Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials
Abstract
:1. Introduction
2. Significance of the Subject
3. Artificial Neural Networks
3.1. General
3.2. Architecture of BPNN
4. Results and Discussion
4.1. Experimental
4.2. Normalization of Data
4.3. BPNN Model Development
4.4. Final Values of Weights of the FF-NN Model
5. Discussion
- Among the training algorithms available in the literature, the best by far ANN prediction of the sandcrete compressive strength was achieved by using the Levenberg-Marquardt algorithm.
- Different optimum ANN architectures were found in different computers, which means that the computational environment affects the procedure of ANN training, and subsequently its performance. This can be attributed to the fact that the tested algorithms ultimately rely on basic arithmetic operations that can yield different results, when performed in different environments, due to the very nature of floating-point arithmetic.
- The recently-proposed formula for the normalization of data proved effective and robust compared to available ones.
- For the top twenty models the optimum number of hidden layers was found to be two. This is an indication that the complexity of the problem cannot be dealt with effectively with a single hidden layer.
- The best activation functions corresponding to all of the top-twenty best NN models, both for the case of compressive strength and modulus of elasticity, are the same, namely Hyperbolic tangent sigmoid transfer function for the first hidden layer, Log-sigmoid transfer function for the second hidden layer, and also Hyperbolic tangent sigmoid transfer function for the output layer.
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
iw{1,1} | b{1,1} | ||||||
−3.1454 | 5.7724 | 8.9543 | −6.7047 | 22.5041 | −2.9032 | ||
−2.4742 | −1.5216 | 3.6697 | 1.0200 | −0.7726 | 3.5424 | ||
−3.9296 | 1.9843 | 1.4874 | 2.6574 | −6.9825 | 0.9965 | ||
−2.0427 | 3.5493 | −0.4779 | −0.0410 | 7.5813 | 0.5879 | ||
−7.6746 | −1.5906 | 0.4895 | 1.3043 | −9.5646 | −3.1589 | ||
−0.3579 | 7.9553 | −1.0003 | −2.5111 | 3.4250 | 0.2015 | ||
2.4607 | 0.2907 | −4.4205 | −1.9332 | 16.6615 | −1.6439 | ||
iw{2,1} | b{2,1} | ||||||
0.3389 | −1.8205 | 0.9802 | −1.9670 | 3.3510 | 2.3617 | 2.2468 | −2.7143 |
1.2257 | −1.1260 | −0.0406 | −2.1345 | 3.2631 | 0.7258 | 1.0570 | −2.7688 |
−6.0180 | 4.5068 | −0.2757 | 2.4946 | 5.8850 | 0.2355 | 2.6817 | −2.2599 |
12.5716 | −1.6461 | −6.4402 | −3.7017 | 4.0460 | 4.3573 | 8.8892 | −3.9000 |
−2.0902 | −0.9018 | 2.1424 | −1.2080 | 3.0220 | 3.7258 | 2.7311 | −3.1176 |
1.5583 | −1.8878 | 0.4010 | −2.7070 | 3.1374 | 1.0304 | 2.0414 | −2.7023 |
3.7293 | −2.2113 | 2.1434 | −0.4837 | 4.4761 | 5.6031 | −0.3302 | −3.9391 |
iw{3,2} | b{3,1} | ||||||
1.4109 | 0.7937 | 1.7777 | 2.0058 | 0.8540 | 1.6295 | 1.9678 | −1.4850 |
iw{1,1} | b{1,1} | |||||
−0.7749 | −0.9128 | 0.4512 | 0.2054 | −1.9381 | 0.0422 | |
1.7987 | 0.4968 | −0.3772 | −1.0875 | 4.3027 | −0.6290 | |
−8.7504 | 0.5531 | −0.1747 | 3.4623 | −2.8384 | 2.6341 | |
iw{2,1} | (iw{3,2})’ | b{2,1} | ||||
−1.1246 | 3.7720 | −2.0741 | 3.9137 | −2.1271 | ||
2.8413 | 2.5212 | 0.8341 | 0.3920 | −0.3034 | ||
−3.0563 | 9.7899 | −5.9379 | −2.4649 | −5.1664 | ||
3.2099 | 2.3507 | 1.7487 | −0.6487 | −0.2885 | ||
3.1650 | 2.0482 | 1.3610 | −0.2791 | −0.2298 | ||
3.1411 | 2.7374 | 0.1086 | 1.3271 | −0.4980 | ||
3.0513 | 2.1228 | 1.3024 | −0.1487 | −0.2583 | ||
3.2524 | 2.1063 | 1.4924 | −0.4534 | −0.2283 | ||
3.1566 | 2.0521 | 1.3569 | −0.2689 | −0.2322 | ||
4.1909 | 2.3250 | 1.1062 | −0.0453 | 1.2783 | ||
4.9801 | 4.2184 | 3.2779 | 2.7336 | 1.8558 | ||
3.1562 | 2.0523 | 1.3567 | −0.2685 | −0.2323 | ||
3.0853 | 2.0961 | 1.3216 | −0.1870 | −0.2508 | ||
3.0732 | 2.1052 | 1.3150 | −0.1734 | −0.2536 | ||
2.8481 | 2.5424 | 0.7734 | 0.4513 | −0.3137 | ||
3.1216 | 2.1056 | 1.2121 | 0.1486 | −0.7483 | ||
4.0254 | 4.6646 | 1.5502 | 1.8815 | 1.2186 | ||
2.9450 | 2.1427 | 3.2016 | −1.8828 | 1.1351 | ||
2.9880 | 6.4671 | −0.1321 | −6.6844 | −0.8629 | ||
6.0950 | 12.6888 | 1.0980 | 4.1027 | −1.2059 | ||
3.2443 | 2.2189 | 1.6067 | −0.5419 | −0.2548 | ||
3.0972 | 2.0876 | 1.3278 | −0.2005 | −0.2479 | ||
3.4909 | 2.0370 | 1.3709 | −0.5782 | −0.2315 | ||
4.0724 | 7.2089 | 5.6700 | −4.5069 | 0.6307 | ||
7.0715 | 9.1544 | 9.1090 | 6.0504 | 1.6593 | ||
b{3,1} | ||||||
−1.4004 |
References
- Bahar, R.; Benazzoug, M.; Kenai, S. Performance of compacted cement-stabilised soil. Cem. Concr. Compos. 2004, 26, 811–820. [Google Scholar] [CrossRef]
- Kolovos, K.G.; Asteris, P.G.; Cotsovos, D.M.; Badogiannis, E.; Tsivilis, S. Mechanical properties of soilcrete mixtures modified with metakaolin. Constr. Build. Mater. 2013, 47, 1026–1036. [Google Scholar] [CrossRef]
- Kolovos, K.G.; Asteris, P.G.; Tsivilis, S. Properties of sandcrete mixtures modified with metakaolin. Eur. J. Environ. Civ. Eng. 2016, 20, s18–s37. [Google Scholar] [CrossRef]
- Asteris, P.G.; Kolovos, K.G.; Athanasopoulou, A.; Plevris, V.; Konstantakatos, G. Investigation of the mechanical behaviour of metakaolin-based sandcrete mixtures. Eur. J. Environ. Civ. Eng. 2017, 1–25. [Google Scholar] [CrossRef]
- Helson, O.; Beaucour, A.L.; Eslami, J.; Noumowe, A.; Gotteland, P. Physical and mechanical properties of soilcrete mixtures: Soil clay content and formulation parameters. Constr. Build. Mater. 2017, 131, 775–783. [Google Scholar] [CrossRef]
- Kim, B.; Kim, Y. Strength characteristics of cemented sand–bentonite mixtures with fiber and metakaolin additions. Mar. Georesour. Geotechnol. 2017, 35, 414–425. [Google Scholar] [CrossRef]
- Alexandridis, A. Evolving RBF neural networks for adaptive soft-sensor design. Int. J. Neural Syst. 2013, 23, 1350029. [Google Scholar] [CrossRef] [PubMed]
- Dias, W.P.S.; Pooliyadda, S.P. Neural networks for predicting properties of concretes with admixtures. Constr. Build. Mater. 2001, 15, 371–379. [Google Scholar] [CrossRef]
- Lee, S.C. Prediction of concrete strength using artificial neural networks. Eng. Struct. 2003, 25, 849–857. [Google Scholar] [CrossRef]
- Topçu, I.B.; Saridemir, M. Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 2008, 41, 305–311. [Google Scholar] [CrossRef]
- Trtnik, G.; Kavčič, F.; Turk, G. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 2009, 49, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Waszczyszyn, Z.; Ziemiański, L. Neural networks in mechanics of structures and materials—New results and prospects of applications. Comput. Struct. 2001, 79, 2261–2276. [Google Scholar] [CrossRef]
- Belalia Douma, O.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A. Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput. Appl. 2016, 1–12. [Google Scholar] [CrossRef]
- Mashhadban, H.; Kutanaei, S.S.; Sayarinejad, M.A. Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network. Constr. Build. Mater. 2016, 119, 277–287. [Google Scholar] [CrossRef]
- Açikgenç, M.; Ulaş, M.; Alyamaç, K.E. Using an Artificial Neural Network to Predict Mix Compositions of Steel Fiber-Reinforced Concrete. Arab. J. Sci. Eng. 2015, 40, 407–419. [Google Scholar] [CrossRef]
- Asteris, P.G.; Kolovos, K.G.; Douvika, M.G.; Roinos, K. Prediction of self-compacting concrete strength using artificial neural networks. Eur. J. Environ. Civ. Eng. 2016, 20, s102–s122. [Google Scholar] [CrossRef]
- Baykasoǧlu, A.; Dereli, T.U.; Taniş, S. Prediction of cement strength using soft computing techniques. Cem. Concr. Res. 2004, 34, 2083–2090. [Google Scholar] [CrossRef]
- Akkurt, S.; Tayfur, G.; Can, S. Fuzzy logic model for the prediction of cement compressive strength. Cem. Concr. Res. 2004, 34, 1429–1433. [Google Scholar] [CrossRef]
- Özcan, F.; Atiş, C.D.; Karahan, O.; Uncuoğlu, E.; Tanyildizi, H. Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv. Eng. Softw. 2009, 40, 856–863. [Google Scholar] [CrossRef]
- Eskandari-Naddaf, H.; Kazemi, R. ANN prediction of cement mortar compressive strength, influence of cement strength class. Constr. Build. Mater. 2017, 138, 1–11. [Google Scholar] [CrossRef]
- Oh, T.-K.; Kim, J.; Lee, C.; Park, S. Nondestructive concrete strength estimation based on electro-mechanical impedance with artificial neural network. J. Adv. Concr. Technol. 2017, 15, 94–102. [Google Scholar] [CrossRef]
- Khademi, F.; Akbari, M.; Jamal, S.M.; Nikoo, M. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front. Struct. Civ. Eng. 2017, 11, 90–99. [Google Scholar] [CrossRef]
- Türkmen, İ.; Bingöl, A.F.; Tortum, A.; Demirboğa, R.; Gül, R. Properties of pumice aggregate concretes at elevated temperatures and comparison with ANN models. Fire Mater. 2017, 41, 142–153. [Google Scholar] [CrossRef]
- Nikoo, M.; Zarfam, P.; Sayahpour, H. Determination of compressive strength of concrete using Self Organization Feature Map (SOFM). Eng. Comput. 2015, 31, 113–121. [Google Scholar] [CrossRef]
- Adeli, H. Neural networks in civil engineering: 1989–2000. Comput.-Aided Civ. Infrastruct. Eng. 2001, 16, 126–142. [Google Scholar] [CrossRef]
- Safiuddin, M.; Raman, S.N.; Salam, M.A.; Jumaat, M.Z. Modeling of compressive strength for self-consolidating high-strength concrete incorporating palm oil fuel ash. Materials 2016, 9, 396. [Google Scholar] [CrossRef]
- Mansouri, I.; Kisi, O. Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches. Compos. Part B Eng. 2015, 70, 247–255. [Google Scholar] [CrossRef]
- Mansouri, I.; Gholampour, A.; Kisi, O.; Ozbakkaloglu, T. Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques. Neural Comput. Appl. 2016, 1–16. [Google Scholar] [CrossRef]
- BS. Recommendations for Measurement of Velocity of Ultrasonic Pulses in Concrete; BS 1881-203; BSI: London, UK, 1986. [Google Scholar]
- ASTM C 597-83. Test for Pulse Velocity through Concrete; ASTM: West Conshohocken, PA, USA, 1991; ASTM C 597-83. [Google Scholar]
- McCann, D.M.; Forde, M.C. Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 2001, 34, 71–84. [Google Scholar] [CrossRef]
- Bungey, J.H.; Millard, S.G.; Grantham, M.G. Testing of Concretes in Structures; Taylor & Francis e-Library: London, UK, 2004. [Google Scholar]
- Bungey, J.H.; Soutsos, M.N. Reliability of partially-destructive tests to assess the strength of concrete on site. Constr. Build. Mater. 2001, 15, 81–92. [Google Scholar] [CrossRef]
- Tharmaratnam, K.; Tan, B.S. Attenuation of ultrasonic pulse in cement mortar. Cem. Concr. Res. 1990, 20, 335–345. [Google Scholar] [CrossRef]
- Ongpeng, J.; Soberano, M.; Oreta, A.; Hirose, S. Artificial neural network model using ultrasonic test results to predict compressive stress in concrete. Comput. Concr. 2017, 19, 59–68. [Google Scholar] [CrossRef]
- García-Iruela, A.; Fernández, F.G.; Esteban, L.G.; De Palacios, P.; Simón, C.; Arriaga, F. Comparison of modelling using regression techniques and an artificial neural network for obtaining the static modulus of elasticity of Pinus radiata D. Don. timber by ultrasound. Compos. Part B Eng. 2016, 96, 112–118. [Google Scholar] [CrossRef]
- Khademi, F.; Akbari, M.; Jamal, S.M. Prediction of concrete compressive strength using ultrasonic pulse velocity test and artificial neural network modeling. Romanian J. Mater. 2016, 46, 343–350. [Google Scholar]
- Sheen, N.Y.; Huang, J.L.; Le, H.D. Predicting strength development of RMSM using ultrasonic pulse velocity and artificial neural network. Comput. Concr. 2013, 12, 785–802. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Plevris, V.; Asteris, P.G. Modeling of masonry compressive failure using Neural Networks. In Proceedings of the OPT-i 2014—1st International Conference on Engineering and Applied Sciences Optimization, Kos, Greece, 4–6 June 2014; pp. 2843–2861. [Google Scholar]
- Plevris, V.; Asteris, P.G. Modeling of masonry failure surface under biaxial compressive stress using Neural Networks. Constr. Build. Mater. 2014, 55, 447–461. [Google Scholar] [CrossRef]
- Plevris, V.; Asteris, P. Anisotropic failure criterion for brittle materials using Artificial Neural Networks. In Proceedings of the COMPDYN 2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Island, Greece, 25–27 May 2015; pp. 2259–2272. [Google Scholar]
- Giovanis, D.G.; Papadopoulos, V. Spectral representation-based neural network assisted stochastic structural mechanics. Eng. Struct. 2015, 84, 382–394. [Google Scholar] [CrossRef]
- Asteris, P.G.; Plevris, V. Neural network approximation of the masonry failure under biaxial compressive stress. In Proceedings of the 3rd South-East European Conference on Computational Mechanics (SEECCM III), an ECCOMAS and IACM Special Interest Conference, Kos Island, Greece, 12–14 June 2013; pp. 584–598. [Google Scholar]
- Asteris, P.G.; Plevris, V. Anisotropic Masonry Failure Criterion Using Artificial Neural Networks. Neural Comput. Appl. 2016, 1–23. [Google Scholar] [CrossRef]
- Bartlett, P.L. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 1998, 44, 525–536. [Google Scholar] [CrossRef]
- Karlik, B.; Olgac, A.V. Performance Analysis of Various Activation Functions in Generalized MLP Architectures of Neural Networks. Int. J. Artif. Intell. Expert Syst. 2011, 1, 111–122. [Google Scholar]
- Asteris, P.G.; Kolovos, K.G. Data on the physical and mechanical properties of soilcrete materials modified with metakaolin. Data Brief 2017. [Google Scholar] [CrossRef]
- Delen, D.; Sharda, R.; Bessonov, M. Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accid. Anal. Prev. 2006, 38, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Iruansi, O.; Guadagnini, M.; Pilakoutas, K.; Neocleous, K. Predicting the Shear Strength of RC Beams without Stirrups Using Bayesian Neural Network. In Proceedings of the 4th International Workshop on Reliable Engineering Computing, Robust Design—Coping with Hazards, Risk and Uncertainty, Singapore, 3–5 March 2010. [Google Scholar]
- Asteris, P.G.; Kolovos, K.G. Self-Compacting Concrete Strength Prediction Using Surrogate Models. Neural Comput. Appl. 2017, 1–16. [Google Scholar] [CrossRef]
- Lourakis, M.I.A. A Brief Description of the Levenberg-Marquardt Algorithm Implemened by levmar. Institute of Computer Science Foundation for Research and Technology—Hellas (FORTH), 2005. Available online: http://www.ics.forth.gr/~lourakis/levmar/levmar.pdf (accessed on 11 February 2005).
Sample | Input | Output | Comments 1 | |||||
---|---|---|---|---|---|---|---|---|
W/B Ratio | MK (% w/w in the Dry Mix) | B (% w/w in the Dry Mix) | SP (% w/w of the Cementitious Materials) | Ultrasonic Velocity (m/s) | Compressive Strength (MPa) | Modulus of Elasticity (GPa) | ||
1 | 0.40 | 0 | 50 | 2 | 4070.00 | 55.35 | 27.442 | T |
2 | 0.40 | 0 | 50 | 2 | 4016.67 | 62.25 | 24.325 | T |
3 | 0.40 | 0 | 50 | 2 | 4053.33 | 41.04 | 24.875 | V |
4 | 0.40 | 0 | 50 | 2 | 4100.00 | 58.00 | 27.754 | T |
5 | 0.40 | 0 | 50 | 2 | 4076.67 | 50.35 | 27.249 | T |
6 | 0.40 | 0 | 50 | 2 | 4040.00 | 46.48 | 26.476 | Test |
7 | 0.40 | 0 | 50 | 2 | 4090.00 | 61.49 | 28.976 | T |
8 | 0.40 | 0 | 50 | 2 | 4016.67 | 62.25 | 24.325 | T |
9 | 0.40 | 0 | 30 | 2 | 4006.67 | 62.35 | 25.690 | V |
10 | 0.40 | 0 | 30 | 2 | 4080.00 | 66.72 | 25.765 | T |
11 | 0.40 | 0 | 30 | 2 | 4040.00 | 57.17 | 29.371 | T |
12 | 0.40 | 0 | 30 | 2 | 4100.00 | 60.79 | 25.679 | Test |
13 | 0.40 | 0 | 30 | 2 | 4000.00 | 50.36 | 25.650 | T |
14 | 0.40 | 0 | 30 | 2 | 4070.00 | 64.64 | 27.577 | T |
15 | 0.40 | 0 | 30 | 2 | 4040.00 | 57.17 | 29.371 | V |
16 | 0.40 | 0 | 30 | 2 | 4063.33 | 50.66 | 28.145 | T |
17 | 0.40 | 5 | 50 | 2 | 3913.33 | 49.36 | 24.745 | T |
18 | 0.40 | 5 | 50 | 2 | 3931.67 | 48.30 | 24.160 | Test |
19 | 0.40 | 5 | 50 | 2 | 3916.67 | 48.86 | 28.668 | T |
20 | 0.40 | 5 | 50 | 2 | 3980.00 | 49.01 | 26.747 | T |
21 | 0.40 | 5 | 50 | 2 | 3840.00 | 41.86 | 23.543 | V |
22 | 0.40 | 5 | 50 | 2 | 3900.00 | 39.87 | 28.434 | T |
23 | 0.40 | 5 | 50 | 2 | 3931.67 | 48.30 | 24.160 | T |
24 | 0.40 | 5 | 50 | 2 | 3810.00 | 59.82 | 26.746 | Test |
25 | 0.40 | 3 | 30 | 2 | 4090.00 | 62.01 | 28.182 | T |
26 | 0.40 | 3 | 30 | 2 | 4053.33 | 59.44 | 28.644 | T |
27 | 0.40 | 3 | 30 | 2 | 4053.33 | 59.44 | 28.644 | V |
28 | 0.40 | 3 | 30 | 2 | 4070.00 | 58.03 | 28.360 | T |
29 | 0.40 | 3 | 30 | 2 | 4003.33 | 60.87 | 29.478 | T |
30 | 0.40 | 3 | 30 | 2 | 3966.67 | 46.26 | 28.360 | Test |
31 | 0.40 | 3 | 30 | 2 | 4023.33 | 63.05 | 29.625 | T |
32 | 0.40 | 3 | 30 | 2 | 3986.67 | 51.67 | 26.791 | T |
33 | 0.40 | 10 | 50 | 2 | 3926.67 | 76.90 | 26.513 | V |
34 | 0.40 | 10 | 50 | 2 | 3831.67 | 56.03 | 23.159 | T |
35 | 0.40 | 10 | 50 | 2 | 3763.33 | 68.21 | 24.276 | T |
36 | 0.40 | 10 | 50 | 2 | 3810.00 | 72.48 | 25.168 | Test |
37 | 0.40 | 10 | 50 | 2 | 3873.33 | 68.86 | 26.876 | T |
38 | 0.40 | 10 | 50 | 2 | 3831.67 | 56.03 | 23.159 | T |
39 | 0.40 | 10 | 50 | 2 | 3746.67 | 71.26 | 23.733 | V |
40 | 0.40 | 10 | 50 | 2 | 3756.67 | 71.57 | 27.914 | T |
41 | 0.40 | 6 | 30 | 2 | 3886.67 | 64.65 | 25.695 | T |
42 | 0.40 | 6 | 30 | 2 | 3820.00 | 72.68 | 26.582 | Test |
43 | 0.40 | 6 | 30 | 2 | 3906.67 | 74.34 | 26.781 | T |
44 | 0.40 | 6 | 30 | 2 | 3880.00 | 67.92 | 25.120 | T |
45 | 0.40 | 6 | 30 | 2 | 3903.33 | 75.77 | 25.578 | V |
46 | 0.40 | 6 | 30 | 2 | 3863.33 | 70.94 | 26.992 | T |
47 | 0.40 | 6 | 30 | 2 | 3886.67 | 64.65 | 25.695 | T |
48 | 0.40 | 6 | 30 | 2 | 3890.00 | 60.81 | 26.798 | Test |
49 | 0.70 | 0 | 50 | 0 | 3523.33 | 27.87 | 15.884 | T |
50 | 0.70 | 0 | 50 | 0 | 3353.33 | 22.53 | 12.785 | T |
51 | 0.70 | 0 | 50 | 0 | 3333.33 | 25.16 | 16.654 | V |
52 | 0.70 | 0 | 50 | 0 | 3381.67 | 26.68 | 14.166 | T |
53 | 0.70 | 0 | 50 | 0 | 3356.67 | 25.18 | 13.710 | T |
54 | 0.70 | 0 | 50 | 0 | 3376.67 | 28.75 | 15.392 | Test |
55 | 0.70 | 0 | 50 | 0 | 3381.67 | 26.68 | 14.166 | T |
56 | 0.70 | 0 | 30 | 0 | 3486.67 | 26.72 | 17.402 | T |
57 | 0.70 | 0 | 30 | 0 | 3670.00 | 28.63 | 20.870 | V |
58 | 0.70 | 0 | 30 | 0 | 3536.67 | 23.53 | 21.957 | T |
59 | 0.70 | 0 | 30 | 0 | 3343.33 | 26.07 | 14.697 | T |
60 | 0.70 | 0 | 30 | 0 | 3516.67 | 28.83 | 16.694 | Test |
61 | 0.70 | 0 | 30 | 0 | 3486.67 | 26.44 | 15.622 | T |
62 | 0.70 | 0 | 30 | 0 | 3436.67 | 28.06 | 18.379 | T |
63 | 0.70 | 0 | 30 | 0 | 3413.33 | 33.32 | 15.280 | V |
64 | 0.70 | 5 | 50 | 0 | 3303.33 | 35.60 | 15.233 | T |
65 | 0.70 | 5 | 50 | 0 | 3406.67 | 31.48 | 13.865 | T |
66 | 0.70 | 5 | 50 | 0 | 3303.33 | 31.61 | 14.062 | Test |
67 | 0.70 | 5 | 50 | 0 | 3333.33 | 32.59 | 13.197 | T |
68 | 0.70 | 5 | 50 | 0 | 3533.33 | 30.51 | 15.296 | T |
69 | 0.70 | 5 | 50 | 0 | 3383.33 | 32.99 | 12.730 | V |
70 | 0.70 | 5 | 50 | 0 | 3333.33 | 32.59 | 13.197 | T |
71 | 0.70 | 5 | 50 | 0 | 3373.33 | 32.71 | 13.913 | T |
72 | 0.70 | 3 | 30 | 0 | 3473.33 | 31.53 | 16.269 | Test |
73 | 0.70 | 3 | 30 | 0 | 3530.00 | 30.69 | 15.240 | T |
74 | 0.70 | 3 | 30 | 0 | 3516.67 | 31.00 | 14.834 | T |
75 | 0.70 | 3 | 30 | 0 | 3473.33 | 29.55 | 14.138 | V |
76 | 0.70 | 3 | 30 | 0 | 3420.00 | 29.43 | 16.757 | T |
77 | 0.70 | 3 | 30 | 0 | 3493.33 | 33.11 | 15.356 | T |
78 | 0.70 | 3 | 30 | 0 | 3500.00 | 30.44 | 15.064 | Test |
79 | 0.70 | 3 | 30 | 0 | 3446.67 | 35.51 | 14.515 | T |
80 | 0.70 | 10 | 50 | 0 | 3386.67 | 40.78 | 12.960 | T |
81 | 0.70 | 10 | 50 | 0 | 3396.67 | 44.13 | 13.138 | V |
82 | 0.70 | 10 | 50 | 0 | 3386.67 | 38.48 | 12.989 | T |
83 | 0.70 | 10 | 50 | 0 | 3416.67 | 38.33 | 14.179 | T |
84 | 0.70 | 10 | 50 | 0 | 3416.67 | 38.33 | 14.179 | Test |
85 | 0.70 | 10 | 50 | 0 | 3386.67 | 38.28 | 13.626 | T |
86 | 0.70 | 10 | 50 | 0 | 3373.33 | 39.71 | 13.640 | T |
87 | 0.70 | 10 | 50 | 0 | 3426.67 | 41.75 | 14.144 | V |
88 | 0.70 | 6 | 30 | 0 | 3473.33 | 35.68 | 15.308 | T |
89 | 0.70 | 6 | 30 | 0 | 3466.67 | 34.94 | 16.008 | T |
90 | 0.70 | 6 | 30 | 0 | 3480.00 | 33.27 | 16.529 | Test |
91 | 0.70 | 6 | 30 | 0 | 3423.33 | 35.82 | 16.929 | T |
92 | 0.70 | 6 | 30 | 0 | 3456.67 | 39.31 | 16.124 | T |
93 | 0.70 | 6 | 30 | 0 | 3440.00 | 38.16 | 15.525 | V |
94 | 0.70 | 6 | 30 | 0 | 3446.67 | 33.79 | 17.725 | T |
95 | 0.70 | 6 | 30 | 0 | 3400.00 | 35.49 | 20.365 | T |
96 | 1.00 | 0 | 50 | 0 | 2996.67 | 12.21 | 11.080 | Test |
97 | 1.00 | 0 | 50 | 0 | 3076.67 | 15.41 | 12.005 | T |
98 | 1.00 | 0 | 50 | 0 | 3216.67 | 17.39 | 15.598 | T |
99 | 1.00 | 0 | 50 | 0 | 3086.67 | 16.39 | 10.943 | V |
100 | 1.00 | 0 | 50 | 0 | 3026.67 | 15.05 | 12.352 | T |
101 | 1.00 | 0 | 30 | 0 | 3430.00 | 17.21 | 18.732 | T |
102 | 1.00 | 0 | 30 | 0 | 3233.33 | 15.52 | 14.212 | Test |
103 | 1.00 | 0 | 30 | 0 | 3173.33 | 16.56 | 14.149 | T |
104 | 1.00 | 0 | 30 | 0 | 3083.33 | 15.28 | 12.740 | T |
105 | 1.00 | 5 | 50 | 0 | 3163.33 | 17.32 | 15.575 | V |
106 | 1.00 | 5 | 50 | 0 | 3230.00 | 16.03 | 13.224 | T |
107 | 1.00 | 5 | 50 | 0 | 3053.33 | 18.64 | 9.836 | T |
108 | 1.00 | 5 | 50 | 0 | 3180.00 | 17.20 | 11.299 | Test |
109 | 1.00 | 5 | 50 | 0 | 3040.00 | 14.37 | 10.686 | T |
110 | 1.00 | 5 | 50 | 0 | 2933.33 | 14.67 | 10.341 | T |
111 | 1.00 | 5 | 50 | 0 | 3010.00 | 14.74 | 11.803 | V |
112 | 1.00 | 3 | 30 | 0 | 3116.67 | 16.13 | 12.304 | T |
113 | 1.00 | 3 | 30 | 0 | 3350.00 | 20.84 | 12.832 | T |
114 | 1.00 | 3 | 30 | 0 | 3130.00 | 14.28 | 10.094 | Test |
115 | 1.00 | 3 | 30 | 0 | 2993.33 | 14.16 | 10.735 | T |
116 | 1.00 | 3 | 30 | 0 | 3180.00 | 14.42 | 10.125 | T |
117 | 1.00 | 3 | 30 | 0 | 3006.67 | 15.60 | 11.474 | V |
118 | 1.00 | 3 | 30 | 0 | 3063.33 | 15.74 | 11.834 | T |
119 | 1.00 | 10 | 50 | 0 | 2906.67 | 19.00 | 10.029 | T |
120 | 1.00 | 10 | 50 | 0 | 2983.33 | 20.26 | 9.171 | Test |
121 | 1.00 | 10 | 50 | 0 | 2896.67 | 19.60 | 10.271 | T |
122 | 1.00 | 10 | 50 | 0 | 3060.00 | 16.73 | 10.539 | T |
123 | 1.00 | 10 | 50 | 0 | 2890.00 | 18.38 | 9.072 | V |
124 | 1.00 | 10 | 50 | 0 | 3023.33 | 19.54 | 10.013 | T |
125 | 1.00 | 10 | 50 | 0 | 2930.00 | 17.85 | 9.515 | T |
126 | 1.00 | 10 | 50 | 0 | 2896.67 | 18.82 | 9.079 | Test |
127 | 1.00 | 6 | 30 | 0 | 3070.00 | 16.67 | 12.034 | T |
128 | 1.00 | 6 | 30 | 0 | 3003.33 | 20.24 | 8.509 | T |
129 | 1.00 | 6 | 30 | 0 | 3013.33 | 17.89 | 9.197 | V |
130 | 1.00 | 6 | 30 | 0 | 3086.67 | 14.86 | 9.972 | T |
131 | 1.00 | 6 | 30 | 0 | 2926.67 | 18.16 | 9.338 | T |
132 | 1.00 | 6 | 30 | 0 | 3046.67 | 17.95 | 10.852 | Test |
133 | 1.00 | 6 | 30 | 0 | 2986.67 | 14.92 | 11.560 | T |
134 | 1.00 | 6 | 30 | 0 | 2983.33 | 14.89 | 11.570 | T |
Code | Parameter Type | Variable | Data Used in NN Models | ||
---|---|---|---|---|---|
Minimum | Average | Maximum | |||
01 | Input | Water-to-binder ratio | 0.40 | 0.68 | 1.00 |
02 | Input | Metakaolin | 0.00 | 4.24 | 10.00 |
03 | Input | Binder | 30.00 | 40.00 | 50.00 |
04 | Input | Superplasticizer | 0.00 | 0.72 | 2.00 |
05 | Input | Ultrasonic velocity (m/s) | 2890.00 | 3511.82 | 4100.00 |
06 | Output | Compressive strength (MPa) | 12.21 | 37.46 | 76.90 |
07 | Output | Modulus of Elasticity (GPa) | 8.51 | 18.20 | 29.62 |
Ranking | Computer | Preprocess | Cost Function 1 | Training Functions 2 | Initial Weights | Architecture (Code) | Pearson’s R | Number of Epochs |
---|---|---|---|---|---|---|---|---|
1 | C02 | Central | MSE | T-L-T | −0.10 | 5-7-7-1 | 0.990015 | 180 |
2 | C04 | MinMax [0,1] | MSE | T-L-T | −0.70 | 5-30-7-1 | 0.989846 | 218 |
3 | C03 | MinMax [0,1] | MSE | T-L-T | 0.90 | 5-6-24-1 | 0.989165 | 215 |
4 | C03 | MinMax [−1,1] | SSE | T-L-T | −0.70 | 5-12-14-1 | 0.988943 | 168 |
5 | C04 | MinMax [−1,1] | MSE | T-L-T | 0.10 | 5-6-24-1 | 0.988755 | 213 |
6 | C04 | MinMax [−1,1] | SSE | T-L-T | 0.10 | 5-13-30-1 | 0.988752 | 213 |
7 | C03 | MinMax [0,1] | MSE | T-L-T | 0.90 | 5-6-27-1 | 0.988698 | 215 |
8 | C02 | MinMax [0,1] | MSE | T-L-T | −0.90 | 5-4-3-1 | 0.988587 | 211 |
9 | C02 | Central | MSE | T-L-T | 0.10 | 5-30-3-1 | 0.988582 | 180 |
10 | C02 | Central | SSE | T-L-T | −0.70 | 5-30-12-1 | 0.988463 | 225 |
11 | C04 | MinMax [−1,1] | MSE | T-L-T | 0.90 | 5-6-30-1 | 0.988389 | 213 |
12 | C01 | ZScore | MSE | T-L-T | 0.30 | 5-11-26-1 | 0.988233 | 227 |
13 | C02 | Central | MSE | T-L-T | 0.90 | 5-14-29-1 | 0.988226 | 180 |
14 | C03 | NoPreprocess | SSE | T-L-T | −0.70 | 5-22-15-1 | 0.988204 | 202 |
15 | C04 | MinMax [−1,1] | SSE | T-L-T | 0.10 | 5-11-27-1 | 0.988033 | 213 |
16 | C03 | MinMax [−1,1] | SSE | T-L-T | 0.10 | 5-11-27-1 | 0.988033 | 168 |
17 | C03 | Central | SSE | T-L-T | −0.50 | 5-6-3-1 | 0.988025 | 250 |
18 | C03 | MinMax [−1,1] | MSE | T-L-T | 0.30 | 5-5-25-1 | 0.987961 | 168 |
19 | C03 | ZScore | MSE | T-L-T | −0.30 | 5-5-14-1 | 0.987953 | 193 |
20 | C01 | ZScore | MSE | T-L-T | 0.70 | 5-9-6-1 | 0.987947 | 204 |
Ranking | Computer | Preprocess | Cost Function 1 | Training Functions 2 | Initial Weights | Architecture (Code) | Pearson’s R | Number of Epochs |
---|---|---|---|---|---|---|---|---|
1 | C02 | ZScore | MSE | T-L-T | 0.90 | 5-3-25-1 | 0.988105 | 191 |
2 | C03 | ZScore | MSE | T-L-T | 0.10 | 5-5-20-1 | 0.988094 | 148 |
3 | C04 | ZScore | MSE | T-L-T | 0.70 | 5-5-28-1 | 0.987907 | 241 |
4 | C03 | ZScore | MSE | T-L-T | 0.70 | 5-5-28-1 | 0.987907 | 148 |
5 | C03 | Central | SSE | T-L-T | −0.70 | 5-6-27-1 | 0.987766 | 185 |
6 | C01 | MinMax [−1,1] | MSE | T-L-T | 0.10 | 5-4-13-1 | 0.987665 | 174 |
7 | C04 | MinMax [−1,1] | MSE | T-L-T | −0.90 | 5-5-30-1 | 0.987087 | 208 |
8 | C02 | ZScore | MSE | T-L-T | 0.10 | 5-5-17-1 | 0.987033 | 131 |
9 | C01 | Central | MSE | T-L-T | −0.70 | 5-7-15-1 | 0.986940 | 153 |
10 | C03 | MinMax [−1,1] | MSE | T-L-T | −0.70 | 5-4-2-1 | 0.986897 | 147 |
11 | C01 | Central | MSE | T-L-T | 0.90 | 5-25-15-1 | 0.986894 | 190 |
12 | C01 | MinMax [−1,1] | SSE | T-L-T | 0.50 | 5-18-21-1 | 0.986871 | 174 |
13 | C04 | MinMax [0,1] | MSE | T-L-T | 0.30 | 5-8-13-1 | 0.986859 | 130 |
14 | C02 | MinMax [−1,1] | MSE | T-L-T | −0.90 | 5-4-21-1 | 0.986707 | 207 |
15 | C01 | NoPreprocess | MSE | T-L-T | 0.90 | 5-20-14-1 | 0.986605 | 196 |
16 | C03 | ZScore | MSE | T-L-T | −0.10 | 5-5-10-1 | 0.986596 | 240 |
17 | C03 | MinMax [0,1] | MSE | T-L-T | −0.90 | 5-24-7-1 | 0.986517 | 181 |
18 | C01 | Central | MSE | T-L-T | −0.10 | 5-5-6-1 | 0.986478 | 153 |
19 | C01 | Central | MSE | T-L-T | −0.90 | 5-8-27-1 | 0.986463 | 241 |
20 | C03 | NoPreprocess | MSE | T-L-T | −0.50 | 5-8-29-1 | 0.986440 | 91 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asteris, P.G.; Roussis, P.C.; Douvika, M.G. Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials. Sensors 2017, 17, 1344. https://doi.org/10.3390/s17061344
Asteris PG, Roussis PC, Douvika MG. Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials. Sensors. 2017; 17(6):1344. https://doi.org/10.3390/s17061344
Chicago/Turabian StyleAsteris, Panagiotis G., Panayiotis C. Roussis, and Maria G. Douvika. 2017. "Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials" Sensors 17, no. 6: 1344. https://doi.org/10.3390/s17061344
APA StyleAsteris, P. G., Roussis, P. C., & Douvika, M. G. (2017). Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials. Sensors, 17(6), 1344. https://doi.org/10.3390/s17061344