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Abstract: High-accuracy railway track surveying is essential for railway construction and
maintenance. The traditional approaches based on total station equipment are not efficient enough
since high precision surveying frequently needs static measurements. This paper proposes a new
filtering and smoothing algorithm based on the IMU/odometer and landmarks integration for
the railway track surveying. In order to overcome the difficulty of estimating too many error
parameters with too few landmark observations, a new model with completely observable error states
is established by combining error terms of the system. Based on covariance analysis, the analytical
relationship between the railway track surveying accuracy requirements and equivalent gyro drifts
including bias instability and random walk noise are established. Experiment results show that the
accuracy of the new filtering and smoothing algorithm for railway track surveying can reach 1 mm
(1σ) when using a Ring Laser Gyroscope (RLG)-based Inertial Measurement Unit (IMU) with gyro
bias instability of 0.03◦/h and random walk noise of 0.005◦/

√
h while control points of the track

control network (CPIII) position observations are provided by the optical total station in about every
60 m interval. The proposed approach can satisfy at the same time the demands of high accuracy and
work efficiency for railway track surveying.

Keywords: railway track surveying; filtering and smoothing; IMU; total station; odometer;
covariance analysis

1. Introduction

Railway tracks will drift away from their designed position due to external factors, which could
cause track deformation and irregularities [1,2]. The railway track geometry parameter is one of
the important performance indexes of track smoothness for monitoring the track deformation and
guiding the maintenance of railway lines. The track geometry parameters including the inner geometry
parameters and the outer geometry parameters have different accuracy requirements concerning the
track course smoothness and the absolute position of the track [1,3]. The inner geometry parameters are
quantified by the relative accuracy and the outer geometry parameters by the absolute accuracy [1,3].
Both of them must be guaranteed to ensure the safety operation. High-speed railway track structures
require high smoothness. With the rapid development of high-speed railways, railway track surveying
methods of high performance are more and more important to guarantee the trains’ operational safety
and stability. A perfect track surveying method should provide high relative or absolute accuracy
effectively without interfering with regular train traffic [1].

At present, the common track surveying methods can be generally divided into two categories,
namely static measurement and dynamic measurement. The traditional track surveying techniques
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include manual measuring devices or Track Recording Vehicles (TRVs) [4]. The track surveying trolley
is a new segment in the category. As a kind of quasi-static track surveying equipment the trolley plays
an important role in railway track surveying. The geometry parameters of the track are measured
by the measuring equipment mounted on the trolley, such as inclinators, accelerometers, gyroscopes,
odometers, laser scanners, total stations, Global Positioning System (GPS) receivers and so on, when
the trolley moves on the track driven by people or a motor.

Track surveying trolleys have claimed areas of application where they are superior to other
traditional techniques. Measurements during the construction stage and measurements of shorter
stretches of track are some areas where the trolleys outperform TRVs due to their light weight and
flexible characteristics [4]. Manual devices used for spot assessment have been quickly superseded by
trolleys due to time efficiency [4].

Nowadays the railway track surveying trolley is widely used in railway construction and
maintenance projects. The GRP1000 track surveying trolley provided by the Swiss company
Amberg Technologies (Regensdorf, Switzerland) and the GEDO CE one provided by Sinning
(Wiesentheid, Germany) are widely deployed in China [2]. These kinds of trolleys equipped with
optical total stations can measure the track position with millimeter or even sub-millimeter accuracy in
stop-and-go mode [1,2]. Another representative track surveying trolley, namely the Swiss trolley [1,4],
was developed by the Institute of Geodesy and Photogrammetry at ETH Zurich in collaboration with
a number of others. Glaus [1] describes this trolley thoroughly and comprehensively in his thesis.
The basic configuration of the Swiss trolley contains an inclinator, track gauge measuring system and
odometer, enabling the assessment of the cant, gradient, track gauge, chainage and twist parameters.
The positioning configuration equipped with Real Time Kinematic GPS (GPS-RTK) and optical total
stations allows for absolute position fixing. Glaus designed two Kalman filter models and a smoother
to fuse the data measured by GPS and other sensors to improve the measurement precision.

Although the surveying trolley based on an optical total station can satisfy the precision
requirement and has achieved the most extensive application in railway track surveying, there are
still some shortcomings. The high precision measurement by total station requests the trolley to be
operated in static measurement mode [1,2]. The distance between two position measurement points is
short (10 m interval or less) which makes it not efficient enough for track surveying [2,4].

A method based on the integration of Differential GPS (DGPS) with an Inertial Navigation System
(INS) is a new measuring technique approach for railway track surveying in order to overcome the
deficiencies of the total station method. Applanix Corporation [5] developed the POS/TG system
which consists of an IMU, a GPS receiver, a Distance Measurement Indicator and an Optical Gauge
Measurement system, for dynamic inspection train. It has been successfully employed by the Austrian
Federal railways. Luck [6,7] obtained relative accuracy in the millimeter range for track surveying by
integration of DGPS and INS. He established a forward and backward Kalman smoother to reduce
the variances of the position solution, and pointed out some limiting factors such as synchronization
and lever arm between different sensors, must be considered under the prerequisite for high accuracy
surveying in the millimeter range.

Niu and Chen [2,8] at Wuhan University used the Global Navigation Satellite System and
Inertial Navigation System (GNSS/INS) integrated technique for railway track irregularity surveying,
and achieved high relative accuracy of 1 mm and absolute accuracy of several centimeters in the
kinematic mode. They developed a modified integration algorithm to compensate the drift of inertial
sensors, and implemented the non-holonomic constraint and zero velocity updates in the Kalman filter
to improve the surveying accuracy.

However, a critical issue is that the GPS signal may become obstructed by tunnels, bridges and
other obstacles. This affects the GPS solutions negatively. In order to carry out the surveying task with
poor GPS receptions or with GPS outages, Niu used the total station instead of GPS in combination
with INS for the absolute position measurement and proposed the measure scheme briefly, but their
solution still needs short interval position observations by a total station and they have not provided
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details of an algorithm. Nassar, Liu, and EI-Sheimy [9,10] took advantage of a fixed-interval smoother
to increase the position accuracy during short interval GPS outages for INS/GPS applications, but it
cannot satisfy the demands of track surveying during long duration GPS outages. In this case other
relative or absolute sensors with complementary properties are introduced to depress the error drift,
such as odometers, Doppler laser radars, cameras, or landmarks. Wu [11,12] proposed a versatile
strategy for land vehicle navigation using IMU/odometer integration. A self-calibration method and
an odometer-aided IMU in-motion alignment algorithm were devised in his work. De Cecco [13]
presented a sensor-fusion algorithm for navigation systems suitable for autonomous guided vehicles
that uses two measurement systems: an odometric one and an inertial one. Vettori and Malvezzi [14]
described a pose estimation algorithm using INS/odometer integration to increase the accuracy of
the odometric estimation, especially in critical adhesion conditions. Liu and Nassar [15] obtained
successful utility in pipeline surveying by INS with the aid of an odometer and control points.

Traditional integrated navigation systems based on IMUs, odometers, and landmarks have
different integration solutions, such as: INS/landmark integration, INS/odometer/landmark
integration, and IMU/odometer/landmark integration which means the integrated landmark
and dead reckoning based on gyros and odometer in this paper. They have been widely used
in land vehicle navigation and some other applications [11,12,15], but railway track surveying
has its own characteristics. For example, it needs high measurement accuracy in the millimeter
range [3]. The railway track is so level and straight that the trolley maneuvers are rather weak
when moving on the track at low speed. Many error parameters are then coupled together with
others, such as, the orientation error is coupled with the equivalent east gyro bias, and the level
errors are coupled with equivalent horizontal accelerometer biases. Furthermore, for the surveying
tasks without GPS, the observations of control points are few in order to improve the efficiency of
measurement. It is difficult to estimate so many error parameters with so few observations under weak
maneuver conditions.

This paper focuses on the problem of railway track surveying based on the IMU/odometer/landmark
integration to overcome the problems above. After completing initial alignment, we make an attempt
to use the attitude measured by a gyro assembly and the distance measured by an odometer for dead
reckoning integrated with landmarks about every 60 m interval. This is the distance between two CPIII
control points. The absolute position of the landmark is measured by a high precision total station.
In order to overcome the difficulty of estimating too many error parameters with too few landmark
observations, a new Kalman filter model with completely observable error states is established by
combining the error terms of the system. In this way, the equivalent gyro biases can be established
and compensated effectively. Moreover, a fixed-interval smoothing algorithm is devised to increase the
position accuracy between two control points. Based on covariance analysis, the surveying precision of
the proposed algorithm is presented, the analytical relationship between the surveying accuracy and
equivalent gyro drifts including bias instability and random walk noise are established. Simulation
and real experimental results are also presented compared with traditional algorithms.

This paper is organized as follows: Section 2 describes the overview of surveying system and the
new algorithm. Section 3 describes the error model of IMU/odometer based dead reckoning systems.
Section 4 presents the new Kalman filtering and smoothing algorithm. Section 5 presents theoretical
analyses of the performance for the new method. Section 6 reports the experimental results of railway
track surveying. Section 7 concludes this paper.

2. Overview of the Surveying System and Algorithm

As illustrated in Figure 1, the surveying system is equipped with a T-type trolley, an odometer,
a track gauge sensor, a high precision prism and a navigation grade IMU. The IMU consists of three
high accuracy ring laser gyros with bias instability of 0.03◦/h and random walk noise of 0.005◦/

√
h

and three high stability quartz accelerometers (50 µg, 10 µg/
√

Hz). The prism mounted on the trolley
is used to measure the absolute position by the high precision Leica total station (0.6 mm, 0.5”) based
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on the CPIII control points. In addition, we can also mount the total station on the trolley instead of
the prism to reduce the leveling time of the total station.Sensors 2017, 17, 1438  4 of 20 

 

 

Figure 1. The proposed surveying system and its configuration diagram. 

The cost of the IMU used here is about $70,000. It is much more expensive than other sensors in 
the system except for high precision total station which is essential for high accuracy absolute position 
measurement. Therefore, it is significant for cost reduction to reduce the performance demand of 
initial sensors and not use accelerometers. Figure 2 illustrates an overview of the data processing 
procedure of the Kalman filtering and smoothing algorithm. 
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Figure 2. Block diagram of the filtering and smoothing algorithm. 

The system makes use of the attitude measured by the gyro assembly and the velocity or distance 
increment measured by the odometer for dead reckoning. When the system comes across a landmark, 
a position observation updates, and the Kalman filtering and smoothing algorithm is executed to 
output the optimized position measurements of the interval. The initial attitudes of the system can 
be provided by initial alignment of the IMU or some other methods. 
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Figure 1. The proposed surveying system and its configuration diagram.

The cost of the IMU used here is about $70,000. It is much more expensive than other sensors in
the system except for high precision total station which is essential for high accuracy absolute position
measurement. Therefore, it is significant for cost reduction to reduce the performance demand of initial
sensors and not use accelerometers. Figure 2 illustrates an overview of the data processing procedure
of the Kalman filtering and smoothing algorithm.
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Figure 2. Block diagram of the filtering and smoothing algorithm.

The system makes use of the attitude measured by the gyro assembly and the velocity or distance
increment measured by the odometer for dead reckoning. When the system comes across a landmark,
a position observation updates, and the Kalman filtering and smoothing algorithm is executed to
output the optimized position measurements of the interval. The initial attitudes of the system can be
provided by initial alignment of the IMU or some other methods.

3. Error Model of Dead Reckoning Based on IMU/Odometer

3.1. Attitude Error Equation

The attitude error equation may be expressed as shown in Equation (1) [16]:

.
φ

n
= −ωn

in ×φn + δωn
in − Cn

b δωb
ib (1)

where i-frame represents the inertial frame. n-frame is the local level frame (North-East-Down)
used as the navigation frame. b-frame is the body frame of the IMU (Forward-Right-Down).
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φn =
[

φN φE φD

]T
represents the vector of attitude errors about the north, east and down

axes of the navigation frame. ωn
in represents the turn rate of the navigation frame with respect to the

inertial frame expressed in the n-frame. it can be obtained by summing the Earth’s rotation rate with
respect to the inertial frame and the turn rate of the navigation frame with respect to the Earth as:
ωn

in =ωn
ie +ω

n
en · δωn

in represents the errors of the navigation frame rate. δωb
ib represents the drift

errors of gyroscopes. Cn
b represents the direction cosine matrix.

Considering that the track surveying trolley is pushed forward manually at walking speed and
the surveying distance is a quite short interval, we can ignore the turn rate of the navigation frame
with respect to the Earth. The attitude error equation can be rearranging as shown by Equation (2):

.
φN.
φE.
φD

 ≈
 0 ωieD 0
−ωieD 0 ωieN

0 −ωieN 0


 φN

φE
φD

− Cn
b

 δωb
x

δωb
y

δωb
z

 (2)

In addition, since the high speed railway requires a level and straight railway track, the radius of
curvature of the track is usually very large and the track gradient is very small. Therefore the level
attitudes are small angles for the surveying trolley and the direction cosine matrix here can be written
in component form as shown by Equation (3) [16,17]:

Cn
b ≈

 cos ϕ − sin ϕ θ cos ϕ + γ sin ϕ

sin ϕ cos ϕ −γ cos ϕ + θ sin ϕ

−θ γ 1

 (3)

where γ, θ, ϕ represent the Euler rotation angles about the roll pitch and yaw axes, respectively.
The level errors φN and φE can be equivalently converted into error angles rotating around the

longitudinal direction and lateral direction of the trolley, denoted by φroll and φpitch, respectively,
by rotating an angle ϕ around the vertical axis. That is: φroll

φpitch
φD

 =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1


 φN

φE
φD

,

 φN
φE
φD

 =

 cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1


 φroll

φpitch
φD

 (4)

Differentiating Equation (4), substituting Equation (2) and rearranging yields:
.
φroll.

φpitch.
φD

 =

 0 ωieD +
.
ϕ ωieN sin ϕ

−ωieD −
.
ϕ 0 ωieN cos ϕ

−ωieN sin ϕ −ωieN cos ϕ 0


 φroll

φpitch
φD

−
 1 0 θ

0 1 −γ

−θ γ 1


 δωb

x
δωb

y
δωb

z

 (5)

Rearranging Equation (5) gives:
.
φroll.

φpitch.
φD

 = −

 δωb
x −ωieDφpitch −

.
ϕφpitch −ωieNφD sin ϕ

δωb
y + ωieDφroll +

.
ϕφroll −ωieNφD cos ϕ

δωb
z + ωieNφroll sin ϕ + ωieNφpitch cos ϕ

 = −

 δωb
x

δωb
y

δωb
z

+

 wroll
wpitch

wD

 (6)

where
[

δωb
x δωb

y δωb
z

]T
represents the equivalent bias instability of the gyroscopes.[

wroll wpitch wD

]T
represents the equivalent random walk noise of the gyroscopes.

3.2. Position Error Equation

Position errors may be caused by attitude errors, including initial alignment errors and attitude
errors caused by gyro drifts, the mounting misalignment between IMU and the trolley, and the
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scale-factor of the odometer. When using the attitude measured by IMU and the velocity measured by
odometer for dead reckoning, the estimated trolley position equation may be written in terms of the
errors using Equation (7):

∆
.
r̃

n
= C̃n

b Cb
bt

 ṽodo
0
0

 (7)

where bt-frame is the body frame of trolley, the axes of which align with the forward, right
and down directions of the trolley. The estimated position vector is denoted by ∆r̃n and

∆r̃n =
[

∆r̃N ∆r̃E ∆r̃D

]T
. It is the relative position vector of trolley from the last landmark

projected in the navigation frame. The estimated transform matrix from the body frame to the
navigation frame is expressed as C̃n

b with attitude errors. The coordinate transform matrix with
mounting misalignments of the IMU with respect to the trolley is denoted by Cb

bt
. ṽodo is the velocity of

the trolley measured by the odometer. For small angular misalignments, the above direction cosine
matrix C̃n

b can be written by Equation (8):

C̃n
b = [I − (φn×)]Cn

b (8)

The skew symmetric form of attitude errors vector is:

φn× =

 0 −φD φE
φD 0 −φN
−φE φN 0

 (9)

Similarly, for small angular mounting misalignments, the matrix Cb
bt

can be written as shown by
Equation (10):

Cb
bt
=

 1 εz −εy

−εz 1 εx

εy −εx 1

 (10)

where εx, εy and εz are the misalignments of IMU about the forward, right and down axes of the
trolley frame.

The estimated velocity measured by odometer may be written as shown in Equation (11):

ṽodo = (1 + δk)vodo

δ
.
k = wδk

(11)

where δk is the scale factor error of the odometer. wδk is the random noise of the odometer scale factor.
Combining and rearranging Equations (7)–(11) above and ignoring the higher order terms yields

the following position error equation:

δ∆
.
rn

= ∆
.
r̃

n
− ∆

.
rn ≈

 0 θ sin ϕ

−θ 0 − cos ϕ

− sin ϕ cos ϕ 0


 φN

φE
φD

vodo +

 cos ϕ − sin ϕ θ cos ϕ + γ sin ϕ

sin ϕ cos ϕ −γ cos ϕ + θ sin ϕ

−θ γ 1


 δk
−εz

εy

vodo (12)

Since the level attitude angles are small angles, the product of level attitude angles (θ, γ) with the
level errors (φN , φE), the scale factor error (δk) and the misalignment errors (εy, εz) can be neglected in
a short interval. Hence, the position error equation can be written using Equation (13):

δ∆
.
rn ≈

 0 0 sin ϕ

0 0 − cos ϕ

− sin ϕ cos ϕ 0


 φN

φE
φD

vodo +

 cos ϕ

sin ϕ

0

δkvodo +

 sin ϕ

− cos ϕ

0

εzvodo +

 0
0
1

εyvodo (13)
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Substituting Equation (4) into Equation (13) and rearranging it yields:

δ∆
.
rn ≈

 0 0 sin ϕ

0 0 − cos ϕ

0 1 0


 φroll

φpitch
φD

vodo +

 cos ϕ

sin ϕ

0

δkvodo +

 sin ϕ

− cos ϕ

0

εzvodo +

 0
0
1

εyvodo

=

 0 sin ϕ cos ϕ

0 − cos ϕ sin ϕ

1 0 0


 φpitch + εy

φD + εz

δk

vodo

=

 0 sin ϕ cos ϕ

0 − cos ϕ sin ϕ

1 0 0


 φpitch

φD
δk

vodo

(14)

where
[

φpitch φD

]T
represents the equivalent attitude error angles of the surveying trolley.

4. A New Kalman Filtering and Smoothing Algorithm for Railway Track Surveying

4.1. New Kalman Filter Designed for Track Surveying

Track surveying trolley maneuvers are rather weak when moving on the track at walking speed.
It is difficult to estimate all the system error states with so few landmark position observations.
Therefore we do not need establish a Kalman filter equation including all the system errors. As shown
in Equation (14), the error angle φroll evokes non-significant position errors in the three directions
in a short period of time. We can reduce the dimensionality of the Kalman filter by excluding the
unobservable state φroll and Equation (6) can be transformed as shown in Equation (15):[ .

φpitch.
φD

]
≈ −

[
δωb

y
δωb

z

]
+

[
wpitch

wD

]
(15)

Considering the definition of the equivalent attitude error angles in Equation (14), we can get: .
φpitch.

φD

 =

[ .
φpitch +

.
εy

.
φD +

.
εz

]
=

[ .
φpitch.

φD

]
≈ −

[
δωb

y
δωb

z

]
+

[
wpitch

wD

]
(16)

Since there is no coupling between the vertical and the level channel, we can establish two
reduced-order Kalman filters in the vertical and the level channel, respectively. For the vertical channel,
the system error model and observation model can be expressed using Equation (17):

.
xv(t) = Avxv(t) + Gvwv(t)

zv(t) = Hvxv(t) + vv(t)
(17)

where the error state vector of vertical channel xv(t) can be written as Equation (18):

xv(t) =
[

δ∆rD φpitch δωb
y

]T
(18)

The system error matrix Av and the noise matrix Gv can be expressed in full by Equation (19):

Av =

 0 vodo 0
0 0 −1
0 0 0

, Gv =

 0
1
0

 (19)

The system random walk noise of vertical channel wv(t) ∼ N(0, Qv(t)) can be expressed as
shown by Equation (20):
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Qv(t) = σ2
wpitch

represents the Power Spectral Density (PSD) of the vertical channel system noise.

wv(t) = wpitch (20)

The measurement differences between position provided by the total station and the estimates of
these measurements obtained from the dead reckoning system constitute the Kalman filter innovation.
For the vertical channel the innovation zv(t) = δ∆rD and the measurement matrix Hv are defined by
Equation (21):

Hv =
[

1 0 0
]

(21)

υv(t) = υrD , υv(t) ∼ N(0, Rv(t)) represents the measurement noise of the vertical channel,
and Rv(t) = σ2

r is the PSD of it.
For the level channel, the system error model and observation model can be expressed as indicated

in Equation (22):
.
xl(t) = Alxl(t) + Glwl(t)

zl(t) = Hlxl(t) + vl(t)
(22)

where:
xl(t) =

[
δ∆rN δ∆rE δk φD δωb

z

]T
(23)

Al =


0 0 vodo cos ϕ vodo sin ϕ 0
0 0 vodo sin ϕ −vodo cos ϕ 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 0 0

, Gl =


0 0
0 0
1 0
0 1
0 0

, Hl =

[
1 0 0 0 0
0 1 0 0 0

]
(24)

wl(t) =
[

wδk wD

]T
, wl(t) ∼ N(0, Ql(t))

Ql(t) = diag
([

σ2
wδk

σ2
wD

])
υl(t) =

[
υrN υrE

]T
, υl(t) ∼ N(0, Rl(t))

Rl(t) = diag
([

σ2
r σ2

r

]) (25)

4.2. Observability Analysis

In the process of railway track surveying, the change of attitude is slow in short distance intervals
and the velocity of the trolley is almost constant. It is therefore feasible to simplify the surveying
process as a uniform motion in a straight line, so the Kalman filter established in the last section is a
linear time-invariant system and the observability can be analyzed straightforwardly by testing the
rank of the observability matrix.

According to the definition, the rank for observability matrixes of the vertical channel and level
channel can be expressed using Equation (26):

rank

 Hv

Hv Av

Hv A2
v

 = rank

 1 0 0
0 vodo 0
0 0 −vodo

 = 3

rank


Hl

Hl Al
...

Hl A4
l

 = rank



1 0 0 0 0
0 1 0 0 0
0 0 vodo cos ϕ vodo sin ϕ 0
0 0 vodo sin ϕ −vodo cos ϕ 0
0 0 0 0 vodo sin ϕ

0 0 0 0 vodo cos ϕ

04×1 04×1 04×1 04×1 04×1


= 5

(26)
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Since both of them have a full rank observability matrix, the error states of the two Kalman filters
can be estimated.

4.3. Smoothing Algorithm

The positions measured by total station are considered as updates for the Kalman filter, and thus,
the position errors as well as the covariance information of the integrated IMU/odometer/landmark
solution will be very small at the observation points. However, the position errors and their covariance
increase with time between two observation points due to the residual system errors. In order
to obtain accurate positions during the observation outages, a bridging algorithm must be used
for estimating improved positions for these periods. This is a typical fixed interval smoothing
problem. The Two-Filter Smoother (TFS) and the Rauch-Tung-Striebel (RTS) smoother are two classical
smoothing methods [9,18]. The TFS includes a forward Kalman filter and a backward Kalman filter,
and the smoothed estimate of state vector is calculated by combining the forward and the backward
filtered solutions. Figure 3 illustrates the computation procedure.
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The TFS algorithm in discrete form is shown in Equation (27) [17–19]:

x̂k = Pk

[(
P+

f k

)−1
x̂+f k +

(
P−bk
)−1x̂−bk

]
Pk =

[(
P+

f k

)−1
+
(

P−bk
)−1
]−1 (27)

where x̂k is the optimal smoothed estimate of state vector at time epoch k. Pk is the error state
covariance matrix of the smoother. x̂+f k and P+

f k represent the updated estimate of state vector and its

corresponding covariance matrix of the forward filter at epoch k. x̂−bk and P−bk represent the optimal
predicted estimate of state vector and its corresponding covariance matrix of the backward filter at
epoch k.

The RTS smoother consists of a common forward Kalman filter and a backward smoother.
The backward sweep begins at the end of the forward Kalman filter. Figure 4 illustrates the computation
procedure of the RTS smoother.
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The RTS algorithm can be expressed in discrete form as shown by Equation (28) [17,18,20]:

Hk = P+
f kΦT

k

(
P−f k+1

)−1

x̂k = x̂+f k + Hk

[
x̂k+1 − x̂−f k+1

]
Pk = P+

f k − Hk

[
P−f k+1 − Pk+1

]
HT

k

(28)

where Hk is the smoothing gain matrix. Φk is the system state transition matrix. x̂−f k+1 is the optimal

predicted estimate at epoch k + 1 and P−f k+1 represents its covariance matrix.
The RTS algorithm is the easiest and simplest smoothing method in implementation [18]. Here

the RTS smoother will be used for estimating the states in the surveying intervals.

5. Surveying Accuracy Analysis of the New Algorithm

The surveying accuracy of the proposed algorithm can be presented by the error state covariance
matrix, which can be obtained by calculating analytically the Riccati equation of the system.
The analysis shows that it is difficult to obtain the accurate analytical solution of RTS smoothing
algorithm, but fortunately, it has been demonstrated that the TFS and RTS smoother are mathematically
equivalent in linear cases [15,17–20]. We can analyze the surveying accuracy by calculating the state
covariance matrix of the equivalent TFS.

According to Equation (27), the covariance matrixes of the forward filter and the backward filter
need to be calculated. For the vertical channel, the Riccati equation in continuous form of forward
filter is [18]:

d
dt

Pv f (t) = AvPv f (t) + Pv f (t)AT
v − Pv f (t)HT

v R−1
v HvPv f (t) + GvQvGT

v (29)

For the surveying process of every interval, the observation of position is measured at the end
time epoch T. Consider that Pv(T) = Pv f (T), the solution of the Riccati equation at other time epoch
can be expressed as shown in Equation (30) [18]:

Pv f (t) = Φv(t, 0)Pv f (0)Φ
T
v (t, 0) +

∫ t

0
Φv(t− τ)GvQvGT

v ΦT
v (t− τ)dτ (30)

where the system state transition matrix is:

Φv(t, 0) = eAvt =

 1 vodot − 1
2 vodot2

0 1 −t
0 0 1

 (31)
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Let the initial covariance matrix be:

Pv f (0) = diag
([

prD pφpitch
pωy

])
(32)

Substituting Gv, Qvand Equations (31) and (32) into Equation (30) and rearranging we can obtain
the covariance matrix of forward filter as shown by Equation (33):

Pv f (t) =


prD + pφpitch

v2
odot2 + 1

4 pωy v2
odot4 + 1

3 σ2
wpitch

v2
odot3 pφpitch

vodot + 1
2 pωy vodot3 + 1

2 σ2
wpitch

vodot2 − 1
2 pωy vodot2

pφpitch
vodot + 1

2 pωy vodot3 + 1
2 σ2

wpitch
vodot2 pφpitch

+ pωy t2 + σ2
wpitch

t −pωy t

− 1
2 pωy vodot2 −pωy t pωy

 (33)

The Riccati equation in continuous form of backward filter is [18]:

d
dt

Pvb(t) = AvPvb(t) + Pvb(t)AT
v − GvQvGT

v + Pvb(t)HT
v R−1

v HvPvb(t) (34)

This equation should be integrated inversely in time ( T → t ) with the initial conditions of(
P−vb(T)

)−1
=
(

P−vbN
)−1

= 0 [18]. Since observation of position for the backward filter only be
provided at the initial time epoch T, we can use the discrete Kalman filter equation to calculate the
covariance matrix of the updated estimate of error state at epoch T for the backward filter. We can
thus obtain:

(
P+

vb(T)
)−1

=
(

P+
vbN
)−1

=
(

P−vbN
)−1

+ HT
vN R−1

vN HvN = HT
vN R−1

vN HvN =

 0 0 0
0 1

σ2
r

0

0 0 0

 (35)

The solution of the backward filter Riccati equation at other time epoch can be expressed by
Equation (36):

Pvb(t) = Φv(t, T)P+
vb(T)Φ

T
v (t, T)−

∫ t

T
Φv(t, τ)GvQvGT

v ΦT
v (t, τ)dτ (36)

Considering that
(

P+
vb(T)

)−1 is a singular matrix, we can use the Sherman-Morrison-Woodbury
formula [18] to calculate P−1

vb (t). The formula can be expressed by Equation (37):

(F + BCD)−1 = F−1 − F−1B
(

DF−1B + C−1
)−1

DF−1 (37)

Defining F = Φv(t, T)Pvb(T)ΦT
v (t, T), B = C = I, D = −

∫ t
T Φv(t, τ)GvQvGT

v ΦT
v (t, τ)dτ.

Inverting Equation (36) we have:

P−1
vb (t) =

[
Φv(t, T)Pvb(T)ΦT

v (t, T)−
∫ t

T Φv(t, τ)GvQvGT
v ΦT

v (t, τ)dτ
]−1

= ΦT
v (T, t)P−1

vb (T)Φv(T, t)−ΦT
v (T, t)P−1

vb (T)Φv(T, t)(
−
[∫ t

T Φv(t, τ)GvQvGT
v ΦT

v (t, τ)dτ
]
ΦT

v (T, t)P−1
vb (T)Φv(T, t) + I

)−1[
−
∫ t

T Φv(t, τ)GvQvGT
v ΦT

v (t, τ)dτ
]
ΦT

v (T, t)P−1
vb (T)Φv(T, t)

(38)

where Φv(T, t) = eAv(T−t). Substituting
(

P+
vb(T)

)−1, Gv and Qv into Equation (38) yields:

P−1
vb (t) =

1

12σ2
r − 4v2

odo(t− T)3σ2
wpitch

 12 12vodo(t− T) −6vodo(t− T)2

12vodo(t− T) 12v2
odo(t− T)2 6v2

odo(t− T)3

−6vodo(t− T)2 6v2
odo(t− T)3 3v2

odo(t− T)4

 (39)
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Substituting Equations (33) and (39) into Equation (27), the covariance of the optimal smoothed
estimate of vertical position error can be obtained as indicated in Equation (40):

prD (t) = prD −
prD

(
12prD+12σ2

r +12pφpitch
v2

odo(2tT−t2)+4σ2
wpitch

v2
odo(3t2T−2t3)+3pωy v2

odo(2t2T2−t4)
)

12prD+12σ2
r +12pφpitch

v2
odoT2+4σ2

wpitch
v2

odoT3+3pωy v2
odoT4

+
σ2

r

(
12prD+12σ2

r +12pφpitch
v2

odot2+4σ2
wpitch

v2
odot3+3pωy v2

odot4
)
−12σ4

r

12prD+12σ2
r +12pφpitch

v2
odoT2+4σ2

wpitch
v2

odoT3+3pωy v2
odoT4

−
v4

odot2(t−T)2
(

σ4
wpitch

t(t−4T)+9pφpitch
pωy T2+3σ2

wpitch
T
(

4pφpitch
+pωy tT

))
3
(

12prD+12σ2
r +12pφpitch

v2
odoT2+4σ2

wpitch
v2

odoT3+3pωy v2
odoT4

)
(40)

where prD is the initial positon error variance. σ2
r is the PSD of position measurement noise.

pφpitch
v2

odoT2, σ2
wpitch

v2
odoT3 and pωy v2

odoT4 represent the vertical position error variance caused by the
initial pitch error, the equivalent random walk noise and bias instability of the pitch axis, respectively.

For the level channel, the system state transition matrix and the initial covariance matrix can be
expressed using Equation (41):

Φl(t, 0) = eAl t =


1 0 vodot cos ϕ vodot sin ϕ − 1

2 vodot2 sin ϕ

0 1 vodot sin ϕ −vodot cos ϕ 1
2 vodot2 cos ϕ

0 0 1 0 0
0 0 0 1 −t
0 0 0 0 1


Pl f (0) = diag

([
pr pr pδk pφD

pωz

])
(41)

We can calculate the covariance of the smoothed estimate of north and east position error in the
same way as shown in Equations (34)–(38). The solutions are very complex, but can be written as the
following Equation (42) shows:

prN (t) = p0(t)− p1(t) cos(2ϕ)

prE(t) = p0(t) + p1(t) cos(2ϕ)
(p0(t) > 0, p1(t) > 0) (42)

where ϕ is the yaw angle of the trolley with respect to the navigation frame. Considering that
−1 ≤ cos(2ϕ) ≤ 1, the variation range of prN (t) and prE(t) is [p0(t)− p1(t), p0(t) + p1(t)]. In fact,
p0(t)− p1(t) represents the variance of longitudinal position error, and p0(t) + p1(t) represents the
variance of lateral position error. In order to facilitate analysis, we can project the north and east
position error onto the longitudinal (forward) and lateral (right) directions by the projection formula
as shown by Equation (43):[

pL(t) pLR(t)
pLR(t) pR(t)

]
=

[
cos ϕ sin ϕ

− sin ϕ cos ϕ

][
prN (t) prNE(t)
prNE(t) prE(t)

][
cos ϕ − sin ϕ

sin ϕ cos ϕ

]
(43)

The analytical solution of the longitudinal position error variance is given by Equation (44):

pL(t) = pr −
pr

(
3pr+3σ2

r +3pδkv2
odo(2tT−t2)+σ2

wδk
v2

odo(3t2T−2t3)
)

3pr+3σ2
r +3pδkv2

odoT2+σ2
wδk

v2
odoT3

+
σ2

r

(
3pr+3σ2

r +3pδkv2
odot2+v2

odoσ2
wδk

t3
)
−3σ4

r

3pr+3σ2
r +3pδkv2

odoT2+σ2
wδk

v2
odoT3

−
σ2

wδk
v4

odot2(t−T)2
(

σ2
wδk

t(t−4T)−12pδkT
)

12(3pr+3σ2
r +3pδkv2

odoT2+σ2
wδk

v2
odoT3)

(44)
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where pδkv2
odoT2 represents the longitudinal position error variance caused by the initial variance of

scale factor error. And σ2
wδk

v2
odoT3 represents the longitudinal position error variance caused by the

random noise of scale factor error. The lateral position error variance is:

pR(t) = pr −
pr

(
12pr+12σ2

r +12pφD
v2

odo(2tT−t2)+4σ2
wD

v2
odo(3t2T−2t3)+3pωz v2

odo(2t2T2−t4)
)

12pr+12σ2
r +12pφD

v2
odoT2+4σ2

wD v2
odoT3+3pωz v2

odoT4

+
σ2

r

(
12pr+12σ2

r +12pφD
v2

odot2+4σ2
wD

v2
odot3+3pωz v2

odot4
)
−12σ4

r

12pr+12σ2
r +12pφD

v2
odoT2+4σ2

wD v2
odoT3+3pωz v2

odoT4

−
v4

odot2(t−T)2
(

σ4
wD

t(t−4T)+9pφD
pωz T2+3σ2

wD
T
(

4pφD
+pωz tT

))
3
(

12pr+12σ2
r +12pφD

v2
odoT2+4σ2

wD v2
odoT3+3pωz v2

odoT4
)

(45)

where pφD
v2

odoT2, σ2
wD

v2
odoT3 and pωz v2

odoT4 represent the lateral position error variance caused by the
initial yaw error, the equivalent random walk noise and bias instability of the yaw axis, respectively.

As shown in Equations (40), (44) and (45), the vertical position error is mainly affected by the
lateral direction gyro drifts and initial pitch error, the lateral position error by the vertical direction
gyro drifts and initial orientation error, and the longitudinal position error is affected by the odometer.

In order to verify the correctness of the derived analytical solution of the covariance matrix,
a comparison with the numerical solution should be performed. Setting T = 60 s, vodo = 1 m/s, and the
initial covariance matrix, spectral density matrix of system noise and measurement noise covariance
matrix are set as indicated in Equation (46):

Pv(0) = diag
([

(0.6 mm)2 (0.005 ◦)2 (0.05 ◦/h)2
])

Qv =
(

0.02 ◦/
√

h
)2

Rv = (0.6 mm)2

Pl(0) = diag
([

(0.6 mm)2 (0.6 mm)2 (0.002)2 (0.2 ◦)2 (0.05 ◦/h)2
])

Ql = diag
([ (

0.000008/
√

s
)2

(
0.02 ◦/

√
h
)2
])

Rl = diag
([

(0.6 mm)2 (0.6 mm)2
])

(46)

The standard deviations of position errors calculated by the analytical solution and numerical
solution of the RTS algorithm and TFS algorithm are shown in Figure 5. As Figure 5 illustrates,
the analytical solution of the covariance matrix is identical with numerical solution and the smoothing
effect of RTS and TFS are equivalent.
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We can take advantage of the analytical solution of the covariance matrix to quantitatively
analyze the position errors introduced by gyro drifts and odometer errors for guiding the selection
of the sensors. For this purpose, the variances of initial attitude angle errors, initial position errors
and measurement noise need to be set to typical values. According to the precision of the total
station, we set pr = σ2

r = (0.6 mm)2. Considering that the accelerometer used in the system with a
bias of 50 µg will give rise to a level error of about 0.003◦ [16], and equivalent level error contains
the residual misalignment error between the IMU and odometer, here we set pφpitch

= (0.005◦)2.
The initial orientation error is approximately determined by the gyro bias and the local latitude, that
is φD = δωg/(ωie cos L). In addition, the surveying distance of each interval is 60 m and the velocity
is set to 1 m/s. The observation of position is provided only at the initial and the end of time epoch,
the maximum of smoothed position error caused by gyro bias instability and random walk noise exists
in the middle of surveying time and setting t = T/2.

Figure 6 illustrates the relationship of vertical and lateral position error standard deviation with
the gyro bias instability and random walk noise theoretically. As Figure 6b,d,f illustrate, in order
to satisfy the surveying accuracy of 0.67 mm (1 σ) for the longitudinal direction, the uncertainty of
odometer scale factor error should less than 0.000011 /

√
s at most. The scale factor is a function of

position, and its uncertainty is caused by the change of position. The velocity has a certain value
so that the uncertainty of the scale factor becomes a function of time. For the lateral and vertical
directions, the values of equivalent gyro bias and equivalent random walk noise should below the
lines in Figure 6b,d.

In fact, the equivalent gyro drifts contain the terms caused by the projections of the Earth’s and
azimuth’s rotation rate through the attitude errors as expressed in Equation (6). The constant part of
the attitude errors results in the equivalent constant gyro bias. The drift part of the attitude errors
results in the drift of the equivalent gyro bias. Since the attitude error changes slowly, the drift part
can be ignored for a short period of time measurement.
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Figure 6. (a) Theoretical standard deviation of lateral position error; (b) The relationship of drifts
for the equivalent vertical gyro; (c) Theoretical standard deviation of vertical position error; (d) The
relationship of drifts for the equivalent lateral gyro; (e) Theoretical standard deviation of longitudinal
position error; (f) The relationship of drifts for the odometer.

For the RLG used in our surveying system, the gyro bias instability is about 0.03◦/h which will
result in an orientation alignment error of about 0.18◦ [16]. According to Equation (6), the estimated
value of the incremental equivalent gyro bias introduced by the projection of the Earth’s and azimuth’s
rotation rate is about 0.05◦/h at most. Considering that its random walk noise is about 0.005◦/

√
h,

the gyros used in the system can satisfy the demands of the surveying accuracy.
For a typical Fiber Optic Gyro (FOG) with bias instability of 0.1◦/h and random walk noise of

0.007◦/
√

h, the orientation error is about 0.6◦ and the equivalent gyro bias is about 0.25◦/h, which
exceeds the requirement according to Figure 6 and therefore, it cannot satisfy the surveying accuracy
demand of 0.67 mm (1 σ).

In addition, the theoretical analysis result is obtained under ideal conditions and only the bias
instability and the random walk noise of gyros are considered. The actual noise models of gyros are
more complex than that. We should select gyroscopes with better performance than the index as
Figure 6 shows in practice and the rate random walk and Markov process noise of the gyros should
also be small.

6. Simulations and Experimental Results

6.1. Simulations

Firstly, Monte Carlo simulations of the surveying accuracy for the proposed algorithm have been
implemented based on the real random noises of two different grade gyroscopes. The simulated
trajectory is a straight line and Cn

b = I. The random noises are measured by a RLG-based IMU
and a FOG-based IMU in static state. For the RLG-based IMU, the PSD of random walk noise is
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about 0.005◦/
√

h, and the bias instability is set to 0.03◦/h, the variance of initial orientation error is
set to (0.2◦)2. For the FOG based IMU, the PSD of random walk noise is about 0.007◦/

√
h, and the

bias instability is set to 0.1◦/h, the variance of initial orientation error is set to 0.6◦. Commonly the
variance of initial level error is set to (0.005◦)2. The variances of the initial position error and the
position observation noise are set to (0.6 mm)2. We take the position error at middle of the time to test
the statistical accuracy. Five hundred groups of Monte Carlo simulation results of vertical and lateral
directions are shown in Figure 7.
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Figure 7. (a) The distribution of vertical position error for the RLG-based IMU; (b) The distribution
of lateral position error for the RLG-based IMU; (c) The distribution of vertical position error for the
FOG-based IMU; (d) The distribution of vertical position error for the FOG-based IMU.

According to Figure 7, the Root Mean Square (RMS) of the surveying accuracy for the RLG-based
IMU is about 0.44 mm (1σ) for the vertical direction and 0.42 mm (1σ) for the lateral direction.
The RMS of the surveying accuracy for the FOG-based IMU is about 1.71 mm (1σ) for the vertical
direction and 0.77 mm (1σ) for the lateral direction. This is consistent to the result calculated by the
covariance analysis.

Secondly, surveying accuracy simulations for the proposed algorithm compared with traditional
filtering algorithms, namely INS/landmark integration and INS/odometer/landmark integration,
have been carried out based on the numerical analysis of covariance. The gyro drifts are set to 0.01◦/h
of bias instability and 0.005◦/

√
h of random walk noise. The accelerometer drifts are set to 10 µg of bias

instability and 5 µg/
√

Hz of random noise. Setting T = 60 s, v = 1 m/s, and position observations are
provided at the end of the time. The RTS smoothers are employed when the process of forward filtering
is finished for all algorithms. The simulation results are shown in Figure 8, which illustrates, that the
surveying accuracy of the proposed algorithm is better than that of the traditional filtering algorithms
based on INS or INS/odometer integrations. The bias of the inertial sensors cannot be estimated well
under railway surveying applications by the traditional algorithms, which need inertial sensors of
higher precision grade for long distance interval surveying or more high accuracy position updates.
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Figure 8. (a) Accuracy comparison with different algorithms in the north direction; (b) Accuracy
comparison with different algorithms in the east direction; (c) Accuracy comparison with different
algorithms in the vertical direction.

For the new algorithm of this paper, the equivalent gyro biases can be estimated and compensated.
Therefore, the proposed algorithm is a low-cost and high-efficiency approach with respect to the
traditional ones.

6.2. Experimental Results

Real tests were carried out on the experimental railway line of the Zhu Zhou Time Electronic
Technology Company (Hunan, China). The test length of the track is 120 m as illustrated in Figure 9.
The absolute position is measured by a Leica high precision total station with a prism mounted on the
trolley based on the CPIII control points shown in the figure.
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Figure 9. The experimental railway track surveying system.

At the beginning of the experiments we put the surveying trolley on the starting position of
the track for 15 min of static initial alignment. The initial position is measured by the total station.
Then pushing the trolley moves forward it on the track at walking speed providing the observations
of absolute position every 60 m in the stationary state. Six groups of 120 m long track surveying
experiments have been carried out. The system was repowered and realigned after every three groups
of experiments.

The true values of absolute positions about the railway line are measured by the high total station
(0.6 mm, 0.5”) in static mode based on the CPIII control network. We compare the smoothed surveying
results with the absolute position measured by the total station in every 3 m interval, one of which
was illustrated in Figure 10. The RMS of position errors of the six groups of surveying results was
calculated, respectively, and is listed in Table 1.
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Figure 10. (a) The north position measurements; (b) The vertical position measurements; (c) The east
position measurements; (d) The position measurement errors of north, east and vertical directions.
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Table 1. RMS values (1σ) of the new filtering and smoothing algorithm for 6 groups of railway track
surveying experiments.

RMS (mm) Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

North 1.0938 1.2332 0.9374 0.9890 0.8838 0.8902
Vertical 0.9118 0.9285 0.7052 0.7735 0.7981 0.9148

East 0.0090 0.0096 0.0077 0.0088 0.0084 0.0087

As shown in Figure 10 and Table 1, the absolute positions identified by the approach of the new
filtering and smoothing algorithm are in good agreement with those measured by the traditional
total station approach in static mode. The new algorithm proposed in this paper is effective, and the
absolute position measuring accuracy can reach 1 mm (1σ) with position observation measured by a
total station every 60 m interval for the real tests. Therefore, the approach based on the new algorithm
can satisfy the demands of high absolute accuracy and works efficiently for railway track surveying
compared with the traditional total station approach.

7. Conclusions

Railway track surveying is an essential step in the process of railway construction and
maintenance. In order to overcome the shortcomings of traditional track surveying approaches,
this paper proposes a new filtering and smoothing algorithm based on IMU/odometer data and
landmarks for high precise railway track surveying.

The approach in this paper takes use of the IMU/odometer based dead reckoning system
integrated with landmarks measured by a total station for high precise track surveying. A new
model with completely observable error states for the Kalman filter and smoother is established by
combining error terms to overcome the difficulty of estimating too many error parameters with too
few observations of landmarks under weak maneuver conditions.

Since the new filtering and smoothing algorithm can estimate and compensate the equivalent gyro
biases of the system, it can reduce the accuracy requirement of the gyros and the frequency requirement
of the position observations. Therefore the surveying approach based on the new algorithm is effective
in reducing the cost and improving work efficiency compared with traditional integration algorithms
based on INS.

Analytical solutions of position error variance for longitudinal, lateral and vertical directions were
presented by solving the covariance propagation equation of the new filtering and smoothing algorithm,
which can be used in analyzing the accuracy of measurement result in theory. It is significant for guiding
the selection of the gyroscopes. According to the covariance analysis and simulation results, gyros with
bias instability under 0.1◦/h and random walk noise less than 0.005◦

√
h at the same time can satisfy

the surveying accuracy requirements. Due to only the bias instability and the random walk noise are
considered in the model, the rate random walk and Markov noise should also be small for the gyros.

Experimental results illustrated that the absolute accuracy of the new approach with respect to
the measurement of total station in static mode for railway track surveying can reach 1 mm (1σ) when
using RLG based IMU with gyro bias instability of 0.03◦/h and random walk noise of 0.005◦/

√
h.

The interval of position observation based on total station can be extended to 60 m in length, which
can reduce the measuring time significantly. The approach can simultaneously satisfy the demands of
high accuracy and work efficiency for railway track surveying.
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