An Overview on Recent Progress in Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food
Abstract
:1. Introduction
Legislations
2. Biosensors as an Alternative Analytical Tool
- Enzymes which catalyse specific biochemical reactions
- Antibodies known as immunoglobulins which form an important part of a biological group termed binding proteins and bind a particular substance with high affinity
- RNA/DNA aptamers are ligands selected to have high binding affinity and specificity to a target molecule
- Synthetic molecularly imprinted polymers to replace biomolecules
- Bacteria (genetically modified or not)
3. Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food
3.1. Kanamycin
3.2. Chloramphenicol
3.3. Tetracycline
3.4. Streptomycin
4. Conclusions and Future Prospects
Acknowledgments
Conflicts of Interest
References
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Baynes, R.E.; Dedonder, K.; Kissell, L.; Mzyk, D.; Marmulak, T.; Smith, G.; Tell, L.; Gehring, R.; Davis, J.; Riviere, J.E. Health concerns and management of select veterinary drug residues. Food Chem. Toxicol. 2016, 88, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Phillips, I.; Casewell, M.; Cox, T.; De Groot, B.; Friis, C.; Jones, R.; Nightingale, C.; Preston, R.; Waddell, J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J. Antimicrob. Chemother. 2004, 53, 28–52. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [Google Scholar] [CrossRef] [PubMed]
- Cháfer-Pericás, C.; Maquieira, A.; Puchades, R. Fast screening methods to detect antibiotic residues in food samples. TrAC Trends Anal. Chem. 2010, 29, 1038–1049. [Google Scholar] [CrossRef]
- Rico, A.G.; Burgat-Sacaze, V. Veterinary drugs and food safety: A toxicological approach. Rev. Sci. Tech. Off. Int. Epiz. 1985, 4, 111–119. [Google Scholar] [CrossRef]
- Leibovici, L.; Paul, M.; Garner, P.; Sinclair, D.J.; Afshari, A.; Pace, N.L.; Cullum, N.; Williams, H.C.; Smyth, A.; Skoetz, N. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions. J. Antimicrob. Chemother. 2016, 71, 2367–2369. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Liu, W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Dev. 2012, 32, 309–327. [Google Scholar] [CrossRef]
- Fei, A.; Liu, Q.; Huan, J.; Qian, J.; Dong, X.; Qiu, B.; Mao, H.; Wang, K. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens. Bioelectron. 2015, 70, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Kriebel, D.; Tickner, J.; Epstein, P.; Lemons, J.; Levins, R.; Loechler, E.L.; Quinn, M.; Rudel, R.; Schettler, T.; Stoto, M. The precautionary principle in environmental science. Environ. Health Perspect. 2001, 109, 871. [Google Scholar] [CrossRef] [PubMed]
- List of Maximum Residue Limits (MRLs) for Veterinary Drugs in Foods. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/veterinary-drugs/maximum-residue-limits-mrls/list-maximum-residue-limits-mrls-veterinary-drugs-foods.html (accessed on 23 August 2017).
- Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results. Available online: http://extwprlegs1.fao.org/docs/pdf/eur49615.pdf (accessed on 23 August 2017).
- Blanchaert, B.; Jorge, E.P.; Jankovics, P.; Adams, E.; Van Schepdael, A. Assay of Kanamycin A by HPLC with Direct UV Detection. Chromatographia 2013, 76, 1505–1512. [Google Scholar] [CrossRef]
- Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Guilbault, G.G.; Kramer, D.N.; Cannon, P.L. Electrochemical determination of organophosphorus compounds. Anal. Chem. 1962, 34, 1437–1439. [Google Scholar] [CrossRef]
- Updike, S.J.; Hicks, G.P. The enzyme electrode. Nature 1967, 214, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Guilbault, G.G.; Montalvo, J.G., Jr. Urea specific enzyme electrode. J. Am. Chem. Soc. 1969, 91, 2164–2168. [Google Scholar] [CrossRef] [PubMed]
- Di Gleria, K.; Green, M.J.; Hill, H.A.O.; McNeil, C.J. Homogeneous ferrocene mediated amperometric biosensors. Anal. Chem. 1986, 58, 1203–1205. [Google Scholar] [CrossRef] [PubMed]
- Luong, J.H.; Male, K.B.; Glennon, J.D. Biosensor technology: Technology push versus market pull. Biotechnol. Adv. 2008, 26, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Marty, J.L. Disposable screen printed electrochemical sensors: Tools for environmental monitoring. Sensors 2014, 14, 10432–10453. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Catanante, G.; Marty, J.L. Current trends in nanomaterial-based amperometric biosensors. Sensors 2014, 14, 23439–23461. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Si, J.; Li, Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens. Bioelectron. 2016, 77, 774–789. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.C.; Chang, T.C. Detection of penicillin g in milk using a conductimetric method. J. Dairy Sci. 1994, 77, 1515–1520. [Google Scholar] [CrossRef]
- Myllyniemi, A.-L.; Sipilä, H.; Nuotio, L.; Niemi, A.; Honkanen-Buzalski, T. An indirect conductimetric screening method for the detection of antibiotic residues in bovine kidneys. Analyst 2002, 127, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Huet, A.-C.; Delahaut, P.; Fodey, T.; Haughey, S.A.; Elliott, C.; Weigel, S. Advances in biosensor-based analysis for antimicrobial residues in foods. TrAC Trends Anal. Chem. 2010, 29, 1281–1294. [Google Scholar] [CrossRef]
- Hayat, A.; Marty, J.L. Aptamer based electrochemical sensors for emerging environmental pollutants. Front. Chem. 2014, 2, 41. [Google Scholar] [CrossRef] [PubMed]
- Rapini, R.; Marrazza, G. Electrochemical aptasensors for contaminants detection in food and environment: Recent advances. Bioelectrochemistry 2017, 118, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Mello, L.D.; Kubota, L.T. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem. 2002, 77, 237–256. [Google Scholar] [CrossRef]
- Pilehvar, S.; Gielkens, K.; Trashin, S.A.; Dardenne, F.; Blust, R.; De Wael, K. (Electro) Sensing of phenicol antibiotics—A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2416–2429. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Du, D.; Lin, Y. Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. TrAC Trends Anal. Chem. 2016, 83, 95–101. [Google Scholar] [CrossRef]
- Pérez-López, B.; Merkoçi, A. Nanomaterials based biosensors for food analysis applications. Trends Food Sci. Technol. 2011, 22, 625–639. [Google Scholar] [CrossRef]
- Qin, X.; Guo, W.; Yu, H.; Zhao, J.; Pei, M. A novel electrochemical aptasensor based on mwcnts-bmimpf 6 and amino functionalized graphene nanocomposite films for determination of kanamycin. Anal. Methods 2015, 7, 5419–5427. [Google Scholar] [CrossRef]
- Ramezani, M.; Danesh, N.M.; Lavaee, P.; Abnous, K.; Taghdisi, S.M. A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles. Sens. Actuators B Chem. 2016, 222, 1–7. [Google Scholar] [CrossRef]
- Sun, X.; Li, F.; Shen, G.; Huang, J.; Wang, X. Aptasensor based on the synergistic contributions of chitosan-Gold nanoparticles, graphene-Gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 2014, 139, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yao, D.; Xie, C.; Liu, D. Development of an aptasensor for electrochemical detection of tetracycline. Food Control 2014, 42, 109–115. [Google Scholar] [CrossRef]
- Wei, Q.; Zhao, Y.; Du, B.; Wu, D.; Li, H.; Yang, M. Ultrasensitive detection of kanamycin in animal derived foods by label-free electrochemical immunosensor. Food Chem. 2012, 134, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wei, Q.; Du, B.; Wu, D.; Li, H.; Yan, L.; Ma, H.; Zhang, Y. Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4 nanoparticles and thionine mixed graphene sheet. Biosens. Bioelectron. 2013, 48, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Lv, Z.; Liu, J.; Bai, W.; Yang, S.; Chen, A. Colorimetric aptasensor using unmodified gold nanoparticles for homogeneous multiplex detection. PLoS ONE 2014, 9, e109263. [Google Scholar] [CrossRef] [PubMed]
- Citartan, M.; Gopinath, S.C.; Tominaga, J.; Tan, S.-C.; Tang, T.-H. Assays for aptamer-based platforms. Biosens. Bioelectron. 2012, 34, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, N.; White, S.J.; Bunka, D.H.; Song, L.; Stead, S.; Tarbin, J.; Sharman, M.; Zhou, D.; Stockley, P.G. Toggled rna aptamers against aminoglycosides allowing facile detection of antibiotics using gold nanoparticle assays. Anal. Chem. 2012, 84, 6595–6602. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Yu, A. Silver nanoplates: A highly sensitive material toward inorganic anions. Langmuir 2008, 24, 4300–4309. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Hou, H.; Zhang, B.; Tang, J. Label-free detection of kanamycin using aptamer-based cantilever array sensor. Biosens. Bioelectron. 2014, 56, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chandra, P.; Song, K.-M.; Ban, C.; Shim, Y.-B. Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens. Bioelectron. 2012, 36, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Istamboulie, G.; Hayat, A.; Catanante, G.; Bhand, S.; Marty, J.L. Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample. Sens. Actuators B Chem. 2017, 245, 507–515. [Google Scholar] [CrossRef]
- Zhao, B.Y.; Wei, Q.; Xu, C.; Li, H.; Wu, D.; Cai, Y.; Mao, K.; Cui, Z.; Du, B. Label-free electrochemical immunosensor for sensitive detection of kanamycin. Sens. Actuators B Chem. 2011, 155, 618–625. [Google Scholar] [CrossRef]
- Zhou, N.; Luo, J.; Zhang, J.; You, Y.; Tian, Y. A label-free electrochemical aptasensor for the detection of kanamycin in milk. Anal. Methods 2015, 7, 1991–1996. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Cheng, L.; Yang, C.; Zhang, J. Photoelectrochemical aptasensing of kanamycin using visible light-activated carbon nitride and graphene oxide nanocomposites. Anal. Chem. 2014, 86, 9372–9375. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Sun, N.; Qin, X.; Pei, M.; Wang, L. A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on mwcnts-hmimpf 6 and nanoporous ptti alloy. Biosens. Bioelectron. 2015, 74, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Yin, Y.; Yu, H.; Guo, W.; Pei, M. A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosens. Bioelectron. 2016, 77, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Guo, Y.; Sun, X.; Wang, X. Aptasensor based on thionine, graphene-polyaniline composite film, and gold nanoparticles for kanamycin detection. Eur. Food Res. Technol. 2014, 239, 227–236. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Y.; Liu, S.; Yu, J.; Wang, H.; Huang, J. A novel sandwich-type electrochemical aptasensor for sensitive detection of kanamycin based on gr-pani and pamam–Au nanocomposites. New J. Chem. 2014, 38, 4931–4937. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, F. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer. Biosens. Bioelectron. 2015, 64, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Hamidi-Asl, E.; Dardenne, F.; Blust, R.; De Wael, K. An improved electrochemical aptasensor for chloramphenicol detection based on aptamer incorporated gelatine. Sensors 2015, 15, 7605–7618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Xiao, F.; Bai, J.; Lai, Y.; Hou, J.; Xian, Y.; Jin, L. Label-free immunoassay for chloramphenicol based on hollow gold nanospheres/chitosan composite. Talanta 2011, 87, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Luo, C.; Cheng, W.; Mao, W.; Zhang, D.; Ding, S. A simple and sensitive electrochemical aptasensor for determination of chloramphenicol in honey based on target-induced strand release. J. Electroanal. Chem. 2012, 687, 89–94. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.-C.; Zhang, J.-W. A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures. Talanta 2016, 161, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhao, J.; Chen, M.; Yang, T.; Luo, S.; Jiao, K. Electrocatalytic determination of chloramphenicol based on molybdenum disulfide nanosheets and self-doped polyaniline. Talanta 2015, 131, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Yan, F.; Su, B. Electrochemical determination of chloramphenicol in milk and honey using vertically ordered silica mesochannels and surfactant micelles as the extraction and anti-fouling element. J. Electroanal. Chem. 2016, 781, 383–388. [Google Scholar] [CrossRef]
- Liu, S.; Lai, G.; Zhang, H.; Yu, A. Amperometric aptasensing of chloramphenicol at a glassy carbon electrode modified with a nanocomposite consisting of graphene and silver nanoparticles. Microchim. Acta 2017, 184, 1445–1451. [Google Scholar] [CrossRef]
- Yan, Z.; Gan, N.; Li, T.; Cao, Y.; Chen, Y. A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens. Bioelectron. 2016, 78, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Gan, N.; Li, T.; Wang, Y.; Xu, Q.; Chen, Y. An electrochemical aptasensor for multiplex antibiotics detection using y-shaped DNA-based metal ions encoded probes with NMOF substrate and CSRP target-triggered amplification strategy. Anal. Chim. Acta 2017, 968, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gan, N.; Luo, N.-X.; Xie, D.-H.; Wen, W.-G. A disposable and magnetic nano-particles composite membrane modified amperometric immunosensor for determination of chloramphenicol. In Proceedings of the IEEE 2nd International Conference on Biomedical Engineering and Informatics BMEI’09, Tianjin, China, 17–19 October 2009; pp. 1–5. [Google Scholar]
- Xiao, F.; Zhao, F.; Li, J.; Yan, R.; Yu, J.; Zeng, B. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-Gold nanoparticle-Ionic liquid composite film modified glassy carbon electrodes. Anal. Chim. Acta 2007, 596, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Ganjali, M.; Alizade, T.; Norouzi, P. Chloramphenicol biomimetic molecular imprinted polymer used as a sensing element in nano-composite carbon paste potentiometric sensor. Int. J. Electrochem. Sci. 2012, 7, 4800–4810. [Google Scholar]
- Que, X.; Chen, X.; Fu, L.; Lai, W.; Zhuang, J.; Chen, G.; Tang, D. Platinum-catalyzed hydrogen evolution reaction for sensitive electrochemical immunoassay of tetracycline residues. J. Electroanal. Chem. 2013, 704, 111–117. [Google Scholar] [CrossRef]
- Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Abnous, K. A novel m-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens. Bioelectron. 2016, 85, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Rivas, G.A.; Rubianes, M.D.; Rodriguez, M.C.; Ferreyra, N.F.; Luque, G.L.; Pedano, M.L.; Miscoria, S.A.; Parrado, C. Carbon nanotubes for electrochemical biosensing. Talanta 2007, 74, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, D.-J.; Gai, L.; Wang, J.-P.; Li, Y.-B. Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sens. Actuators B Chem. 2012, 162, 201–208. [Google Scholar] [CrossRef]
- Bougrini, M.; Florea, A.; Cristea, C.; Sandulescu, R.; Vocanson, F.; Errachid, A.; Bouchikhi, B.; El Bari, N.; Jaffrezic-Renault, N. Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework for tetracycline detection in honey. Food Control 2016, 59, 424–429. [Google Scholar] [CrossRef]
- Ye, Y.; Kong, T.; Yu, X.; Wu, Y.; Zhang, K.; Wang, X. Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 2012, 89, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Hu, G.; Wagberg, T.; Zhan, S.; Xu, H.; Zhou, P. Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim. Acta 2016, 183, 723–729. [Google Scholar] [CrossRef]
- Gan, T.; Shi, Z.; Sun, J.; Liu, Y. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations-exchanged montmorillonite catalyst. Talanta 2014, 121, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, Y.; Zhang, B.; Li, M.; Jia, S.; Jiang, S.; Zhou, H.; Zhang, Y.; Zhang, C.; Turner, A.P. Label-free electrochemical detection of tetracycline by an aptamer nano-biosensor. Anal. Lett. 2012, 45, 986–992. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, Y.S.; Niazi, J.H.; Gu, M.B. Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst. Eng. 2010, 33, 31. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, H.; Quan, X.; Chen, S. Electrochemical determination of tetracycline using molecularly imprinted polymer modified carbon nanotube-gold nanoparticles electrode. Electroanalysis 2011, 23, 1863–1869. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Wu, Y.; Jia, S.; Fan, T.; Zhang, Z.; Zhang, C. Fast determination of the tetracyclines in milk samples by the aptamer biosensor. Analyst 2010, 135, 2706–2710. [Google Scholar] [CrossRef] [PubMed]
- Conzuelo, F.; Campuzano, S.; Gamella, M.; Pinacho, D.G.; Reviejo, A.J.; Marco, M.P.; Pingarrón, J.M. Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens. Bioelectron. 2013, 50, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Le, T.H.; Pham, V.P.; La, T.H.; Phan, T.B.; Le, Q.H. Electrochemical aptasensor for detecting tetracycline in milk. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 015008. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, G.; Sun, X.; Wang, X. Electrochemical aptasensor based on multiwalled carbon nanotubes and graphene for tetracycline detection. IEEE Sens. J. 2015, 15, 1951–1958. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H.; Quan, X. Gold modified microelectrode for direct tetracycline detection. Front. Environ. Sci. Eng. 2012, 6, 313–319. [Google Scholar] [CrossRef]
- Que, X.; Liu, B.; Fu, L.; Zhuang, J.; Chen, G.; Tang, D. Molecular imprint for electrochemical detection of streptomycin residues using enzyme signal amplification. Electroanalysis 2013, 25, 531–537. [Google Scholar] [CrossRef]
- Liu, B.; Tang, D.; Zhang, B.; Que, X.; Yang, H.; Chen, G. Au (iii)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food. Biosens. Bioelectron. 2013, 41, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Qin, X.; Wang, Q.; Yin, Y. A novel electrochemical aptasensor for sensitive detection of streptomycin based on gold nanoparticle-functionalized magnetic multi-walled carbon nanotubes and nanoporous ptti alloy. RSC Adv. 2016, 6, 39401–39408. [Google Scholar] [CrossRef]
- Yin, J.; Guo, W.; Qin, X.; Pei, M.; Wang, L.; Ding, F. A regular “signal attenuation” electrochemical aptasensor for highly sensitive detection of streptomycin. New J. Chem. 2016, 40, 9711–9718. [Google Scholar] [CrossRef]
- Danesh, N.M.; Ramezani, M.; Emrani, A.S.; Abnous, K.; Taghdisi, S.M. A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease i for sensitive detection of streptomycin. Biosens. Bioelectron. 2016, 75, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, B.; Cui, Y.; Chen, H.; Gao, Z.; Tang, D. Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues. ACS Appl. Mater. Interfaces 2011, 3, 4668–4676. [Google Scholar] [CrossRef] [PubMed]
Serial Number | Assay/Principle | LOD * (ng/mL) | Linear Range (ng/mL) | Sample | Reference |
---|---|---|---|---|---|
1 | Amperometric immunosensor | 0.00574 | 0.01–12 | Food | [36] |
2 | Square wave voltammetry based immunosensor | 0.015 | 0.050–16 | Pork meat | [37] |
3 | Square wave voltammetry based immunosensor | 0.00631 | 0.02–14 | Food | [45] |
4 | Square wave voltammetry based aptasensor | 6.783 | 4845–9.69 × 106 | Milk | [46] |
5 | Photoelectrochemical aptasensor | 96.9 | 484.5–111,435 | - | [47] |
6 | Differential pulse voltammetry based aptasensor | 0.0037 | 0.05–100 | Milk | [48] |
7 | Differential pulse voltammetry based aptasensor | 0.00042 | 50 × 10−7–50 × 10−2 | Food | [49] |
8 | Differential pulse voltammetry based aptasensor | 2810 | 1 × 10−8–1.5 × 10−7 | Milk | [34] |
9 | Differential pulse voltammetry based aptasensor | 8.6 | 0.01–200 | Milk | [50] |
10 | Differential pulse voltammetry based aptasensor | 46 × 10−6 | 50× 10−6–40 × 10−2 | Food | [51] |
11 | Electrochemical impedance spectroscopy based aptasensor | 0.11 | 1.2–75 | Milk | [44] |
Serial Number | Assay Format | LOD * (ng/mL) | Linear Range (ng/mL) | Sample | Reference |
---|---|---|---|---|---|
1 | Differential pulse voltammetry based molecularly imprinted sensor | 0.032 | 1.615–161.5 and 161.5–1292 | Milk and honey | [52] |
2 | Differential pulse voltammetry based aptasensor | 0.059 | 0.097–0.626 | Milk | [53] |
3 | Differential pulse voltammetry based immunosensor | 0.06 | 0.1–1000 | Beef, fish, pork | [54] |
4 | Differential pulse voltammetry based aptasensor | 0.094 | 0.323–323 | Honey | [55] |
5 | Differential pulse voltammetry sensor | 48.45 | 323–3.65 × 104 | Milk and eye drops | [57] |
6 | Differential pulse voltammetry sensor | 20.99 | 32.3–3.23× 105 | Eye drops | [58] |
7 | Differential pulse voltammetry sensor | 40 | 0.1 × 103–3.6 × 103 and 3.6 × 103–1.5 × 104 | Milk and honey | [59] |
8 | Cyclic voltammetry and linear sweep voltammetry based aptasensor | 0.65 | 3.23–1.13 × 104 | Fresh milk and milk powder | [60] |
9 | Cyclic voltammetry based aptasensor | 0.15 | 5 × 10−4–50 | Milk | [61] |
10 | Square wave voltammetry based aptasensor | 0.1 × 10−4 | 0.3 × 10−4–16.1 | Milk | [62] |
11 | Differential pulse voltammetry based immunosensor | 0.11 | 0.2–80.0 | Milk | [63] |
12 | Amperometric sensor | 1.615 | 323–1938 | Milk | [64] |
13 | Potentiometry based molecularly imprinted sensor | 323 | 323–3.23 × 106 | Pharmaceutical drugs | [65] |
Serial Number | Assay Format | LOD * (ng/mL) | Linear Range (ng/mL) | Sample | Reference |
---|---|---|---|---|---|
1 | Cyclic voltammetry based immunosensor | 0.006 | 0.05–100 | Milk, honey and peanut | [66] |
2 | Differential pulse voltammetry (DPV) based aptasensor | 0.19 | 0.67–1554 | Milk | [67] |
3 | Differential pulse voltammetry based aptasensor | 2.22 | 4.44–2.22 × 104 | Milk | [69] |
4 | Linear sweep voltammetry based molecularly imprinted sensor | 9.8 × 10−8 | 9.94 × 10−5–9.94 | Honey | [70] |
5 | Differential pulse voltammetry based aptasensor | 0.27 | 0.44–2.22 × 103 | - | [72] |
6 | Differential pulse voltammetry based sensor | 4.44 | 133.2–23.088 × 103 | Feedstuff, chicken, fish and shrimp | [73] |
7 | Electrochemical impedance spectroscopy based aptasensor | 0.89 | 0.93–27.71 | - | [74] |
8 | Cyclic voltammetry and square wave voltammetry (SWV) based aptasensor | 4.44 | 4.44–4.44 × 103 | - | [75] |
9 | Electrochemical impedance spectroscopy (EIS) based aptasensor | 0.001 | 0.005–5.0 | Milk | [35] |
10 | Cyclic voltammetry based molecularly imprinted sensor | 0.04 | 0.1–40 | - | [76] |
11 | Cyclic voltammetry based aptasensor | 1 | 0.1–100 | Milk | [77] |
12 | Amperometry based immunosensor | 0.86 | 2.84–171 | Milk | [78] |
13 | Electrochemical impendence spectroscopy (EIS) based aptasensor | 10 | 10–3.0 × 103 | Milk | [79] |
14 | Differential pulse voltammetry based aptasensor | 0.25 × 10−2 | 0.04–4.44 × 105 | Milk | [80] |
15 | Cyclic voltammetry sensor | 0.09 | 1.0–10.0 | Water | [81] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majdinasab, M.; Yaqub, M.; Rahim, A.; Catanante, G.; Hayat, A.; Marty, J.L. An Overview on Recent Progress in Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food. Sensors 2017, 17, 1947. https://doi.org/10.3390/s17091947
Majdinasab M, Yaqub M, Rahim A, Catanante G, Hayat A, Marty JL. An Overview on Recent Progress in Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food. Sensors. 2017; 17(9):1947. https://doi.org/10.3390/s17091947
Chicago/Turabian StyleMajdinasab, Marjan, Mustansara Yaqub, Abdur Rahim, Gaelle Catanante, Akhtar Hayat, and Jean Louis Marty. 2017. "An Overview on Recent Progress in Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food" Sensors 17, no. 9: 1947. https://doi.org/10.3390/s17091947
APA StyleMajdinasab, M., Yaqub, M., Rahim, A., Catanante, G., Hayat, A., & Marty, J. L. (2017). An Overview on Recent Progress in Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food. Sensors, 17(9), 1947. https://doi.org/10.3390/s17091947