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Abstract: The triangle method has been applied to derive a weekly indicator of evaporative fraction on
vegetated areas in a temperate region in Northern Italy. Daily MODIS Aqua Land Surface Temperature
(MYD11A1) data has been combined with air temperature maps and 8-day composite MODIS NDVI
(MOD13Q1/MYD13Q1) data to estimate the Evaporative Fraction (EF) at 1 km resolution, on a
daily basis. Measurements at two eddy covariance towers located within the study area have been
exploited to assess the reliability of satellite based EF estimations as well as the robustness of input
data. Weekly syntheses of the daily EF indicator (EFw) were then derived at regional scale for the
years 2010, 2011 and 2012 as a proxy of overall surface moisture condition. EFw showed a temporal
behavior consistent with growing cycles and agro-practices of the main crops cultivated in the study
area (rice, forages and corn). Comparison with official regional corn yield data showed that variations
in EFw cumulated over summer are related with crop production shortages induced by water scarcity.
These results suggest that weekly-averaged EF estimated from MODIS data is sensible to water stress
conditions and can be used as an indicator of crops’ moisture conditions at agronomical district level.
Advantages and disadvantages of the proposed approach to provide information useful to issue
operational near real time bulletins on crop conditions at regional scale are discussed.
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1. Introduction

Early warning systems able to exploit indicators of cropland status are essential sources of
information to improve yield forecasts and resource management [1]. Sustainable management at
regional scale of water resources relies on crop water needs information, especially over scenarios
of climate change in anthropized regions where water is over exploited and shared among
multiple usages.

Since more than 80% of the water applied to agricultural lands can be consumed
by evapotranspiration (ET) [2], monitoring temporal and spatial ET variations is necessary.
Traditional methods for direct or indirect in situ measurement of ET, such as lysimeters, sap flow
meters and eddy covariance towers, provide accurate point and/or parcel-scale values but spatially
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distributed information at province/regional scale can hardly be extrapolated due to heterogeneity of
land surface and complexity of the hydrological processes [3].

Since Remote Sensing (RS) data can provide a large variety of information on crop status and
surface hydrological conditions, which are of key importance to highlight potential criticalities to
support water planning and provide quantitative data for management [4,5], RS techniques are
recognized as the only viable means to map ET at regional scale in a consistent and economically
feasible way [6]. Instantaneous values of ET at satellite overpass can be used as diagnostics for surface
status [7], or as controls for hydrological models through assimilation schemes [8]. Several approaches
have been developed to estimate ET and/or indicators of water stress, spanning from simple empirical
methods to more complex energy balance models, as fully described in literature reviews [9–12].

1.1. The Triangle Method: A Short Review on Past Applications and Recent Improvements

Among the available RS-based approaches for ET analysis, the triangle method, based on the
work of Price in the early 1990s [13] and later elaborated by Jiang and Islam [14–16], has been widely
exploited to estimate the Evaporative Fraction (EF), which is the ratio between the latent heat flux and
the total available energy at canopy surface [5,17]. EF is both a key parameter to estimate ET as well
as a direct indicator of surface moisture conditions [18] and water stress itself [19,20]. This approach,
regarded as a simplification of more complex models such as the Surface Energy Balance Algorithm
for Land (SEBAL) [21], is suitable for large area monitoring of surface moisture conditions [14,22].
Among its advantages are the simple parameterization/calibration and its reliance on operational
satellite data [6,20,23], which allow to spatially explicitly estimate EF in near real-time over large areas.

In its original formulation, the triangle method builds on the triangular shape of the scatter
plot of remotely sensed surface/canopy temperature (Ts) versus a Vegetation Index (VI) such as
the Normalized Difference Vegetation Index (NDVI) [10,24]. This scatterplot is used to compute
the so-called wet and dry edges: the wet edge corresponds to areas where EF is at maximum
(i.e., maximum evapotranspiration) whereas the dry edge corresponds to areas where the EF is
close to zero (i.e., limited water availability) [23]. Given two co-registered raster images containing
temperature and VI value, EF can then be estimated for each pixel based on its relative position with
respect to the two edges (see Section 3.1 for details).

Alternative formulations of the method were also proposed in later studies. In particular, using
the difference between air surface and air temperature (∆T = Ts − Ta) instead than simply Ts to
build the aforementioned scatterplot was proposed by Moran et al. [25] and Jiang and Islam [16],
and successively adopted by numerous studies (e.g., [26–29]). Additionally, other RS-derived indicators
of vegetation characteristics (e.g., fractional cover, albedo, etc.) were proposed as an alternative to
NDVI for computing the dry and wet edges [6,30].

The triangle method has been exploited starting from data acquired by several satellite
platforms/sensors, among which NOAA-Advanced Very High Resolution Radiometer (AVHRR) [31],
Meteosat Second Generation—Spinning Enhanced Visible and Infrared Imager (MSG SEVIRI) [32],
NASA Moderate Resolution Imaging Spectroradiometer (MODIS) [2], Envisat-Advanced Along-Track
Scanning Radiometer (AATSR) and Medium Resolution Imaging Spectrometer (MERIS) [23],
Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM+) [23] as well as airborne
sensors [28]. One of its main advantages is its suitability for hydrological studies where field data
availability is limited or missing. Thanks to this, it was implemented in operational monitoring systems
such as the EVapotranspiration Assessment from SPAce (EVASPA) tool [33], exploited to derive the
Temperature Vegetation Dryness Index (TVDI) [25] used for vegetation water stress detection [34–37]
and soil moisture estimation [38,39] in semi-arid, temperate and tropical areas [18] and used to improve
the performances of hydrological models [40].

Nevertheless, it is important to remind that several issues should be addressed for a full
exploitation of satellite based EF/ET estimations.
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A first assumption of the method is that incoming energy, aerodynamic properties and
atmospheric conditions have to be reasonably uniform over the area at the time of satellite
overpass [2,23,32] and the AOI should be as flat as possible in order to identify a proper triangular
shape in the pixel distribution [24]. Tave et al. [41] recently tried to solve this requirement by improving
the triangle method to compute EF for different elevation zones rather than keeping the estimation of
flat area only.

Second, a key issue for applying the triangle method is the proper computation of the wet and dry
edges, which influences the accuracy of EF estimation [6]. The method can therefore be applied only
under specific conditions, in relation to study area characteristics and EO data exploited, and a proper
data handling is needed to retrieve reliable estimates. In particular: (i) a large range of combined
soil moisture status and vegetation characteristics must be present in the study area to represent a
wide range of evapotranspiration conditions [37,42], and (ii) this variability must be properly captured
by the RS data used. These conditions influence the required extension of the area of interest (AOI)
analyzed, which should be sufficiently large [43] to allow the construction of reliable scatterplots as a
function of the spatial resolution of the EO data used. According to previous studies, the triangular
shape depends more on the number of pixels, rather than on the spatial resolution [24,44]. Hence,
for small AOIs (e.g., ~4000 km2) HR satellite data may allow obtaining more accurate EF estimations.
On the other hand, while working with satellite data at coarse resolution the AOI should be bigger
since a larger area is needed for an appropriate definition of the triangle shape [23].

If these conditions are not completely fulfilled, the shape of the temperature vs. VI scatterplot
may be “flawed” (i.e., not triangular at all), leading the estimated dry and wet edges to be far from the
theoretical ones, and therefore to large inaccuracies in EF estimation [32].

To deal with the aforementioned problem, many authors proposed modifications and
advancements to the “standard” method allowing a better and more stable computation of the edges.
Tang et al. [6] proposed a specific pre-processing technique for identifying outliers in the temperature vs.
VI scatterplot space and removing them before the computation of the edges. De Tomas et al. [23]
demonstrated how this approach can improve EF estimates when HR data (e.g., Landsat like) are used.
Maltese et al. [28] compared scatterplots derived from different dates suggesting that, to cope with the
uncertainness in the dry and wet edges identification, a multi-temporal analysis should be exploited
to include outer extremes in soil water content. Minacapilli et al. [2] further developed this idea
building the temperature vs. VI scatterplot in the temporal domains for each pixel of the AOI using all
available dates; application of this approach resulted in an accurate estimation of ET at regional scale.
Other recent contributions determined the theoretical edges on the base of the surface energy balance
principle rather than by identifying the boundaries empirically in the data space; EF is then estimated
for each pixel using the observed temperature vs. VI scatterplot [22,32]. Comparison with in situ data
of soil moisture and EF revealed that this approach could increase the accuracy of the triangle method.
However, its implementation requires a more complex parameterization and requires input field data
not be always available over the AOI.

Another important issue discussed in literature is whether the output of the triangle method can
be considered representative of the daily condition or the instantaneous momentum. Most approaches
based on satellite data assumed EF to be relatively constant in daytime (“self-preservation of EF” [23]),
so that satellite-based instantaneous EF estimates can be representative of daily conditions [30]
(see Section 3.1 for details).

Nevertheless, for some scientific applications it is necessary to more rigorously upscale the
instantaneous estimation to daily conditions taking into account the diurnal cycle using exogenous
information such as meteo data [45]. To perform this daily upscaling, Trezza [46] proposed to multiply
the instantaneous EF by the daily reference ET computed with FAO approach [47] while Ryu et al. [48]
exploited the variations of the daily extraterrestrial solar radiation. Finally, Tang et al. [49] recently
presented a promising approach for upscaling, based on half-hourly meteo data (i.e., air temperature,
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wind speed, vapor pressure, and surface available energy). According to the authors, this allows
reducing the underestimation of EF typically obtained using the “constant EF” assumption [50].

Finally, it is important to remind that, being based on optical RS data, EF time series often
present gaps due to cloud cover. Therefore, if complete and continuous (e.g., daily) EF estimates are
needed (e.g., for assimilation in hydrological models) appropriate gap filling approaches should be
implemented. For example, Rasmussen et al. [27], developed a specific solution to deal with this
problem, allowing to obtain a complete daily coverage of EF at regional scale.

1.2. Study Contribution and Objective

The previous review highlighted the maturity of surface moisture status assessment from satellite
data, and that the triangle method can be applied operationally for a study area with specific
characteristics, if performing a proper data analysis. In this framework, this paper aims to develop an
operational approach, based on the triangular method, to derive a weekly spatially explicit indicator
of crop surface moisture conditions at regional scale. The implemented solution produces weekly EF
map over the agricultural areas of Lombardy, Northern Italy, covering more than 1,200,000 ha, starting
from moderate resolution daily EO data from MODIS sensor. EF estimates were produced for the
years 2010 to 2012 and locally validated with in-situ eddy-covariance data. The utility and robustness
of the proposed indicator for operational monitoring of crop conditions at regional scale was assessed
by comparing seasonal synthesis of EF and NDVI with official yield data.

2. Materials

2.1. Study Area Description

The study was focused on agricultural areas of Lombardy, in Northern Italy. The AOI is a part of
Po valley and spans about 12,000 km2. Topography of the study area is mostly flat, with altitude slowly
degrading from about 150 m in the North West to about 20 m in the Eastern area. It is intensively
cultivated with summer crops (i.e., corn (Zea mays L.), forage and rice (Oryza sativa L.)) and winter
wheat (Triticum L.), which cover about 68% and 8% of the agricultural land, respectively. It is divided
in 45 agronomical districts, showing marked differences in the main cultivated crops (Figure 1).
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Figure 1. Distribution of the four major crop types in the 2011 summer season in the study area with the
location of the meteorological stations (purple dots) and eddy towers at Landriano (La) and Livraga (Li)
(green diamonds). Black polygon boundaries divide the region by its main agronomical districts, with
the red ones highlighting six districts of interest for this paper (3.2.2) corresponding to: a rice district
(R1: Western Lomellina), 3 Corn districts (C1: Codogno, C2: Western Bresciana and C3: Cremona) and
a forage district (F1: Western Oltrepo Mantovano).
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Average air temperature is 13–14 ◦C, with summer (June–August) and winter (December–February)
average values of 23–24 ◦C and 2–3 ◦C, respectively [51]. Precipitations are concentrated in autumn
and spring, with a mean annual total of 800 mm. In this region, which is one of the most urbanized and
industrialized of Italy, water management is critical during the dry summer months when multiple
and conflicting usages (i.e., civil, industrial, agriculture and hydroelectric) can reduce water availability
for irrigation. Official statistics of annual crop yield over the agricultural districts are publicly made
available by the Lombardy Environmental Protection Agency (ARPA).

As the area shows flooded, irrigated and not-irrigated crops, is considered suitable for regional
monitoring of crop/surface moisture conditions with the triangle approach, which requires a large
number of pixels to cover a wide range of soil moisture and vegetation conditions [11,23]. In the last
decade, the area experienced water scarcity in summer months when water availability could not
satisfy the multiple water requirements [52] due to a lack of precipitations in key periods of crops
growing cycle and/or reduced snowfall in winter. Irregular precipitations might also be accompanied
by excessively high temperatures, such as in the year 2003, when corn production in Italy was 36%
lower than the 1998–2002 average [53]. Besides climatic conditions, non-optimal timing in water
supply to farmers by public authorities can worsen crop conditions, as in 2012 when corn production
decreased by about 15–20% due to water shortage [54]. The reduction in corn production was worsened
by the outbreak of aflatoxin contamination in corn stocks [55] induced by the occurrence of water
stress conditions during critical phenological stages.

To face these problems, regional authorities involved in agro-monitoring over this area
require therefore detailed information about the temporal and spatial variations of crop conditions.
Although periodical agro-meteorological bulletins which analyze the impact of water stress on crop
production are already issued for the study area by international agencies (e.g., Joint Research
Centre-Monitoring Agricultural Resources Unit—JRC-MARS [56]; Global Agricultural Monitoring
Initiative—EOGLAM [57]), they are not sufficiently detailed in terms of spatial resolution. More specific
regional monitoring programs providing dedicated analyses for the agricultural areas of Lombardy
are therefore needed.

2.2. Satellite Data and Preprocessing

MODIS 250 m resolution 16-day Vegetation Indices (VI) composites (Products MOD13Q1/
MYD13Q1) and 1 km Land Surface Temperature and Emissivity (LST/E) daily (Product MYD11A1)
data and the corresponding Quality Assurance (QA) information [58] over tile h18v04 and the period
2010–2012 have been downloaded and pre-processed using the MODIStsp “R” package [59].

Concerning vegetation indexes data, the use of composite data allowed to exploit VI already
derived from the best possible observations in the composite period, thus reducing oscillations related
to varying observation geometries and atmospheric conditions. Moreover the synergic use of Terra
and Aqua products VIs, with a theoretical 8 days shift, allowed to analyze a denser time series.

The raw M*D13Q1 time series were smoothed in order to remove residual noise in the NDVI
signal, using a two-step approach based on (i) outlier removal and (ii) weighted Savitzky-Golay
filtering with weights assigned on the basis of QA information, considering the real date of observation
derived from the Day of Acquisition MODIS layer. In particular, weights are computed based on
pixel reliability and VI usefulness indicators derived from the MODIS QA layers, complemented with
specific thresholds blue reflectance [60,61]. The algorithm output consists in a smoothed 250 m NDVI
time series with an 8-day regular time step.

This product was finally resampled to 1 km spatial resolution through average aggregation, and
daily time series were generated through linear interpolation between values of the nearest dates.
This allows to reduce potential biases during the periods of rapid crop growth.

The Aqua MYD11A1 LST/E product provided 1 km daily surface temperature (Ts) accompanied
by pixel-level QA flags. QA parameters were summarized in a three-level categorical Quality Flag
(QF): QF1 (best quality) if all QA parameters reported the highest quality; QF0.5 (intermediate quality)
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if at least one of the quality layers reported a sub optimal estimation; and QF0 (bad quality) for not
computed Ts. QF layer was first exploited to investigate the influence of QA level on the accuracy of
MODIS Ts and afterwards to discard low quality pixels [62]. No smoothing process was applied to
Ts time series since small daily fluctuations of surface temperature may be related to actual changes
rather than noise and a noise-reduction technique might cause loss of valid data. Moreover, temporal
composites of Ts cannot be used because the triangle method relies on the assumption of uniform
atmospheric conditions and incoming energy over the study area, which cannot be assured over longer
time periods [23].

2.3. Meteorological Data

2.3.1. Air Temperature Data from Meteorological Stations

Seventy-five automatic meteorological stations belonging to the Lombardy region network (Rete
Regionale di Rilevamento Meteorologico) and managed by the Lombardy Environmental Protection
Agency (ARPA Lombardia) are located within the study area (purple dots in Figure 1). Measurements
acquired by the meteorological network are publicly available through the ARPA web site (http:
//goo.gl/zqkmf0—last access May 2017). In particular, air temperature (Ta) is available with half-hour
frequency. Daily Ta measurements simultaneous with Aqua satellite overpass (1.30 pm) for the
2010–2012 period were downloaded and spatially interpolated the study area by applying an Inverse
Distance Weighted (IDW) approach to derive daily 1 km maps.

2.3.2. Eddy Covariance Measurements

Two Eddy Covariance (EC) towers are located within the study area, respectively in Landriano
(45.32 N; 9.27 E, 89 m a.s.l.) and Livraga (45.19 N, 9.57 E, 61 m a.s.l.) (Figure 1—green diamonds).
The towers are located within corn fields of about 10 and 12 ha [63,64] (see Appendix A). They are
equipped with a three-dimensional sonic anemometer to measure sonic temperature and the three
components of wind speed, an open-path gas analyzer to measure water vapor and carbon dioxide
concentrations, a net radiometer and a thermo-hygrometer. Soil moisture, soil temperature and
soil heat flux observations are also measured at different depths (10–30–50 cm, 4–8 cm and 6 cm
respectively) every 30 min.

Data collected for the years 2010–2011 at Landriano and 2010–2012 at Livraga were used as ground
truth information. In particular, air and surface temperature measurements at the EC towers were
used to assess the accuracy of the Ta and Ts datasets used as inputs to compute EF, while EF estimates
simultaneous to the Aqua satellite overpass (1.30 pm) were compared to satellite-based EF estimates.

To compute EF at the towers location, raw EC data were corrected to account for instrumental
(e.g., axis rotation for tilt corrections, spike removal, time lag compensation) and physical errors
(spectral information losses, air density fluctuations and air humidity effects on sonic temperature)
following procedures from the literature [65], as implemented in the PEC (Polimi Eddy Covariance)
software [64]. After these corrections procedures, the energy budget has been analyzed, showing
a closure ranging between 0.92 and 0.97. According to literature, a lack of energy balance closure
is common in EC measurements [66,67], and can be considered acceptable up to values of 0.6 [68].
Following the procedure developed by Twine et al. [69], latent and sensible heat fluxes were analyzed
respecting the Bowen-ratio method to reach the energy balance closure. Net radiation (Rn), latent (λE),
sensible (H) and soil (G) heat fluxes were then derived from corrected EC measurements and exploited
to compute EF with a semi-hourly time step using the formulation of the energy balance [70]:

EF =
λE

λE + H
=

λE
Rn − G

(1)

http://goo.gl/zqkmf0
http://goo.gl/zqkmf0
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2.4. Ancillary Datasets

The Carta Uso Agricolo Annuale (CUUA) is a 20 m resolution land-use map produced each
year by the Regional Agency for Agriculture and Forest Services of Lombardy (ERSAF) (http:
//goo.gl/GJPU3U, last access May 2017) by combining farmers annual declarations with the official
regional land use map (Destinazione d’Uso dei Suoli Agricoli e Forestali—DUSAF). The map includes
21 agricultural land-cover/use classes of which the most common over the study area are shown in
Figure 1. The CUUA map was used to create a 1 km mask of arable land, by retaining only pixels
including at least 60% of crop land and an average elevation below 100 m a.s.l. (corresponding to
maximum elevation of irrigation systems in Lombardy plains). The arable land mask was used to
discard from the analysis non-agriculture (e.g., urban, forest) and mixed land-use pixels (corresponding
to about 37% of the area), which inclusion would have affected EF retrieval performance [23].

3. Methods

3.1. Computation of EF from MODIS Data

Methods for computing EF from satellite data generally rely on the evidence that the combination
of Ts and NDVI is diagnostic of surface moisture condition [37]. In particular, in this study we used
the approach proposed by Jiang and Islam [16], which is based on the relationship between NDVI
and the air-surface temperature difference (∆T = Ts − Ta). The ∆T vs. NDVI bidimensional space
exhibits for a given day a triangular shape, bounded by the wet (maximum evapotranspiration) and
dry (minimum evapotranspiration) edges [71] (Figure 2). The wet edge position corresponds to the
x-axis (∆T = 0) as established by the formulation of the latent heat flux [16]. The dry edge position
is instead estimated as the regression line of maximum observed ∆T at discrete intervals of NDVI
(green dots in Figure 2).
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Given the position of a generic point i in the scatterplot, EF is estimated on the basis of its distance
from the dry and wet edges [14]:

EFi = (∆TH(NDVIi)− ∆Ti)/(∆TH(NDVIi)) (2)

where ∆Ti is the difference between surface (Ts) and air (Ta) temperature for pixel i; ∆TH(NDVIi)

is the ∆T of the dry edge in correspondence of the NDVI value of pixel i. Therefore, the closer the
pixel is to the dry edge, the lower is EF (down to zero), meaning that it is characterized by low
moisture conditions.

The described method was used to create daily 1 km EF maps (EFd) over the study area for
2010–2012. Daily NDVI values, derived as described in (Section 2.2), and daily ∆T maps derived as
the difference between MODIS Ts maps (Section 2.2), and Ta maps derived from weather stations
(Section 2.3.1) were used to build the ∆T. vs. NDVI daily scatterplots, and successively derive daily
EF values for each (cloud free) pixel. Computation was not conducted on dates with more than 40%
of cloud cover since they wouldn’t include the full range of variability of thermal and crop cover
conditions that is one of the essential element to reliably compute the dry and wet edges and therefore
to apply the triangle method. To avoid problems due to residual cloud contamination, pixels below
the lower 15th percentile of the NDVI distribution were not considered in the dry edge computation.
The number and positions of NDVI intervals used to compute the regression line were determined
with a logarithmic function, as proposed by Sturges [72].

Equation (2) provides instantaneous EF estimation at the time of satellite overpass. Although
the diurnal behavior of EF exhibits a typical light concave-up shape with a minimum around
noon [73], its variations are much lower compared to latent and sensible heat fluxes under clear sky
conditions [17,73,74]. EF is therefore frequently assumed to be reasonably constant during daytime,
and satellite-based EF estimates are often considered representative of overall daily conditions [23].
Peng et al. [17] added that the assumption of daytime constant EF is more robust if the estimation is
performed around midday (as the case of MODIS Aqua products) and in clear sky conditions only
(as is the case after the removal of contaminated data thanks to QF). Therefore, given that the aim is to
estimate a weekly indicator of surface moisture conditions rather than to quantitatively estimates daily
water needs, satellite based instantaneous EF maps were considered a suitable indicator of surface
moisture conditions over large areas.

EFd maps were averaged to derive a weekly indicator of crop water stress (EFw). The use of
weekly averages is more suitable for regional crop monitoring since it reduces spatiotemporal gaps
due to cloud cover and it decreases the influence of day to day variability due to external factors,
e.g., wind speed and other atmospheric interferences [75]. A weekly indicator is also better suited for
providing information for agro-meteorological bulletins, which are usually issued with a monthly or
biweekly frequency during the crop season.

3.2. Accuracy and Usefulness Analysis

3.2.1. Comparison with In Situ Data

Comparison with in-situ data collected at the EC towers was conducted to verify the accuracy of
input temperature maps (Ta and Ts), and EFw estimates over the 1 km pixels corresponding to the two
EC towers. In the case of EF, the weekly average was computed starting from the daily half-hourly EC
estimations obtained at the hour of satellite overpass (13:30).

Averaging over the week allows the reduction of the impact of missing measurements due to
instrumental and physical errors in data acquisition. Linear regression parameters (slope, intercept and
coefficient of determination r2) and indices of agreement (Mean Error (ME), Root Mean Squared Error
(RMSE) and Relative Root Mean Squared Error (rRMSE)) were considered as performance indicators.

The comparison was limited to the growing period of the more common summer crops, i.e.,
between sowing (mid-April) and senescence (mid-August). Outside this period the estimation of EF
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is not reliable because the full range of thermal and vegetation cover conditions needed to calculate
the dry edge are not fulfilled [6,23,32,76]. Moreover, frequent cloud cover in winter and autumn may
prevent the use of satellite data for operational monitoring. Moreover, in the study area, information on
crop conditions are necessary for water management and irrigation planning only in the hot and dry
summer months, when water availability is a key issue. On the contrary, the autumn/winter season is
not crucial for operational crop monitoring.

3.2.2. Comparison to Crop Yield Statistics

The usefulness of EFw as a spatially distributed indicator of surface moisture conditions was
assessed over five agronomical districts of the study area. The selected districts are representative of
the major crop types: corn (C1: Codogno plain, C2: Central Bresciana plain, and C3: Cremona plain),
rice (R1: Western Lomellina) and forage (F1: Western Oltrepo Mantovano). EFw profiles over these
five districts were analyzed to investigate whether the indicator (i) depicts the expected trend of crop
seasonal dynamics in relation to known crop characteristics and agro-practices, and (ii) provides
evidence of inter-annual variability related to water stress.

Corn districts C2 and C3 witnessed a significant decrease in production in 2012, whereas corn
district C1 did not suffer from water stress due to sufficient irrigation. Cumulated summer EFw

(June to August) over these three districts was calculated to better investigate whether EFw estimates
can provide insights on the occurrence of summer droughts and their impact on crop production.
Cumulated NDVI over the same period was also computed since it is a proxy of vegetation biomass
frequently used to identify crop production shortages [77]. One-way analysis of variance (ANOVA)
followed by the post-hoc Tukey HSD (Honestly Significant Difference) [78] multiple range test were
carried out over the three districts in order to evaluate the diagnostic capability of both indicators in
detecting differences between the years. Inter-annual variability of the indicators was finally compared
with official statistics of corn yield at district level.

4. Results and Discussion

4.1. Comparison of Air and Surface Temperature with In Situ Measurements

Figure 3 shows a comparison between time-series of Ts and Ta estimated as described in
Sections 2.2 and 2.3.1 at the EC towers of Landriano and Livraga, and the corresponding measured
values. Maximum Ts and Ta (about 30 and 35 ◦C, respectively) occur in the middle of July.
This corresponds to the end of the vegetative period [79], as highlighted by the peak of the 250
m resolution NDVI time series (Figure 3—bottom panel).
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The reliability of the exploited NDVI, showed by the smoothed lines in Figure 3, is significantly
increased by applying the multi-temporal smoothing process described in Section 2.2; yet this kind
of filter cannot be used to Ta and Ts time series since daily fluctuations may be related to changes
in surface/air temperature and a noise-reduction technique might cause a loss of valid information.
Scatter plots between in situ and estimated air and surface daily temperature are shown in Figure 4 and
regression parameters are summarized in Table 1. Globally, estimated Ta shows a very good accordance
with data measured at the EC towers (r2 = 0.95; ME = 1.37) with the exception of the Landriano site
in 2010 (red dots in Figure 4a), which shows a noticeable overestimation (ME = 2.94, Table A1 in
Appendix B). This good agreement is favored by the spatial homogeneity of air temperature over
flat areas such as the Lombardy plain [80]. Moreover, both towers are surrounded by a very dense
meteorological network with at least five stations in a range of 15 km around each tower (purple dots
in Figure 1) thus making Ta interpolation robust.
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Figure 4. Scatter plots of daily Ta (a) and Ts (b) from EC measurements (x-axis) and estimated
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Table 1. Indices of agreement between estimated and measured Ta and Ts; for surface temperature the
accuracy metrics are provided for high (QF1) and low (QF0.5) quality levels.

Variable QF N InterceptSlope p Value r2 ME RMSE rRMSE

Ta [◦C] / 713 −1.36 1.00 <0.001 0.95 1.37 2.21 35.14
Ts [◦C] 0.5 243 0.84 1.06 <0.001 0.74 −2.38 4.98 22.68
Ts [◦C] 1 649 0.95 0.98 <0.001 0.74 −0.48 3.72 14.32

The comparison of satellite Ts vs. EC measurements showed less satisfactory results, highlighting
a consistent underestimation. The analysis of the impact of the quality of satellite observations,
as reported in the QA layer of the satellite datasets (Section 2.2), on the accuracy of estimated
surface temperatures highlighted that data flagged as good quality (QF1) provide a significantly
better estimation (ME = −0.48 ◦C, r2 = 0.74) compared to QF0.5 data (ME = −2.38 ◦C, r2 = 0.74).
This testifies that QF0.5 data, although being considered as intermediate quality, are still strongly
affected by residual cloud cover and/or atmospheric interference and led us to decide to retain only
QF1 data for EFd computation (See Table A1 in Appendix B for a more detailed analysis on Ts data
quality through sites and years).

This decision caused a reduction of the cardinality of available Ts estimates: for example, on the
two pixels corresponding to the towers, out of the 1825 available dates only 36% was assigned to the
higher quality level (QF1). This percentage raises to about 53% on summer months, suggesting that a
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much higher reliability can be achieved in EFd estimation in that period (See Figures A3 and A4 in
Appendix B for a more detailed analysis on temporal variability of Ts data quality).

4.2. Comparison of EFw with In Situ Data

Scatterplots comparing EFw estimates derived from satellite and from EC data are shown in
Figure 5, grouped by site and year; agreement metrics are summarized in Table 2.
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Figure 5. Scatterplots of average weekly EF derived from EC measurements (x-axis) and satellite
estimation (y-axis) for all EC towers and years as highlighted by the different colors/markers. Dashed
lines indicate the 1:1 line and discrepancies between estimated and observed EFw less than 0.2. Grey
lines depict the average plus/minus one standard deviation ranges of the valid daily EF satellite/EC
estimates available for the week.

Table 2. Indices of agreement between weekly in situ and satellite EFw. In bold the best values.

Station Year N Intercept Slope r2 ME RMSE

Landriano 2010 10 0.37 0.18 0.07 −0.18 0.22
Landriano 2011 14 0.22 0.56 0.41 −0.05 0.16

Livraga 2010 9 −0.32 0.79 0.52 −0.47 0.48
Livraga 2011 15 0.05 0.56 0.49 −0.21 0.28
Livraga 2012 10 0.23 0.44 0.18 −0.18 0.23

All All 62 0.16 0.46 0.21 −0.2 0.28

Satellite EFw values are generally lower than EC derived EFw, with an overall ME of −0.15,
best (worst) performance are observed over Landriano 2011 (Livraga 2010). These results are consistent
with Lu et al. [81], but opposite in sign to those obtained by de Tomás et al. and Peng and Loew [23,82].
This uncertainty in EF estimation may be related to the difference between the 1 km pixel size of
MODIS maps used as inputs and the footprint of the EC towers (120 m2 in Landriano and 140 m2 in
Livraga) [64]. The area surrounding the towers is fragmented and heterogeneous in terms of crop
type: on average, corn covers 36% and 21% of the 1 km MODIS pixels at Landriano and Livraga,
respectively. In these conditions, the 1-km Ts and NDVI values derived from MODIS are influenced
also by the characteristics of the areas surrounding the EC towers, thus making the comparison with
field-estimated EF difficult.



Sensors 2017, 17, 1338 12 of 24

This is further exacerbated by the fact that the ratio between the areas cultivated with winter and
summer crops is variable from year to year (Figure A1 in Appendix A). For example, in the case of
Livraga 2012, 250 m NDVI time series highlight the effect of neighboring winter wheat cultivations on
the satellite signal (Figure 3—bottom panel). This is further evident on the 1 km NDVI time-series,
which in 2012 are found to be quite different from what would be expected for a summer-crop area
(Figure A2 in Appendix A).Sensors 2017, 17, 1338 12 of 24 
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and EFd (last column) for one representative clear sky date for each month of the year 2010; Overlaid
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4.3. Spatially Distributed Estimation of EFd

Figure 6 shows examples of daily Ta, Ts, ∆T, NDVI and EFd maps for 10 representative clear-sky
dates in 2010. No maps are showed for December and November because no cloud-free data were
available. Ta and Ts maps highlight the climatic variability of the study area, with cold winter months,
mild spring and hot summer; ∆T maps show the highest values between April and May, in relation to
the presence of vast bare soil areas associated with increasing incoming radiation and temperature.
NDVI maps depict the growing season of the major summer crops, with the peak of vegetation
greenness between June and August (NDVI > 0.5). They also highlight areas where forage and winter
wheat are cultivated (October to February), mainly in the central/eastern regions of the study area. The
fifth column of Figure 6 shows the ∆T vs. NDVI scatterplots derived from the input maps and used for
EFd computation, with the dry-edge shown as a green line. It can be observed that the dry-edge slope
and position show a strong seasonal variability due to the succession of warm months with pixels
characterized by ∆T above 10 ◦C and cold months when the difference between soil and air temperature
is usually low (see Appendix C for a more detailed analyses of dry-edge seasonal variability).

EFd maps are shown in the last column, with lower EFd areas (drier crop conditions) in orange/red
colors, and high EFd area (well-watered areas) shown in blue colors. Higher EFd values are obtained in
summer months, when evapotranspiration is maximum and the well-watered full vegetated pixels are
close to the wet edge in the ∆T vs. NDVI scatter plots. Districts where rice is the main crop (see CUAA
map in Figure 1) are constantly characterized by high EFd values in summer, because paddies are
flooded and never face water stress. Similar summer patterns are obtained in most of the corn districts,
because corn is usually well irrigated by the widespread irrigation system of the region.

White areas inside the study area in Figure 6 are due to masked pixels (arable land mask or
cloudy conditions), which is more frequent in January to April. Low quality pixels can also be present,
to a less extent, during the summer season (Appendix B) thus reducing the available number of
reliable EFd estimations. The use of an aggregated weekly moisture indicator (EFw), reduces the
likelihood of missing information and is therefore more suited for analyzing the overall seasonal trend
of crops conditions. This also allows the comparison between different years to highlight inter-annual
variations due to unfavorable years characterized by water scarcity or biotic/abiotic stress.

4.4. Spatiotemporal Patterns of EF Weekly Indicator

Figure 7 shows EFw and average weekly NDVI over five agronomical districts in the study area
(bold red polygons in Figure 1) from 2010 to 2012.

NDVI and EF profiles are smoothed with a Generalized Additive Model (GAM) in order to better
highlight seasonal trends. Both NDVI and EFw show clear seasonality in the districts dominated by
rice (R1) and corn (C1, C2 and C3), with highest values between July and August. Only district F1
(Western Oltrepo Mantovano) shows no seasonal behavior due to the dominance of meadows and
Alfalfa (Medicago sativa L.) fields (green areas in the CUUA map). These perennial cultivations have
a long growing cycle and they are harvested for fodder more than once in a year [83]. In this area,
the variability in forage management, the lack of a widespread irrigation system and the presence of
winter wheat (red spots in the CUUA map) are the reasons for lower summer NDVI and EF compared
to the other districts.

The rice district (R1) shows the highest summer values of NDVI and EFw, and the lowest
inter-annual variability; indeed, rice does not face water stress because it is traditionally grown
in flooded conditions [84]. It also shows lower values at the end of the season compared to corn
districts, where after corn harvesting stubbles are left over the fields, and plants tend to re-germinate
thus increasing NDVI and EF. Moreover, rice is typically cultivated as single crop [85] thus leading to
lower values of NDVI and EF at the beginning of the season.

EFw time series over the corn districts (C1, C2 and C3) show high values during the summer
season since corn is usually well irrigated and hardly faces water stress. EFw is however lower and
more variable from year to year than in the rice district. In particular, for C2 (Central Bresciana plain)
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and C3 (Cremona plain) districts EFw values after July are lower in 2012 compared to other years
(Figure 7). These two districts were characterized in 2012 by low and erratic rainfall that affected crop
production. Similar results were achieved by Abbas et al. [86] in China by analyzing a multi-temporal
spatially averaged drought indicator obtained from MODIS Ts and NDVI.

Sensors 2017, 17, 1338 13 of 24 

 

wheat are cultivated (October to February), mainly in the central/eastern regions of the study area. 
The fifth column of Figure 6 shows the ΔT vs. NDVI scatterplots derived from the input maps and 
used for EFd computation, with the dry-edge shown as a green line. It can be observed that the dry-
edge slope and position show a strong seasonal variability due to the succession of warm months 
with pixels characterized by ΔT above 10 °C and cold months when the difference between soil and 
air temperature is usually low (see Appendix C for a more detailed analyses of dry-edge seasonal 
variability). 

EFd maps are shown in the last column, with lower EFd areas (drier crop conditions) in 
orange/red colors, and high EFd area (well-watered areas) shown in blue colors. Higher EFd values 
are obtained in summer months, when evapotranspiration is maximum and the well-watered full 
vegetated pixels are close to the wet edge in the ΔT vs. NDVI scatter plots. Districts where rice is the 
main crop (see CUAA map in Figure 1) are constantly characterized by high EFd values in summer, 
because paddies are flooded and never face water stress. Similar summer patterns are obtained in 
most of the corn districts, because corn is usually well irrigated by the widespread irrigation system 
of the region.  

White areas inside the study area in Figure 6 are due to masked pixels (arable land mask or 
cloudy conditions), which is more frequent in January to April. Low quality pixels can also be present, 
to a less extent, during the summer season (Appendix B) thus reducing the available number of 
reliable EFd estimations. The use of an aggregated weekly moisture indicator (EFw), reduces the 
likelihood of missing information and is therefore more suited for analyzing the overall seasonal 
trend of crops conditions. This also allows the comparison between different years to highlight inter-
annual variations due to unfavorable years characterized by water scarcity or biotic/abiotic stress. 

4.4. Spatiotemporal Patterns of EF Weekly Indicator  

Figure 7 shows EFw and average weekly NDVI over five agronomical districts in the study area 
(bold red polygons in Figure 1) from 2010 to 2012.  

 
Figure 7. Average weekly EF and NDVI for three years (2010–2012) over five agronomical districts 
characterized by different main agricultural land uses. Colored lines correspond to smoothing splines 
of weekly averages with 95% confidence intervals overlaid in grey The top row shows the major crop 
types of the districts as extracted from the CUUA land use map. 

Figure 7. Average weekly EF and NDVI for three years (2010–2012) over five agronomical districts
characterized by different main agricultural land uses. Colored lines correspond to smoothing splines
of weekly averages with 95% confidence intervals overlaid in grey The top row shows the major crop
types of the districts as extracted from the CUUA land use map.

Figure 8 shows inter-annual difference, 2012 vs. 2010 and 2012 vs. 2011, of weekly NDVI and EF
values cumulated from June to August (∆∑Summer) and maize yield for the corn agronomical districts.
Cumulated EF shows areas with a major decrease from 2011 and 2010 to 2012, up to −30%. While the
corn yield difference maps confirm this difference, no clear difference is appreciable in the NDVI
∆∑Summer maps (Figure 8). This result suggests that summer cumulated NDVI is less sensitive to water
stress periods compared to EF; indeed, only prolonged water stress conditions significantly affect
crop biomass (i.e., NDVI). On the contrary, the EF indicator is more sensitive to transient unfavorable
conditions since surface temperature promptly increases with respect to air temperature (due to rapid
adjustments in stomata closure) if crop water content decreases due to decreased water availability [87].

Results of ANOVA and post-hoc Tukey test are showed in Table 3a. Average (µ) cumulated EF
in 2012 over C2 and C3 corn districts is statistically lower compared to the other years (α = 0.001),
suggesting that corn production has faced a remarkable yield loss due to local dry conditions and
scarce water availability for irrigation. No decrease of cumulated EF is observed over the Codogno
plain district (C1) in 2012. The post-hoc test does not highlight statistically significant differences of the
cumulated NDVI in any of the districts. This suggests that EF might be a more sensitive indicator for
identifying changes in crop production related to water shortages. Compared to 2001–2011, average
2012 corn yield shows a stable value over C1 and a significant change over C2 (−5 q/ha) and C3
(−21 q/ha) districts (Table 3b), in agreement with EF indicator.
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Table 3. (a) Results of ANOVA and post-hoc Tukey test (α = 0.001) for summer cumulated EF and
NDVI among years (2010–2011) (n = cardinality; µ: district average value); (b) official annual corn yield
statistics for the 2010–2012 period and last ten years average (2001–2011).

Codogno Plain Central Bresciana Plain Cremona Plain
C1 C2 C3

2010 2011 2012 2010 2011 2012 2010 2011 2012

(a)

∑
Aug
Jun EFw [-]

Post-Hoc group b a a a a b b a b
µ 6.59 7.75 7.72 8.72 9 8.14 8.29 8.9 8.12
n 229 232 228 283 359 355 231 255 248

∑
Aug
Jun NDVIw

[-]

Post-Hoc group a a a a a a a a a
µ 8.04 7.93 7.71 8.16 7.86 7.54 7.74 7.94 7.55
n 231 240 228 131 263 230 235 264 248

(b) Yield [q/ha] Average 2001–2011 123 120 117
Yearly 120 120 120 120 130 115 120 120 96

5. Conclusions

In this work, the triangle method was applied to retrieve daily EF estimates and a weekly indicator
of surface moisture status (EFw) in Northern Italy. Input data include (i) daily Ta maps derived from
the interpolation of meteorological stations data, (ii) daily Ts maps derived from MODIS Land-Surface
Temperature product, and (iii) NDVI maps derived from temporal interpolation of 16-day MODIS
Aqua and Terra vegetation indexes products. The main advantage of this method lies in its reliance on
just few input spatial data, which makes it suitable for large areas and operative implementation.

Reliability of the estimations depends on AOI characteristics ([23,43,44], see Section 1.1 for details)
and accuracy of the input temperature data [21]. The analyzed area, thanks to its great variety of crops
with different water managements allows the computation of reliable triangular shape scatterplots in
summer, when drought events could occur.

Availability of Ta data simultaneous to satellite overpass is fundamental to compute the wet edge.
In our study, interpolated Ta maps showed a more than satisfactory agreement with field measurements,
thanks to the dense meteorological stations network available and by the flat topography of the area.
These favorable conditions are not frequently met worldwide, but alternative sources for Ta estimation
could be exploited, such as using data provided by the European Centre for Medium-range Weather
Forecasts (ECMWF) [2] or exploiting an empirical method based on Ts, NDVI and albedo datasets as
tested by Sun et al. [76].

The accuracy of MODIS-derived surface temperature (Ts) is greatest for high quality satellite
observations (QF1) while intermediate-quality data provide underestimated Ts. Discarding pixels
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with lower quality is therefore necessary to guarantee reliable EF estimates even if the removed data
introduce spatial gaps. In many cases, data might not be enough to represent the variability of surface
conditions required for estimating the dry edge’s parameters, making EF estimation unreliable or
impossible on some days. The use of a weekly indicator (EFw) copes with these limitations, as averaging
daily values reduces the impact of both noise in instantaneous estimates and gaps due to unfavorable
atmospheric conditions. Moreover, the QA dataset showed that, in the dry spring/summer months,
a sufficient number of good-quality observations was available for the computation of a reliable
weekly-averaged EF. In particular, within the most crucial period for drought crises (from June
to August), at least one clear sky satellite image every 3 days was on average available, with a peak of
90% of cloud free observations in July, therefore assuring operational conditions for crop monitoring.

Comparison of the EFw maps against in-situ data showed that estimates are generally in line with
weekly-averaged EC measurements, with performance comparable with those of previously published
works relying on coarse spatial resolution satellite data. Yet, the simplification of the triangle model,
such as the assumption of homogeneous conditions of surface available energy at the time of satellite
overpass, leads to a bias in EF estimates especially at the regional scale [21].

The agreement between MODIS-derived and field-measured EF is also dependent on the
difference between MODIS spatial resolution and EC footprint: indeed, this difference could be
enhanced in fragmented and heterogeneous agricultural landscapes, where several crop types
combined with different agronomic practices are interspersed in a small territory. Moreover, the
intra-pixel landscape heterogeneity can lead to EF uncertainties since the methodology involves an
assumption of uniform aerodynamic properties and physiological behavior of the surface [23].

While more accurate estimates could be achieved by using higher spatial resolution thermal
imagery (e.g., de Tomás et al. [23]), satellite sources for this kind of data are currently characterized by
longer revisiting time (e.g., 16 days for Landsat 8), that is not sufficient for repeated monitoring along
the crop season. Unfortunately, new satellite sensors such as the Sea and Land Surface Temperature
Radiometer (SLSTR), onboard ESA Sentinel 3, has thermal infrared bands with the same spatial
resolution as MODIS. This limitation however doesn’t prevent the operational use of the EFw indicator,
whose scope is to support management at regional/district scale with a spatially distributed proxy of
surface moisture conditions, rather than to assess water needs at field level.

Indeed, at the agricultural district scale, EFw showed temporal variations consistent with the
agro-practices for the major crops in the study area (rice, forages and corn), as well as being correlated
to crop production variability induced by water scarcity (i.e., the reduction of corn yield in 2012).
These analyses suggest that EFw can provide information on crop conditions complementary to
NDVI, which is commonly used as a proxy of annual biomass production [88]. EFw could be a useful
indicator for improving agro-meteorological bulletins providing information on crop status during the
growing season at regional scale, allowing to early highlight unfavorable conditions for crop yield,
and potentially to implement mitigation activities.

Future work will be dedicated to estimating and analyzing the proposed indicator over the entire
MODIS archive (2001–2016) in order to assess its robustness for identification of other drought events
occurred in the past decade, among which the ones of 2003 and 2015.
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Appendix B.

Table A1 shows indices of agreement between in situ and estimated air and surface daily
temperature. Compared to Table 1, regression parameters are divided by site and year. Compared to
Ts, Ta data show more homogeneous goodness of fit measures across sites and years.

ME values show that Ts estimates labeled as good quality (QF1) are characterized by a lower
underestimation error compared to low quality data (QF0.5) in all sites and years except Landriano
2010 (ME = 1.03 and 2.69 for QF0.5 and QF1 respectively). This station was the only case where eddy
data were available in wintertime, when satellite estimation of Ts could be more problematic; yet,
water stress monitoring is less meaningful in wintertime.
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Table A1. Indices of agreement between estimated and measured Ta and Ts divided by sites and years;
for surface temperature the accuracy metrics are provided for high (QF1) and low (QF0.5) quality levels.

Data QF Site year N Intercept Slope p Value r2 ME RMSE rRMSE

Ta
[◦C] /

Landriano
2010 233 −0.77 0.88 <0.001 0.96 2.94 3.61 17.33
2011 109 −0.36 0.96 <0.001 0.99 1.35 1.42 31.92

Livraga
2010 108 1.37 0.96 <0.001 0.98 −0.26 0.62 46.99
2011 146 0.56 0.96 <0.001 0.99 0.53 0.71 47.64
2012 117 0.36 0.95 <0.001 0.99 0.79 0.96 34.07

Ts
[◦C]

QF0.5

Landriano
2010 53 0.77 0.92 <0.001 0.85 1.03 3.50 15.68
2011 60 7.88 0.88 <0.001 0.75 −4.73 5.32 23.60

Livraga
2010 48 −1.63 1.14 <0.001 0.66 −2.54 4.36 18.75
2011 46 8.47 0.86 <0.001 0.59 −4.59 5.57 24.53
2012 36 5.95 0.96 <0.001 0.46 −4.80 7.62 43.46

Ts
[◦C]

QF1

Landriano
2010 112 0.42 0.88 <0.001 0.92 2.69 3.91 15.59
2011 138 2.72 0.95 <0.001 0.67 −1.02 2.66 10.04

Livraga
2010 114 3.37 0.92 <0.001 0.51 −0.87 3.56 14.13
2011 147 7.99 0.84 <0.001 0.75 −3.05 3.77 14.15
2012 138 6.51 0.78 <0.001 0.45 0.44 4.44 17.05

Figure A3 shows the proportion of the daily quality flags falling in the three classes (see Section 2.2)
for each month from 2010 to 2012 at the two EC towers. In winter months (November to February),
more than 70% of daily Ts data are missing (QF0) due to frequent cloud cover, but in the spring-summer
period (March to September) at least 60% of the Ts data per month are produced (QF0.5, QF1), with an
even greater proportion in the driest months of the year, which are of key relevance for water stress
monitoring (peak of 90% of cloud free dates in July). Cardinality of available Ts data is consistent over
sites and years.
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Boxplot in Figure A4 shows the statistics of Ts satellite estimation per months for good (QF1)
and low quality data (QF0.5). Either time series shows a coherent temporal behavior. However, the
medians of the boxes show that QF0.5 data always have lower values because of the well-known
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atmospheric interference. The use of QF0.5 data could lead to a misleading computation of ∆T, as is
the case.Sensors 2017, 17, 1338 19 of 24 
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Seasonal trends of the parameters of the regression line representing the dry edge are shown
in Figure A5. Monthly statistics of the slope and intercept are plotted against time with a box-plot
representation. The summer months, from June to August, when temperatures are higher and water
shortage could became an issue, are highlighted by yellow boxes in the graphs and delimited by red
dotted lines.

With the onset of the growing season in late spring and the beginning of the summer period,
dry edge becomes gradually steeper reaching average minimum slope between July and August as also
displayed by scatter plots in Figure 6. Dry edge lines with high intercept and low slopes indicates dates
characterized by greater difference between air Ta and surface Ts temperature, a thermal condition
typical of hot months when stressed pixels are present in the area together with well-watered areas;
in these months of the year a wider range of thermal conditions of crops is reached.

Winter and spring months show, on average, dry edges with smaller slopes and intercepts close
to zero due to both lower absolute temperature values and smaller difference between surface and air
temperature (∆T). During this time of the year in the study area, atmospheric water demand, hence
potential evapotranspiration, is very low, in fact winter crops are not irrigated. Clearly, months when
crop biomass is low or vegetation absent, the full range of thermal conditions are not covered and the
estimated dry edge could be far from the theoretical one [6,23,32,76].

The year 2012 displays the summer months with the highest intercepts, in particular in July
(median value for intercept equal to 21 ◦C) consistent with the particular dry weather conditions
of this year. The seasonal behavior displayed in the boxplots fits with the typical average climate
condition of the study area [2] and are consistent with results from previous work carried out in
different ecoregions [20,36–38,76,89,90].
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