Nanoporous Gold Films Prepared by a Combination of Sputtering and Dealloying for Trace Detection of Benzo[a]pyrene Based on Surface Plasmon Resonance Spectroscopy
Abstract
:1. Introduction
2. Experiments
2.1. Reagents and Materials
2.2. Experimental Setup of the SPR Sensor Platform
2.3. Fabrication of the NPG Film
3. Results and Discussions
3.1. SEM Characterization of the NPG Film
3.2. Surface Functionalization of the NPG Film
3.3. Detection of BaP by the SPR Sensor with the Hydrophobic NPG Film
3.4. Detection of BaP by the SPR Sensor with the NPG Film Functionalized with the BaP-against Antibody
3.5. Comparison of Sensitivity between the NPG-Film-Based SPR Sensor and That with Dense Gold Film
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stanley, S.; Percival, C.J.; Auer, M.; Braithwaite, A.; Newton, M.I.; McHale, G.; Hayes, W. Detection of Polycyclic Aromatic Hydrocarbons Using Quartz Crystal Microbalances. Anal. Chem. 2003, 75, 1573–1577. [Google Scholar] [CrossRef] [PubMed]
- Nahorniak, M.L.; Booksh, K.S. Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices. Analyst 2006, 131, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Jing, C. Preparation of Thiol Modified Fe3O4@Ag Magnetic SERS Probe for PAHs Detection and Identification. J. Phys. Chem. C 2011, 115, 17829–17835. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Su, Q.; Xu, J.H.; Zhang, Y.; Chen, S.T. Detecting of Benzo[a]pyrene Using a Label-free Amperometric Immunosensor. Int. J. Electrochem. Sci. 2014, 9, 3736–3745. [Google Scholar]
- Fu, S.; Guo, X.; Wang, H.; Yang, T.; Wen, Y.; Yang, H. Functionalized Au nanoparticles for label-free Raman determination of ppb level benzopyrene in edible oil. Sens. Actuators B Chem. 2015, 212, 200–206. [Google Scholar] [CrossRef]
- Karami, A.; Christianus, A.; Ishak, Z.; Shamsuddin, Z.H.; Masoumian, M.; Courtenay, S.C. Use of intestinal Pseudomonas aeruginosa in fish to detect the environmental pollutant benzo[a]pyrene. J. Hazard. Mater. 2012, 215, 108–114. [Google Scholar] [CrossRef] [PubMed]
- National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 8 May 2017).
- Standards for Drinking Water Quality. Available online: http://www.nhfpc.gov.cn/zhuz/pgw/201212/33644.shtml (accessed on 27 May 2017).
- Çorman, M.E.; Armutcu, C.; Uzun, L.; Denizli, A. Rapid, efficient and selective preconcentration of benzo[a]pyrene (BaP) by molecularly imprinted composite cartridge and HPLC. Mater. Sci. Eng. C 2017, 70, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shao, J.; Lin, T.; Li, Q. Detection of Benzo[a]pyrene in Fried Food by Ultrasound-Assisted Matrix Solid-Phase Dispersion and Isotope Dilution GC–MS. Chromatographia 2013, 76, 1785–1789. [Google Scholar] [CrossRef]
- Bao, L.; Sheng, P.; Li, J.; Wu, S.; Cai, Q.; Yao, S. Surface enhanced Raman spectroscopic detection of polycyclic aromatic hydrocarbons (PAHs) using a gold nanoparticles-modified alginate gel network. Analyst 2012, 137, 4010–4015. [Google Scholar]
- Fernández-Sánchez, J.F.; Segura Carretero, A.; Cruces-Blanco, C.; Fernández-Gutiérrez, A. Highly sensitive and selective fluorescence optosensor to detect and quantify benzo[a]pyrene in water samples. Anal. Chim. Acta 2004, 506, 1–7. [Google Scholar] [CrossRef]
- ChemSpider Search and Share Chemistry, Benzo(a)pyrene. Available online: http://www.chemspider.com/Chemical-Structure.2246.html (accessed on 27 May 2017).
- Rifat, A.A.; Mahdiraji, G.A.; Sua, Y.M.; Ahmed, R.; Shee, Y.G.; Adikan, F.R. M. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Exp. 2016, 24, 2485–2495. [Google Scholar] [CrossRef] [PubMed]
- Giorgini, A.; Avino, S.; Malara, P.; Gagliardi, G.; Casalino, M.; Coppola, G.; Iodice, M.; Adam, P.; Chadt, K.; Homola, J.; et al. Surface plasmon resonance optical cavity enhanced refractive index sensing. Opt. Lett. 2013, 38, 1951–1953. [Google Scholar] [CrossRef] [PubMed]
- Hodnik, V.; Anderluh, G. Toxin Detection by Surface Plasmon Resonance. Sensors 2009, 9, 1339–1354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lu, D.F.; Qi, Z.M. Application of Porous TiO2 Thin Films as Wavelength-Interrogated Waveguide Resonance Sensors for Bio/Chemical Detection. J. Phys. Chem. C 2012, 116, 3342–3348. [Google Scholar]
- Li, J.Y.; Lu, D.F.; Zhang, Z.; Liu, Q.; Qi, Z.M. Hierarchical mesoporous silica film modified near infrared SPR sensorwith high sensitivities to small and large molecules. Sens. Actuators B Chem. 2014, 203, 690–696. [Google Scholar] [CrossRef]
- Oh, S.; Moon, J.; Kang, T.; Hong, S.; Yi, J. Enhancement of surface plasmon resonance (SPR) signals using organic functionalized mesoporous silica on a gold film. Sens. Actuators B Chem. 2006, 114, 1096–1099. [Google Scholar] [CrossRef]
- Hotta, K.; Yamaguchi, A.; Teramae, N. Properties of A Metal Clad Waveguide Sensor Based on A Nanoporous-Metal-Oxide/Metal Multilayer Film. Anal. Chem. 2010, 82, 6066–6073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lu, D.F.; Qi, Z.M. Surface Plasmon Resonance Sensing Properties of Nanoporous Gold Thin Films. Acta Phys. Chim. Sin. 2013, 29, 867–873. [Google Scholar]
- Stetsenko, M.O.; Maksimenko, L.S.; Rudenko, S.P.; Krishchenko, I.M.; Korchovyi, A.A.; Kryvyi, S.B.; Kaganovich, E.B.; Serdega, B.K. Surface Plasmon’s Dispersion Properties of Porous Gold Films. Nanoscale Res. Lett. 2016, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Qian, L.; Guan, P.; Zi, J.; Chen, M. Localized surface plasmon resonance of nanoporous gold. Appl. Phys. Lett. 2011, 98, 093701(1-4). [Google Scholar] [CrossRef]
- Dietrich, P.M.; Graf, N.; Gross, T.; Lippitz, A.; Schüpbach, B.; Bashir, A.; Wöll, C.; Terfort, A.; Unger, W.E.S. Self-Assembled Monolayers of Aromatic ω-Aminothiols on Gold: Surface Chemistry and Reactivity. Langmuir 2010, 26, 3949–3954. [Google Scholar]
- Du, J.; Xu, J.; Sun, Z.; Jing, C. Au nanoparticles grafted on Fe3O4 as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons. Anal. Chim. Acta 2016, 915, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Kawazumi, H.; Gobi, K.V.; Ogino, K.; Maeda, H.; Miura, N. Compact surface plasmon resonance (SPR) immunosensor using multichannel for simultaneous detection of small molecule compounds. Sens. Actuators B Chem. 2005, 108, 791–796. [Google Scholar] [CrossRef]
- Lin, M.; Liu, Y.; Liu, C.; Yang, Z.; Huang, Y. Sensitive immunosensor for benzo[a]pyrene detection based on dual amplification strategy of PAMAM dendrimer and amino-modified methylene blue/SiO2 core-shell nanoparticles. Biosens. Bioelectron. 2011, 26, 3761–3767. [Google Scholar] [CrossRef] [PubMed]
- Lux, G.; Langer, A.; Pschenitza, M.; Karsunke, X.; Strasser, R.; Niessner, R.; Knopp, D.; Rant, U. Detection of the Carcinogenic Water Pollutant Benzo[a]pyrene with an Electro-Switchable Biosurface. Anal. Chem. 2015, 87, 4538–4545. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Q.; Rechnitz, G. Flow injection immunosensing of polycyclic aromatic hydrocarbons with a quartz crystal microbalance. Anal. Chim. Acta 1999, 387, 29–38. [Google Scholar] [CrossRef]
Detection Principle | Detection Limit | Reference |
---|---|---|
Surface enhanced Raman spectroscopy (SERS) | 5 nmol·L−1 | [25] |
Surface Plasmon Resonance (SPR) | 0.2 nmol·L−1 | [26] |
Quartz crystal microbalance (QCM) | 10 nmol·L−1 | [29] |
Immunoassay using electro- switchable biosurfaces | 40 pmol·L−1 | [28] |
Electrochemistry (EC) | 23.8 pmol·L−1 | [27] |
Fluorescence spectroscopy | 11.9 pmol·L−1 | [12] |
NPG film based SPR | 5 pmol·L−1 | This work |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wan, X.-M.; Gao, R.; Lu, D.-F.; Qi, Z.-M. Nanoporous Gold Films Prepared by a Combination of Sputtering and Dealloying for Trace Detection of Benzo[a]pyrene Based on Surface Plasmon Resonance Spectroscopy. Sensors 2017, 17, 1255. https://doi.org/10.3390/s17061255
Wang L, Wan X-M, Gao R, Lu D-F, Qi Z-M. Nanoporous Gold Films Prepared by a Combination of Sputtering and Dealloying for Trace Detection of Benzo[a]pyrene Based on Surface Plasmon Resonance Spectroscopy. Sensors. 2017; 17(6):1255. https://doi.org/10.3390/s17061255
Chicago/Turabian StyleWang, Li, Xiu-Mei Wan, Ran Gao, Dan-Feng Lu, and Zhi-Mei Qi. 2017. "Nanoporous Gold Films Prepared by a Combination of Sputtering and Dealloying for Trace Detection of Benzo[a]pyrene Based on Surface Plasmon Resonance Spectroscopy" Sensors 17, no. 6: 1255. https://doi.org/10.3390/s17061255
APA StyleWang, L., Wan, X. -M., Gao, R., Lu, D. -F., & Qi, Z. -M. (2017). Nanoporous Gold Films Prepared by a Combination of Sputtering and Dealloying for Trace Detection of Benzo[a]pyrene Based on Surface Plasmon Resonance Spectroscopy. Sensors, 17(6), 1255. https://doi.org/10.3390/s17061255