1
|〈r , p̃λ〉| (9)
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where p̃λ is the column vector of the matrix P̃. λ is the index of the desired candidate grid. | | is the
operation of absolute value and <, > is the operation of the usual inner product.

Note that: the basic idea of the proposed grid selection algorithm is similar to the atom selection
proposed in [45]. After the inner product calculation between the residual and each column of
the measurement matrix, the column index with the maximum projection of the residual is chosen.
The corresponding grid is considered as the desired candidate grid for grid partition.

Step 2: The selected gird is divided into four equal-size smaller grids. At the j-th iteration the
target position can be represented as:

(x(j)
λ , y(j)

λ ) = (x(j−1)
λ , y(j−1)

λ ) +

(
(−1)η

dL

2j , (−1)ζ
dW

2j

)
(10)

where dL and dW are the length and width of the initial grid, respectively and when treating the four
equal-size grids as the four quadratures, one has:

[η, ζ] =


[0, 0], First quadrature

[1, 0], Second quadrature

[1, 1], Third quadrature

[0, 1], Fourth quadrature

(11)

After each grid partition, the potential target location area is reduced to a quarter of the previous
location area. In theory the iterative partition can be realized as many times as possible and the target
location area can be restricted to an extremely small area.

Next, according to (5), given the above four partitioned smaller grids, the theoretical measurement
vector related to the i-th quadrature can be defined as:

h(i)
λ = [ p1,i p2,i · · · pM,i ]

T
, i = 1, 2, 3, 4 (12)

where pj,i is the theoretical signal power received by the j-th AP when the target transmitter is located
at the center of the ith quadrature grid. The measurement matrix is then modified to be

P̃
(i)

=


[ h(i)

λ p̃2 · · · p̃L ], λ = 1

[ p̃1 · · · p̃λ−1 h(i)
λ p̃λ+1 · · · p̃L ], 1 < λ < L

[ p̃1 · · · p̃L−1 h(i)
λ

], λ = L

(13)

Applying the least-square estimation produces the estimate of the recovery vector as:

θ̂(i) = ((P̃
(i)
)

T
P̃
(i)
)
−1

(P̃
(i)
)

T
u (14)

Then, based on the minimal residual error rule, the desired smaller candidate grid can be
determined by:

î = arg min
i∈{1,2,3,4}

‖u− P̃
(i)

θ̂(i)‖2 (15)

The selected smaller grid is considered as the initial grid for next partition and the target position
is updated by (10) based on which quadrature grid is selected.

Step 3: Implement the step 2 for the predefined number of iterative partition times q.
The measurement vector of final selected smaller grid can be defined as:

hq
λ = h(i)

λ (16)
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Step 4: Update the measurement matrix as:

P̃ =


[ hq

λ p̃2 · · · p̃L ], λ = 1

[ p̃1 · · · p̃λ−1 hq
λ p̃λ+1 · · · p̃L ], 1 < λ < L

[ p̃1 · · · p̃L−1 hq
λ
], λ = L

(17)

Then, update the intermediate measurement matrix as:

Φ = [ Φ, p̃λ ] (18)

Applying least-squares estimation produces the estimate of the recovery vector as:

β = (ΦTΦ)
−1

ΦTu (19)

which is then used to calculate the update of the residual measurement vector:

r = u−Φβ (20)

So far, the processing of the selected grid is accomplished. The most possible position is obtained
by (15) and the measurement matrix and residual measurement vector are updated by (16)–(20).

Step 5: Repeat steps 1–4 for L times so that all the L original candidate grids are iteratively
partitioned for q times. The completely updated measurement matrix becomes

P̃ = [ hq
1 hq

2 · · · hq
L ] (21)

Step 6: Using the updated measurement matrix, the recovery vector can be re-estimated as:

θ̂ = (P̃
T

P̃)
−1

P̃
T

u (22)

The final target grids are determined by using the threshold based detection again. In this time, the
threshold is set to be ∆2 and in the simulations the selection of the threshold will be discussed. The final
target grids are those candidate grids whose recovery vector components are equal to or greater than
the threshold, while the other candidate grids are discarded. As a consequence, the estimate of the
target population is obtained and the positions of the targets are {(x(q)k , y(q)k )}, k ∈ {1, 2, · · · , L}
where the estimated target population is not greater than L.

4.3. Computational Complexity Analysis

For the proposed algorithm, since the BP recovery algorithm is utilized for coarse localization,
the computational complexity in this phase is O

(
M2N3/2

)
. The fine localization phase uses the least

squares estimation approach and thus the computational complexity is O
(

ML2), where M and L are
the number of equations and number of variables, respectively. In the fine localization phase, the
computational complexity in each grid partition (step 2 and step 3) is O

(
4qML2). The computational

complexity in measurement matrix update (step 4) is O
(

Mi2
)
. Thus, when the algorithm operates

from step 1 to step 5, the computational complexity is O
(
4qML3) + ∑L

i=1 O
(

Mi2
)
. The computational

complexity of step 6 is O
(

ML2). The total computational complexity of the proposed algorithm

is O
(

M2N3/2
)
+ O

(
4qML3) + ∑L

i=1 O
(

Mi2
)
+ O

(
ML2). Thus, the computational complexity can

be approximated to be O
(

M2N3/2
)
+ O

(
4qML3). Table 1 shows the computational complexity

comparison among different CS-based localization algorithms. Since the computational complexity of
the OMP recovery technique is lower than the BP recovery technique, the computational complexity of
the BP based localization algorithm is higher than that of OMP based localization algorithm. In the
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proposed algorithm, the BP recovery technique and the least squares estimation approach are utilized
in the coarse localization phase and fine localization phase respectively. Thus, the proposed algorithm
has the highest computational complexity among the above three localization methods.

Table 1. Computational complexity comparison.

Algorithm Computational Complexity

BP-based localization algorithm o
(

M2N3/2
)

OMP-based localization algorithm o(KMN)

Proposed algorithm O
(

M2N3/2
)
+ O

(
4qML3)

5. Simulation Results

The location area is an 80 m× 80 m square region with N = 20× 20 = 400 equal grids. The number
of APs is assumed to be M = 121 for the simulation, which are deployed uniformly. The number of
targets, K, is chosen from 2 to 7 to evaluate the effect of the target population [45] and their positions
can be at any places of the given area rather than the center of the grid. The predefined threshold
parameters are set to be ∆1 = 0.15 and ∆2 = 0.3. The number of iterative partitions is set at q = 2 and
the side length of the grid is d = 4 m.

The transmitted signal power is pTx = 27 dBm. XSSF is described by a mixture model for
the probability density function αN (µdB,σdB) + (1− α)δ(XSSF), where N denotes a lognormal
distribution with mean of the logarithmic Rice factor µdB, and standard deviation σdB. δ(XSSF) is the
Dirac impulse function. α is the mixture weight. The above parameters can be defined by a polynomial fit
function with χ, which are provided in Table 2. The path loss exponent n and the path power gain (in dBs
at the reference distance) G0 are modeled as Gaussian random variables with distribution parameters
N (µn,σn) andN

(
µG0,dB,σG0,dB

)
. ρnG0,dB is the normalized correlation coefficient. XLSF has a log-normal

distribution with the standard deviation σLSF,dB. The distribution parameters of LSF environments are
provided in Table 3. More details about the simulation parameters can be found in [43].

Table 2. Parameters for SSF environment.

µdB σdB α

p(χ) = c3χ
3 + c2 χ

2 + c1χ+ c0 p(χ) = b0 p(χ) = a1χ+ a0
c3 c2 c1 c0 b0 a1 a0

1.23 −9.52 20.64 −8.17 3.84 −0.05 1.05

In Table 2, χ is the distance between transmitter and mid-point of modeled SSA (m).

Table 3. Parameters in Gdb(d) for LSF environment.

µn σn µG0,dB σG0,dB ρnG0,dB σLSF,dB

2.5 0.3 −50.9 2.7 0.1 1.5

In the simulation, the performance of target population estimation, recovery estimation and
the target position estimation are chosen for algorithm analysis. The mean and standard deviation
are utilized to describe the performance of target population estimation. And the success rate and
the false alarm rate are chosen to evaluate the signal recovery performance. The success rate is
defined as the percentage that the distance between the actual target position and the estimated target
position is less than the given distance D which can be adjusted. Meanwhile the false alarm rate is
defined as the percentage that the distance between the estimated target position and the actual target
position is larger than the given distance R which, in this paper, is set to be 2

√
2 d. At last, the root

mean square error (RMSE) and the error cumulative distribution function (CDF) are calculated as the
positioning performance index. In this situation, occasional large position errors should be excluded
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for performance analysis, so the parameter D is the chosen as 2
√

2 d which means that the estimated
target position within the actual grid or adjacent grid is chosen. Also, 5% largest errors are also not
used for calculation.

The GMP algorithm [42] is used for target population estimation performance comparison.
Three OMP based algorithms (OMP clustering algorithm [34], the OMP weight clustering algorithm [33],
and the OMP algorithm [45]) and GMP algorithm [42] are chosen for both the signal recovery estimation
performance and positioning performance comparison. It should be noted that the three OMP based
algorithms require that the target population K is known.

5.1. Effect of Parameter Selection

Taking SSF condition as an example, the performance under different thresholds are evaluated.
The effects of the parameters such as target population and SNR can be found in the next section.
Table 4 shows the target population estimation for different scenarios, when the actual target population
K = 5. It can be seen that the threshold parameter ∆1 and ∆2 have a great effect on the target population
estimation. When decreasing ∆1 or ∆2 in the proposed algorithm, the number of candidate grids will
become larger. So the mean of target population estimation may be increased. Correspondingly, the
success rate will be increased and the false alarm rate will be reduced. Figure 3 describes the success
rate for different thresholds. Meanwhile, we can also see that increasing the threshold parameter
∆2 will lead to an increase in the estimated target population, so the mean and the success rate are
also increased. Figure 4 illustrates the CDFs with different threshold parameters, showing that the
threshold parameter has a minor impact on the position estimation.

Table 4. The results for robust tests.

∆1 = 0.15 ∆2 = 0.3 ∆1 = 0.15 ∆2 = 0.25 ∆1 = 0.1 ∆2 = 0.3

Mean 5.8790 6.5905 5.9285
Std 2.5166 2.6884 2.5696

False alarm rate 0.0448 0.0673 0.0479
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5.2. Performance Comparison

5.2.1. SSF Condition

Figures 5 and 6 show the performance comparison of different target population estimation
algorithms. It can be seen that as the target population increases, the performance of target population
estimation will reduce. Meanwhile, the mean of the proposed algorithm is closer to the actual target
population than that of GMP algorithm. The standard deviation of the proposed algorithm is also
smaller than that of the GMP algorithm. For the GMP approach, the process of target population
estimation is terminated, only when the residual error is stationary. However, in the real environments,
the measurement vector contains many measurement errors such as measurement noise, modeling
error etc. These measurement errors will have great effects on the target population estimation.
Therefore, according to the simulation results and theoretical analysis, it can be concluded that
regarding target population estimation, the proposed algorithm is better than the GMP algorithm.
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Figures 7 and 8 display the recovery performance comparison for K = 5 and SNR = 30 dB.
As expected, the smaller the target population is, the better the recovery performance is. These results
satisfy the CS theory itself. The larger target population estimation, leads to the best success rate and
worst false alarm rate for the GMP algorithm. The OMP algorithm has the worst performance for
success rate, because it does not consider the problem of the target position uncertainty in the grid.
Although the proposed algorithm does not require any prior knowledge of the target population,
it has similar performance as the OMP weight clustering approach and the OMP clustering approach,
when the target population increases. Figure 9 describes the RMSE with respect to target population
respectively for the five algorithms when SNR is 30 dB. Although the grid partition technique is used
for the proposed algorithm and GMP algorithm. It can be seen that the performance of the GMP
algorithm is much better than the proposed algorithm. The reason can be attributed that more number
of target position estimation are obtained in the target population estimation.
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Taking target population K = 5 as an example, the performances of different algorithms are
compared under different SNR conditions. Figures 10 and 11 illustrate the mean and standard
deviation of the target population estimation. It can be seen that as the SNR increases, the performance
of target population estimation is basically improved. The proposed algorithm has better target
population estimation performance than the GMP algorithm. Figures 12 and 13 show the success rate
and the false alarm rate of different algorithms. It can be seen that the performances of the proposed
algorithm and the GMP algorithm are quite sensitive to SNR, whereas the OMP- based approaches
are rather insensitive to SNR. Figure 14 describes the RMSE comparison with five algorithms. It can
also see that the performance of GMP approach is best and the proposed algorithm has a similar
localization performance as the other three algorithms.
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To sum up, we can conclude that: (1) for target population estimation performance, the proposed
algorithm performs much better than the GMP algorithm. Note that the other three OMP-based
approaches should require the prior target population information (2) For signal recovery performance,
the GMP algorithm has the best success rate and worst false alarm rate. The OMP algorithm has
the worst success rate performance. The other three methods have a similar performance. (3) For
positioning performance, the GMP algorithm is best and the other four approaches have a similar
performance. Therefore, considering the above three performance indexes, the proposed algorithm is
the best solution for practical applications.

5.2.2. LSF Condition

Now the performance comparisons of different algorithms are made with different measurement
numbers under LSF conditions. The simulation parameters are K = 5 and SNR = 30 dB. Figures 15
and 16 show the target population estimation performance (mean and standard deviation) of the
proposed algorithm and the GMP algorithm. Figures 17 and 18 illustrate the comparison of the
success rate and that of the false alarm rate for the five algorithms, while Figure 19 displays the RMSE
comparison when the measurement number in LSF condition is 25. It can be seen that same algorithm
comparison conclusions can be obtained in the LSF condition. It should be noticed that since the
CS technique has high recovery performance under some measurement noise conditions, all five
approaches have a similar performance under different measurement numbers in LSF conditions.
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6. Conclusions 

In this article, a two-phase CS based target localization algorithm with RSS measurements has 
been proposed. This method does not require any prior knowledge of the target population, but it is 
able to estimate the target population. In the coarse localization phase, by considering localization as 
a signal recovery problem, initial candidate target grids are determined using the BP algorithm and 
the threshold-based detection technique. In the fine localization phase, by iterative grid partition and 
measurement matrix update, target position can be constrained to a sufficiently small area so that the 
target position uncertainty in a grid is greatly reduced. Compared to other existing approaches, the 
proposed algorithm can be considered as a best solution for practical applications with respect to 
target population estimation, signal recovery estimation and position estimation. 
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6. Conclusions

In this article, a two-phase CS based target localization algorithm with RSS measurements has
been proposed. This method does not require any prior knowledge of the target population, but it is
able to estimate the target population. In the coarse localization phase, by considering localization
as a signal recovery problem, initial candidate target grids are determined using the BP algorithm
and the threshold-based detection technique. In the fine localization phase, by iterative grid partition
and measurement matrix update, target position can be constrained to a sufficiently small area so that
the target position uncertainty in a grid is greatly reduced. Compared to other existing approaches,
the proposed algorithm can be considered as a best solution for practical applications with respect to
target population estimation, signal recovery estimation and position estimation.
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