Thermal Infrared Pedestrian Image Segmentation Using Level Set Method
Abstract
:1. Introduction
2. Background and Motivation
2.1. Traditional Level Set Method for Image Segmentation
2.2. Distance Regularized Level Set Evolution
2.3. Motivation
3. Intensity Adjustment Level Set Evolution
3.1. Boundary Enhancement
3.2. Intensity Adjustment
3.3. Level Set Based Image Segmentation
- Image Smoothing. Using the filter (Equation (12)), smooth the image and obtain the image.
- Boundary Enhancement. Compute the soft mark (Equation (14)) for the image . Then the boundary enhanced image is obtained with Equation (15).
- Intensity Adjustment. Calculate the weight for each pixel with Equation (17). Adjust the intensity of the image with Equation (16).
- Level Set Based Image Segmentation. Generate the edge stop function with Equation (18). Equation (11) is applied to carry on level set evolution and get the infrared image segmentation result, in which the terminal condition is that the evolving contour is not change for five iterations, or the number of the iterations reaches to the set value.
4. Experimental Results and Discussions
4.1. Data Set and Evaluation Measures
4.2. Experimental Setting
4.3. Comparisons of Edge Stop Function
4.4. Method Comparison
4.5. Quantitative Evaluation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shaik, J.; Iftekharuddin, K.M. Detection and tracking of targets in infrared images using Bayesian techniques. Opt. Laser Technol. 2009, 41, 832–842. [Google Scholar] [CrossRef]
- Liu, J.; Tang, Z.; Cui, Y.; Wu, G. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing. Sensors 2017, 17, 1364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhu, S.; Zhou, Q. A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation. Sensors 2016, 16, 1756. [Google Scholar] [CrossRef] [PubMed]
- Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49. [Google Scholar] [CrossRef]
- Caselles, V.; Kimmel, R.; Sapiro, G. Geodesic Active Contours. Int. J. Comput. Vis. 1997, 22, 61–79. [Google Scholar] [CrossRef]
- Caselles, V.; Catt, F.; Coll, T.; Dibos, F. A geometric model for active contours in image processing. Numer. Math. 1993, 66, 1–31. [Google Scholar] [CrossRef]
- Caselles, V.; Kimmel, R.; Sapiro, G. Geodesic active contours. In Proceedings of the Fifth International Conference on Computer Vision, Cambridge, MA, USA, 20–23 June 1995; pp. 694–699. [Google Scholar]
- Malladi, R.; Sethian, J.A.; Vemuri, B.C. Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 158–175. [Google Scholar] [CrossRef]
- Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1988, 1, 321–331. [Google Scholar] [CrossRef]
- Xu, C.; Prince, J.L. Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 1998, 7, 359–369. [Google Scholar] [PubMed]
- Mumford, D.; Shah, J. Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 1989, 42, 577–685. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Vese, L.A.; Chan, T.F. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. Int. J. Comput. Vis. 2002, 50, 271–293. [Google Scholar] [CrossRef]
- Li, C.; Huang, R.; Ding, Z.; Gatenby, J.C.; Metaxas, D.N.; Gore, J.C. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 2011, 20, 2007–2016. [Google Scholar] [PubMed]
- Zhou, D.; Zhou, H.; Shao, Y. An improved Chan—Vese model by regional fitting for infrared image segmentation. Infrared Phys. Technol. 2016, 74, 81–88. [Google Scholar] [CrossRef]
- Arandjelovic, O. Object Matching Using Boundary Descriptors. In Proceedings of the British Machine Vision Conference 2012, Surrey, UK, 3–7 September 2012; pp. 1–11. [Google Scholar]
- Cote, M.; Saeedi, P. Automatic Rooftop Extraction in Nadir Aerial Imagery of Suburban Regions Using Corners and Variational Level Set Evolution. IEEE Trans. Geosci. Remote Sens. 2013, 51, 313–328. [Google Scholar] [CrossRef]
- Arandjelović, O.; Pham, D.-S.; Venkatesh, S. Efficient and accurate set-based registration of time-separated aerial images. Pattern Recognit. 2015, 48, 3466–3476. [Google Scholar] [CrossRef]
- Pratondo, A.; Chui, C.-K.; Ong, S.-H. Robust Edge-Stop Functions for Edge-Based Active Contour Models in Medical Image Segmentation. IEEE Signal Process. Lett. 2016, 23, 222–226. [Google Scholar] [CrossRef]
- Ilunga-Mbuyamba, E.; Cruz-Duarte, J.M.; Avina-Cervantes, J.G.; Correa-Cely, C.R.; Lindner, D.; Chalopin, C. Active contours driven by Cuckoo Search strategy for brain tumour images segmentation. Expert Syst. Appl. 2016, 56, 59–68. [Google Scholar] [CrossRef]
- Ngo, T.A.; Lu, Z.; Carneiro, G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 2016, 35, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Rousson, M.; Paragios, N.; Deriche, R. Implicit Active Shape Models for 3D Segmentation in MR Imaging. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, Saint-Malo, France, 26–29 September 2004. [Google Scholar]
- Prabha, S.; Suganthi, S.S.; Sujatha, C.M. An approach to analyze the breast tissues in infrared images using nonlinear adaptive level sets and Riesz transform features. Technol. Health Care 2015, 23, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Guo, Y.; Gao, C. Background subtraction based level sets for human segmentation in thermal infrared surveillance systems. Infrared Phys. Technol. 2013, 61, 230–240. [Google Scholar] [CrossRef]
- Akula, A.; Khanna, N.; Ghosh, R.; Kumar, S.; Das, A.; Sardana, H.K. Adaptive contour-based statistical background subtraction method for moving target detection in infrared video sequences. Infrared Phys. Technol. 2014, 63, 103–109. [Google Scholar] [CrossRef]
- Li, C.; Xu, C.; Gui, C.; Fox, M.D. Level Set Evolution without Re-Initialization: A New Variational Formulation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 430–436. [Google Scholar]
- Li, C.; Xu, C.; Gui, C.; Fox, M.D. Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 2010, 19, 3243–3254. [Google Scholar] [PubMed]
- Zhang, K.; Zhang, L.; Song, H.; Zhang, D. Reinitialization-Free Level Set Evolution via Reaction Diffusion. IEEE Trans. Image Process. 2013, 22, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; He, C.; Zhan, Y. Tensor diffusion level set method for infrared targets contours extraction. Infrared Phys. Technol. 2012, 55, 19–25. [Google Scholar] [CrossRef]
- Zhao, F.; Zhao, J.; Zhao, W.; Qu, F. Guide filter-based gradient vector flow module for infrared image segmentation. Appl. Opt. 2015, 54, 9809–9817. [Google Scholar] [CrossRef] [PubMed]
- Estellers, V.; Zosso, D.; Lai, R.; Osher, S.; Thiran, J.P.; Bresson, X. Efficient algorithm for level set method preserving distance function. IEEE Trans. Image Process. 2012, 21, 4722–4734. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, B.; Bhaskaran, V.; Konstantinides, K. Low-complexity block-based motion estimation via one-bit transforms. IEEE Trans. Circuits Syst. Video Technol. 1997, 7, 702–706. [Google Scholar] [CrossRef]
- Erturk, S. Multiplication-Free One-Bit Transform for Low-Complexity Block-Based Motion Estimation. IEEE Signal Process. Lett. 2007, 14, 109–112. [Google Scholar] [CrossRef]
- Erturk, S. Region of Interest Extraction in Infrared Images Using One-Bit Transform. IEEE Signal Process. Lett. 2013, 20, 952–955. [Google Scholar] [CrossRef]
- Davis, J.W.; Keck, M.A. A Two-Stage Template Approach to Person Detection in Thermal Imagery. In Proceedings of the Seventh IEEE Workshops on Application of Computer Vision, Breckenridge, CO, USA, 5–7 January 2005; Volume 1, pp. 364–369. [Google Scholar]
- Miezianko, R. Terravic Research Infrared Database. IEEE OTCBVS WS Series Bench. Available online: http://vcipl-okstate.org/pbvs/bench/ (accessed on 3 August 2017).
- Bilodeau, G.-A.; Torabi, A.; St-Charles, P.-L.; Riahi, D. Thermal—Visible registration of human silhouettes: A similarity measure performance evaluation. Infrared Phys. Technol. 2014, 64, 79–86. [Google Scholar] [CrossRef]
- Gao, C.; Du, Y.; Liu, J.; Lv, J.; Yang, L.; Meng, D.; Hauptmann, A.G. InfAR dataset: Infrared action recognition at different times. Neurocomputing 2016, 212, 36–47. [Google Scholar] [CrossRef]
- Chang, H.H.; Zhuang, A.H.; Valentino, D.J.; Chu, W.C. Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 2009, 47, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Sofian, H.; Than, J.C.M.; Noor, N.M.; Mohamad, S. Lumen boundary detection in IVUS medical imaging using structured element. In Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication, Beppu, Japan, 5–7 January 2017; pp. 1–7. [Google Scholar]
- Li, B.N.; Chui, C.K.; Chang, S.; Ong, S.H. Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput. Biol. Med. 2011, 41, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, L.; Lam, K.M.; Zhang, D. A Level Set Approach to Image Segmentation With Intensity Inhomogeneity. IEEE Trans. Cybern. 2016, 46, 546–557. [Google Scholar] [CrossRef] [PubMed]
Image | A | B | C | D | E | F | Average | |
---|---|---|---|---|---|---|---|---|
IALSE (proposed) | SI | 0.9431 | 0.9476 | 0.9617 | 0.9229 | 0.9457 | 0.8885 | 0.9349 |
JI | 0.8923 | 0.9005 | 0.9263 | 0.8568 | 0.8970 | 0.7993 | 0.8787 | |
H | 2.8242 | 7.0711 | 3.1623 | 5.6569 | 6.7082 | 4.1231 | 4.9243 | |
0.8794 | 0.8895 | 0.9204 | 0.8328 | 0.8852 | 0.7490 | 0.8594 | ||
AOE | 0.1077 | 0.0995 | 0.0737 | 0.1432 | 0.1030 | 0.2007 | 0.1213 | |
FCMLSM | SI | 0.8490 | 0.9480 | 0.7842 | 0.6201 | 0.8866 | 0.7839 | 0.8120 |
JI | 0.7376 | 0.9012 | 0.6451 | 0.4494 | 0.7962 | 0.6447 | 0.6957 | |
H | 60.008 | 3 | 214.3 | 126.7 | 84.314 | 44.294 | 88.769 | |
0.6442 | 0.8903 | 0.4498 | −0.2252 | 0.7441 | 0.4488 | 0.492 | ||
AOE | 0.2624 | 0.0988 | 0.3549 | 0.5506 | 0.2038 | 0.3553 | 0.3043 | |
LSACM | SI | 0.8301 | 0.9284 | 0.7618 | 0.7241 | 0.9106 | 0.7061 | 0.8102 |
JI | 0.7096 | 0.8663 | 0.6153 | 0.5676 | 0.8358 | 0.5458 | 0.6901 | |
H | 62.097 | 3 | 215.78 | 34 | 60.1082 | 55.3624 | 71.725 | |
0.5907 | 0.8457 | 0.3747 | 0.2380 | 0.8036 | 0.1677 | 0.5034 | ||
AOE | 0.2904 | 0.1337 | 0.3847 | 0.4324 | 0.1642 | 0.4542 | 0.3099 | |
Robust_ESF | SI | 0.8989 | 0.9039 | 0.9036 | 0.6973 | 0.9134 | 0.8215 | 0.8564 |
JI | 0.8164 | 0.8247 | 0.8242 | 0.5353 | 0.8407 | 0.6971 | 0.7564 | |
H | 3.1623 | 9.0554 | 19.417 | 14.422 | 12.083 | 7.2801 | 10.903 | |
0.7751 | 0.7874 | 0.7867 | 0.1319 | 0.8105 | 0.5655 | 0.6429 | ||
AOE | 0.1854 | 0.1753 | 0.1758 | 0.4647 | 0.1593 | 0.3029 | 0.2439 | |
DRLSE | SI | 0.8991 | 0.8195 | 0.8288 | 0.6822 | 0.7033 | 0.6869 | 0.7637 |
JI | 0.8166 | 0.6942 | 0.7076 | 0.5176 | 0.5424 | 0.5232 | 0.6265 | |
H | 5.8310 | 18.028 | 35.128 | 21.024 | 73.682 | 12 | 27.479 | |
0.7755 | 0.5595 | 0.5868 | 0.0682 | 0.1563 | 0.0885 | 0.3443 | ||
AOE | 0.1834 | 0.3058 | 0.2924 | 0.4824 | 0.4576 | 0.4768 | 0.3664 |
Image | A | B | C | D | E | F |
---|---|---|---|---|---|---|
Number of Iterations | 415 | 800 | 630 | 560 | 1035 | 350 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Wei, Z.; Zhao, Y. Thermal Infrared Pedestrian Image Segmentation Using Level Set Method. Sensors 2017, 17, 1811. https://doi.org/10.3390/s17081811
Qiao Y, Wei Z, Zhao Y. Thermal Infrared Pedestrian Image Segmentation Using Level Set Method. Sensors. 2017; 17(8):1811. https://doi.org/10.3390/s17081811
Chicago/Turabian StyleQiao, Yulong, Ziwei Wei, and Yan Zhao. 2017. "Thermal Infrared Pedestrian Image Segmentation Using Level Set Method" Sensors 17, no. 8: 1811. https://doi.org/10.3390/s17081811
APA StyleQiao, Y., Wei, Z., & Zhao, Y. (2017). Thermal Infrared Pedestrian Image Segmentation Using Level Set Method. Sensors, 17(8), 1811. https://doi.org/10.3390/s17081811