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Abstract: Inadequate postures adopted by an operator at work are among the most important risk
factors in Work-related Musculoskeletal Disorders (WMSDs). Although several studies have focused
on inadequate posture, there is limited information on its identification in a work context. The aim
of this study is to automatically differentiate between adequate and inadequate postures using
two wearable devices (helmet and instrumented insole) with an inertial measurement unit (IMU)
and force sensors. From the force sensors located inside the insole, the center of pressure (COP) is
computed since it is considered an important parameter in the analysis of posture. In a first step, a set
of 60 features is computed with a direct approach, and later reduced to eight via a hybrid feature
selection. A neural network is then employed to classify the current posture of a worker, yielding a
recognition rate of 90%. In a second step, an innovative graphic approach is proposed to extract three
additional features for the classification. This approach represents the main contribution of this study.
Combining both approaches improves the recognition rate to 95%. Our results suggest that neural
network could be applied successfully for the classification of adequate and inadequate posture.

Keywords: posture; center of pressure; instrumented insole; IMU; supervised classification; feature
selection; neural networks

1. Introduction

Several studies, summarized by da Costa et al. [1], have reported that Work-related Musculoskeletal
Disorders (WMSDs) generally result from repetitive movements and prolonged or inadequate postures.
Pain is the main WMSD symptom, although they may also be accompanied with abnormal motor patterns
such as movement deficits (elevation, rotation, etc.) [2] and lack of strength [3], both of which can lead to
work disability. Worldwide, the magnitude and prevalence of WMSDs represent a public health concern
encountered in most industrialized societies [4–8]. Thus, over 40 million workers in Europe are affected
by MSDs attributable to their work [9]. In the province of Ontario (Canada), based on population data
of 45,650 individuals aged 16 years and over, MSDs were mentioned as a reason for 40% of all chronic
conditions, 54% of all long-term disabilities, 24% of restricted activity days, and almost 20% of health care
utilization [4]. The impact of MSDs was even greater in the 65 and over age group [5,10]. According to the
Committee on Standards, Equity of Occupational Health and Safety of Quebec (CSEOHS), the number
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of WMSD lesions affecting workers between 2012 and 2015 represented approximately 27% of the cases
claimed, disregarding the non-reported cases [11]. Furthermore, MSDs are responsible for morbidity in
many working population and are known as an important occupational problem with increasing health
costs. In the last past decade, MSD-related costs were estimated at around 17 billion pounds in the UK,
38 billion euros in Germany, 215 billion dollars in the US, and 26 billion Canadian dollars [12]. Therefore,
there is a critical need to introduce effective detection solutions of inadequate postures which may lead to
WMSD in the industry.

WMSD detection often focuses on monitoring ergonomic risk factors by self-report questionnaires
and/or by direct or indirect observational methods [13,14]. However, it is unclear why on a
similar workstation, a person will develop a MSD while another will not. Thus, identifying
the personal determinants of MSD development remains a challenge, and a better detection of
work-related risk factors is still an important issue [13]. The use of electronic assessment tools seems
to be the most promising solution for successful detection [15]. Various technologies, such as 3D
motion analysis, have been exploited to gain a more objective or quantitative indication of worker
posture and movements [16–18]. However, camera-based systems require considerable workspace or
time-consuming calibration operations, and their costs are usually quite high. The most commonly used
device to analyze human posture is the force platform, which measures displacements of the center of
pressure (COP) [19]. COP is defined as the point location of the vertical ground reaction, and is often
used to identify a balance deficit [20]. Although these measures are reliable and valid, force platform
systems are expensive and reduce the ability to detect in real time the quantitative parameters of postures
in real work environment [21,22]. Furthermore, the subject is limited in movements (a quasi-static
position). Another approach consists in using sensors attached to the worker for collecting data
related to this worker’s own exposure variables [23–25]. A possible shortcoming of this approach is its
encumbrance, weight, and lack of portability, which limit its use in work activities. For body motions
studies, there is a trend towards combining observational approaches with direct recording methods
that use instrumentation [18,26]. While combining several detection procedures in a multidisciplinary
approach should provide better results than using a single procedure, it is unclear how to combine
them for optimal results. Also, implementing these combinations can take a lot of time.

Thereby, in this study, we focus on the design of an effective measurement system for
differentiating automatically adequate and inadequate postures. As an electronic and automatic
assessment tool, we first introduce an enactive insole and smart helmet as wearable devices to better
analyze workers’ posture. Since posture analysis can be both an expensive and time-consuming process,
previous studies have underlined the need for automatic models that can detect inadequate posture [27].
Some researchers have demonstrated the relevance of advanced statistical methods such as logistic
regression [28], Bayesian models [29], artificial neural networks (ANN) [30] or K-nearest neighbor
(KNN) algorithms [31] to predict the risk associated with occupational exposures. These methods
have produced varying prediction accuracy, depending on the task factors examined and the quality
of the data used for model development. In many cases, neural networks have been shown to yield
superior predictive accuracy compared to, for example, multiple linear regression models [32,33].
This could be attributed to the ability of ANNs to model complex and nonlinear relationships between
variables [34]. It may also be due to the fact that the statistical methods investigated have rigid
assumptions associated with the nature of the data (e.g., linearity, normality, homogeneity of variance),
whereas, neural networks make no such assumptions [35]. Thus, we hypothesized that an ANN
model could determine effectively the posture of a person in a real working environment, with easily
measurable clinical variables such as the COP.

The main contribution of the present study is to develop a new methodology for classifying the
current posture of workers using the developed instrumentation. More specifically, we establish a new
type of features, related to the COP and inertial measurement unit (IMU) data, to classify postures
at workstations. To achieve this goal, we focus on prolonged or inadequate postures, since those can
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constitute a personal determinant of WMSD-related risk. The proposed classification algorithm is
optimized by using a hybrid feature selection method.

2. Design of the Measurement System

The proposed system consists of two assessment tools as wearable devices: (1) an instrumented safety
helmet for recognizing the gestures of the worker’s head and (2) an instrumented insole for assessing local
COP displacements under the foot. The architecture of these interactive tools is represented in Figure 1.
The data recorded by the two assessment tools are sent by wireless transmission (Rx/Tx) to an Android
operated device. To effectively analyze worker postures, force sensors are also integrated into an insole
for evaluating the pressure applied on the insole and compute the COP. The IMU signals from the helmet
is processed in real time by the PIC24 using an embedded Kalman filter.

Figure 1. Block diagram of the overall interactive measurement tools (only the grey blocs are analyzed
in this study).

2.1. The Instrumented Safety Helmet

The safety helmet system is an inexpensive, non-intrusive, non-invasive, and non-vision-based
system (Figure 2). It includes an IMU that measures the head’s acceleration, velocity, and orientation
through a set of 3DOF accelerometers, 3DOF gyroscopes and 3DOF magnetometers. It should be noted
that these portable, inexpensive, non-intrusive, non-invasive sensors are increasingly being used in
biomechanics and clinical experimentation applications.
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The accelerometer adopted and used in the experimental trials of this work is the MPU9250 from
TDK InvenSense (San Jose, CA, USA).

2.2. Enactive Insole Design

Worker posture can be analyzed by the COP’s displacement under the foot. This displacement
is a virtual site of the plantar surface (Figure 3). More precisely, it is the average location of all the
pressures acting on the foot at any given time [36]. Numerous studies [37,38] have examined COP
displacements to assess and understand postural control during quiet stance or gait [39]. We have
chosen to evaluate the posture and movement of the operator using the COPs positions (barycenter)
computed as follows [40,41]:

XCOP =
∑n

i=1 XiPi

∑n
i=1 Pi

and YCOP =
∑n

i=1 YiPi

∑n
i=1 Pi

(1)

where n denotes the total number of sensors, i denotes a certain sensor, Pi is the pressure measured on
sensor i, and Xi, Yi are the COP’s coordinates for sensor i inside the insole.
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Figure 3. The prototype of the enactive insole with the preferred sensor location (the vibrating motor
having the function of a rhythmic pattern is not used in this study).

From these measurements, the challenge is to classify the actual worker’s posture (and movement)
into one of several predefined groups of postures (and movements), known as being either adequate
or inadequate. To find the COP, we suggest one insole containing four force sensors (Figure 3). Several
studies cited in [42,43] have shown that COP does not differ between dominant and non-dominant
limbs. It was symmetric in young and healthy adults. Thus, we think that a single insole placed on the
right foot (the foot we have chosen as usually the dominant foot of participant) could measure the COP
positions in order to acquire the features we need for posture classification. In other studies related
to the computation of the risk of fall, we also use only one enactive insole (located on the dominant
limb) with successful results [44]. All this makes it possible to reduce the production cost of the device
and use a minimal configuration and architecture (already presented in two other studies [45,46]).
This allows the classification of the postures, not to optimize this configuration. This system is mainly
designed for a long-term monitoring of worker and not for a diagnostic aid tool. Moreover, this system
is not adapted for a clinical experimentation or clinical research.

Three sensors could also be used in our proposed insole, however the whole surface under the
foot would not be covered. To determine the coordinates of the COP in the anteroposterior (YCOP) and
mediolateral (XCOP) directions, we can use the data provided by the four force sensors located in our
instrumented insole according to Equation (1). We begin the next subsection by comparing four types of
force sensor technologies. Then, a characterization of several types of conductive supports is performed.
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2.2.1. Comparison of Force Sensor Technologies

It is known that the force sensing resistor (FSR) sensor allows measuring the center of pressure
parameters [41] using Equation (1). Based on previous research works in this field, the number of
sensors to compare is high. Therefore, this study only compared three sensors to a FSR sensor that
can be added inside a very thin insole. This allowed us to optimize the current consumption in our
proposed insole device.

• The capacitive force sensor (CS8-100N, SingleTact, Los Angeles, CA, USA) has the same shape as
the FSR sensor. It is ultra-thin, thus allowing its integration in an instrumented insole without
any issues. Its consumption is estimated at 2.5 mA according to its specifications [47], which is
rather high for a long term usage. Another disadvantage is that it costs three times more than the
FSR sensor. Since the target price is around hundred dollars, lower-cost sensors (less or equal to
ten dollars each) were investigated.

• Various studies have also investigated the use of an optical sensor [48–51]. To exploit this sensor
for an instrumented insole, we need to integrate a light-emitting diode (LED), a phototransistor
and a flexible structure that can introduce an obstruction between the LED and the phototransistor.
The load over the structure adjusts the obstruction. The main issue of this technology is the current
consumption of the light source, which still needs some improvements.

• The last type of sensor investigated is the Hall Effect sensor. Its operating is based on the shifting
of a permanent magnet (N52 3 mm × 1 mm) according to a fixed Hall Effect transistor (177725z,
SparkFun Electronics, Boulder, CO, USA). When the magnet is closer to the transistor, the output
tension is higher.

For the Hall Effect sensor, we first designed two magnet supports (as shown in Figure 4) to
incorporate this sensor into the insole during the rubber’s solidification. Figure 4a shows the first
version of the magnet support. After the design of this part, it had several defects. Using a spring is
more expensive and is somewhat useless in an insole since the Young modulus of the material used in
the fabrication of the insole is used instead of the spring Young modulus: the spring Young modulus
will not change the measurement. Therefore, the insole material becomes an important choice for this
sensor as it would affect the measurement. The complexity of the integration of the permanent magnet
near the insole is then complex. Thus, we had to think of a simpler use and design concept. Therefore,
the second version of the support of the magnet (Figure 4b) has been conceptualized.

Sensors 2017, 17, 2003 5 of 24 

 

sensors to compare is high. Therefore, this study only compared three sensors to a FSR sensor that 
can be added inside a very thin insole. This allowed us to optimize the current consumption in our 
proposed insole device. 

 The capacitive force sensor (CS8-100N, SingleTact, Los Angeles, CA, USA) has the same shape 
as the FSR sensor. It is ultra-thin, thus allowing its integration in an instrumented insole without 
any issues. Its consumption is estimated at 2.5 mA according to its specifications [47], which is rather 
high for a long term usage. Another disadvantage is that it costs three times more than the FSR 
sensor. Since the target price is around hundred dollars, lower-cost sensors (less or equal to ten 
dollars each) were investigated. 

 Various studies have also investigated the use of an optical sensor [48–51]. To exploit this sensor 
for an instrumented insole, we need to integrate a light-emitting diode (LED), a phototransistor 
and a flexible structure that can introduce an obstruction between the LED and the 
phototransistor. The load over the structure adjusts the obstruction. The main issue of this 
technology is the current consumption of the light source, which still needs some improvements. 

 The last type of sensor investigated is the Hall Effect sensor. Its operating is based on the shifting 
of a permanent magnet (N52 3 mm × 1 mm) according to a fixed Hall Effect transistor (177725z, 
SparkFun Electronics, Boulder CO, USA). When the magnet is closer to the transistor, the output 
tension is higher. 

For the Hall Effect sensor, we first designed two magnet supports (as shown in Figure 4) to 
incorporate this sensor into the insole during the rubber’s solidification. Figure 4a shows the first 
version of the magnet support. After the design of this part, it had several defects. Using a spring is 
more expensive and is somewhat useless in an insole since the Young modulus of the material used 
in the fabrication of the insole is used instead of the spring Young modulus: the spring Young 
modulus will not change the measurement. Therefore, the insole material becomes an important 
choice for this sensor as it would affect the measurement. The complexity of the integration of the 
permanent magnet near the insole is then complex. Thus, we had to think of a simpler use and design 
concept. Therefore, the second version of the support of the magnet (Figure 4b) has been 
conceptualized. 

(a) (b)

Figure 4. Two different designs for the permanent magnet supports: (a) First design; (b) Second design. 

The final choice of this design used is only based on practical considerations for the integration 
of the permanent magnet near the transistor. This simple support only suspends the permanent 
magnet without considering the Young modulus of this support in order to get very low-cost sensor. 
Moreover, this support enables to fix the magnet at the top of the insole. The transistor is located at 
the bottom of the insole and the pressure of the feet will bring closer the magnet and the Hall Effect 
transistor. With a preliminary calibration, we were able to have an operational sensor. However, 
before the insole design, different tests were done with an elastomer insole four millimeters thick. 
The Hall Effect transistor was realized with a 1 mm diameter magnet. The output voltages of this 
transistor (Figure 5) are no better than those of a 3 mm diameter magnet due to its smaller measuring 
range. 

Figure 4. Two different designs for the permanent magnet supports: (a) First design; (b) Second design.

The final choice of this design used is only based on practical considerations for the integration of
the permanent magnet near the transistor. This simple support only suspends the permanent magnet
without considering the Young modulus of this support in order to get very low-cost sensor. Moreover,
this support enables to fix the magnet at the top of the insole. The transistor is located at the bottom of
the insole and the pressure of the feet will bring closer the magnet and the Hall Effect transistor. With a
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preliminary calibration, we were able to have an operational sensor. However, before the insole design,
different tests were done with an elastomer insole four millimeters thick. The Hall Effect transistor
was realized with a 1 mm diameter magnet. The output voltages of this transistor (Figure 5) are no
better than those of a 3 mm diameter magnet due to its smaller measuring range.
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Figure 5. Output voltage of Hall effect sensor with a one millimeter magnet.

Secondly, in Figure 6, we compared our integrated Hall Effect sensor to the FSR sensor built with
different resistors. The current consumption could be reduced on the FSR sensor with a higher resistor
for the voltage divider, which gets saturated earlier.
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Figure 6. Graphic of force sensors measures with different FSR’s resistor compared to a Hall Effect sensor.

We note the saturation around 2000 Pa with the Hall Effect sensor and the FSR sensor at 10 kΩ.
However, the saturation limit is reached earlier as soon as we increase the resistor for reducing the
current consumption. Our measurements suggest the use of a 10 kΩ resistor even if its current
consumption is higher (up to 3.3 V). At this resistor value (10 kΩ), the FSR sensor consumes maximally
0.33 mA while the Hall Effect sensor consumes 2.3 mA (Figure 7). Due to its higher consumption,
the Hall Effect sensor could not replace the FSR sensor in our system. For this study, we did not find
a LED with consumption under 0.33 mA producing enough light to be used. However, a cluster of
micro LED or carbon nanotubes are next-generation light sources that could eventually be used in our
application. Thus, the FSR seems to be the best to use for our measurement system design (Figure 3).
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Figure 7. The current consumption of FSR (with 10 kΩ) and Hall Effect sensors.

2.2.2. Characterization of Different Types of Conductive Supports

Classical copper wire could break inside an insole during its use. Conductive textiles provide an
interesting solution to prevent this problem. For our insole design, we characterized different types of
conductive textiles between an embedded acquisition system (PCB) and the sensors.

To compare the conductivity and find the material best suited for our insole, we characterized
the resistance of (1) an elastolite, a conductive fabric (MedTex180, SparkFun Electronics, Boulder, CO,
USA); (2) a conductive yarn (12 UM Stainless steel fiber with 0.12 mm diameter, SparkFun Electronics,
Boulder, CO, USA) and (3) an electric paint (Bare Conductive—Electric Paint, 1.16 g/mL, water-based,
SparkFun Electronics, Boulder, CO, USA). The conductive textile was divided in strips of 68 cm of
length. The measuring process was the same for all the conductive supports, except the electric paint
since it is more complicated to evaluate. We measured different painting strips to determine which
one has the best regularity. The best painting strips were used for comparing against the other types of
support. Figure 8 presents the resistance of all conductive supports as a function of length.
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It shows that the conductive yarn coil has the best conduction, followed closely by the elastolite.
This interesting finding could be exploited in a future version of the insole. The main difference
between these two technologies is their flexibility: the elastolite cannot be bent in every direction,
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yet the elastolite and conductive yarn coil are rather close in terms of conductivity, hence can be
interchanged depending on the insole’s disposition.

3. Experimental Procedure

Due to the higher consumption of the three other types of force sensors, the FSR sensor is a
more suitable technology to compute the center of pressure. This section describes the experimental
methodology used to validate the proposed measurement system. We present the selected workstation
and six series of postures (and movements) that the worker can adopt while accomplishing his or her
tasks. We then discuss the representation used for postures (or movements). Finally, the experimental
protocol is described.

3.1. Workstation and Postures Selected for Data Acquisition

During this phase, we want to represent a posture (or a movement) by the signals collected using
our measurement system. Since our aim is to detect inadequate postures during work, this step is
important in the learning process where we define the different categories of postures (and movements).

The workstation consists of the Flexible Manufacturing System (FMS) used by Meziane et al. [52].
It includes a robot with human interaction skills and a Programmable Logic Controller (PLC) connected
to the robot, as well as other components such as a conveyor, a distributor and a storage system.
The main task of this system is to automatically assemble two metallic pieces (pieces A and B).
The assembly task begins by pushing the first piece (piece A) on the conveyor. The size of the pieces is
represented in Figure 9. The role of the operator is to fill the distributors with the assembly pieces,
and to manage the assembly errors by retrieving the wrongly assembled pieces.
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is adapted from [53] with permission from Caroline Merola and the publisher.

Filling the distributors puts the operator in one of the situations represented in Figure 9. Some of
these situations are inadequate, which means that they can lead to WMSDs in the long or medium
term. Other positions are adequate, i.e., more secure for WMSD. We referred to Simoneau’s handling
manual [53] to select the most frequent adequate and inadequate positions (as shown in Figure 9).

3.2. Experimental Protocol

A single participant wore both the helmet (Figure 2) and insole (Figure 3), and simulated twenty
trials of each of the situations described in Figure 9. For Situations 1, 2, 5 and 6, to have a good reliability
in the information delivered by the COP features while adopting a static position, the duration of the
measurement time must vary between 20 and 60 s. In our experiments, we set this duration to 20 s.
For Situations 3 and 4, since there are movements, the duration was set to 15 s, i.e., the time needed to
perform these movements. Each piece carried by the participant weighed 9 kg, a load considered as
moderately heavy. According to Canadian regulations [54], the maximum load that an operator must
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carry must not exceed 23 kg. In Situations 1 and 2, however, the operator must carry two loads of 9 kg
each, the total weight approaching this authorized limit.

The signals related to the situations presented in Figure 9 are acquired by the insole (Figure 10)
and the helmet (Figure 11). Figure 10 shows the COP’s displacements on the surface of the insole in
the different situations, as computed using Equation (1), and Figure 11 the accelerations of the head
captured using the accelerometer of the helmet along the three axes. Visual inspection of the COP
dispersion indicates in these figures that Task 2 (Situations 3 and 4) is clearly distinguished from other
tasks. This can be explained by the nature of this Task, which keeps the operator moving, whereas a
static posture is adopted in the other tasks (Tasks 1 and 3).
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Signals from the helmet in Figure 11 show clear differences between the situations of adequate and
inadequate posture, these differences more pronounced along the mediolateral (X) and anteroposterior
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(Y) axes and when the operator is moving (Situations 3 and 4). This can also be seen Table 1, which gives
the mean acceleration along axes X and Y for Situations 1, 2, 5 and 6. Moreover, in the case of static
posture, the acceleration is nearly constant (the higher value observed for the Z axis is due to gravitation;
Z axis is a perpendicular axis to insole surface). In contrast, head accelerations for Task 2 vary sharply
due to the operator’s movements during this task.

Table 1. Approximation of the mean values of the head accelerations according the mediolateral (X)
and the anteroposterior (Y).

Mean Value (ms−2) Situation 1 Situation 2 Situation 5 Situation 6

AccX ≈2 ≈2 ≈1 ≈2
AccY ≈0 ≈2 ≈0 ≈0

Figures 10 and 11 present the recordings of a single trial and five trials respectively. To give
a more complete view of the data, Figure 12 gives the areas (i.e., bounding boxes) containing the
COP displacements of all trials, recorded in each situation. We can note that for adequate postures
(zones with black and red borders), the displacement zones are smaller, indicating a certain stability
compared to the inadequate static postures (zones with green and pink borders). This observation
is not applicable when the operator is in motion (Situations 3 and 4). We can thus use the area of
displacement as a criterion to differentiate between specific postures. In this study, we considered the
displacements along the mediolateral (Am_X) and anteroposterior (Am_Y) axes, as well as the ellipse
of confidence surf_ellip (the area that keeps 90% of the points occupied by the COP).
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4. Design of the Supervised Model for Posture Classification

The proposed approach for classifying postures is illustrated in Figure 13. It is composed of three
distinct phases: (1) Data acquisition, where sample measurements are gathered through a set of sensors;
(2) Data preprocessing, which includes features preparation and dimensionality reduction; and (3)
Classification, in which the system uses the selected features to evaluate the incoming information and
make a final decision as to which class this latter belongs.



Sensors 2017, 17, 2003 11 of 24

1 
 

 
Figure 13. The proposed approach for classifying postures, comprised of three phases: (1) data
acquisition; (2) data preprocessing and (3) classification.

Data acquisition has already been presented in experimental protocol. The preprocessing and
classification phases are considered in the following sections.

4.1. Feature Preparation

In the processing phase, an initial set of features has to be computed. The goal of this phase is to
extract discriminative features from the raw acquired data. Toward this goal, we used two different
approaches, a direct approach and a graphic approach, which differ in the nature and the source of
extracted features.

4.1.1. The Direct Approach

In this approach, features are determined directly from the helmet and insole recordings.
The features extracted from the head acceleration recordings along the three axes AccX, AccY and
AccZ are mainly of statistical nature: mean values (i.e., AccXm, AccYm, AccZm), maximum values
(i.e., AccXmax, AccYmax, AccZmax), variances (i.e., AccXvar, AccYvar, AccZvar), standard deviations
(i.e., AccXstd, AccYstd, AccZstd), root mean squares (i.e., AccXrms, AccYrms, AccZrms), and kurtosis
(i.e., AccXkurt, AccYkurt, AccZkurt).

Features extracted from COP recordings are based on two different representations:
the statokinesigram (COP trajectory in the horizontal plane) and the stabilogram (variations of the
time series showing the anteroposterior YCOP and the mediolateral XCOP). Various features can be
obtained from these representations to analyze the control postural while adopting a certain posture.
Among these are global variables [36], which characterize the magnitude of XCOP, YCOP and their resultant
in both time and frequency domains [55,56]. These variables are widely used in the literature for various
applications, including postural control in aging (such as Parkinson’s and ataxia subjects) [55,57]. Features
may also be defined from structural variables, which describe the dynamic changes of postural sway
by decomposing the COP sway patterns into subunits and correlating them with the motor control
process [55,56]. These variables are particularly useful to cover the non-stationary character of the
COP displacement. Examples of structural variables are those proposed by Collins and De Luca [58],
which are based on the Stabilogram Diffusion Analysis method. This method models the trajectory
of the COP using stochastic processes such as the fractional Brownian motions. The Fractal Analysis
developed by Blaszczyk [59] also provides other structural variables related to postural perturbations.
In the context of this work, we limited our selection of features to the set of global variables shown
in Table 2. These features were grouped into three categories: spatiotemporal data extracted from the
statokinesigram, spatiotemporal data extracted from the stabilograms and frequency data.
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Table 2. List of the features extracted from the COP recordings (insole only).

Type Description Name

Spatiotemporal features
extracted from
the statokinesigram

The total length of the statokinesigram lg_tot

The mean and standard deviation of the
statokinesigram’s segments lengths m_lg_seg std_lg_seg

The distance between the first and last point of
the statokinesigram dist_prdr

The amplitude of the displacement in the
mediolateral (XCOP) and anteroposterior (YCOP) axes Am_X Am_Y

The surface of the ellipse covering 90% of the
displacements of the COP surf_ellip

The length/surface ratio, which informs us on the
energy spent by the subject during the
postural control

lfs

Spatiotemporal features
extracted from the
stabilograms

The mean and maximum values, the variances, the
standard deviations, the root-mean-squares and the
kurtosis of the displacements in the mediolateral
(XCOP) and anteroposterior (YCOP) axes.

Xm, Ym, Xmax, Ymax Xstd,
Ystd, Xvar, Yvar Xrms,

Yrms, Xkurt, Ykurt

Statistical data related to the velocity (global,
mediolateral and anteroposterior) such as mean and
maximum values, the variances, the standard
deviations, the root-mean-squares and the kurtosis

Vm, VXm, Vym Vmax,
VXmax, Vymax Vstd,

VXstd, Vystd Vvar, Vxvar,
Vyvar Vrms, VXrms, Vyrms

Vkurt, VXkurt, VYkurt

Frequential features Mean and median frequencies of the mediolateral
(XCOP) and anteroposterior (YCOP) displacements

mnfreqX, mnfreqY
mdfreqX, mdfreqY

4.1.2. The Graphic Approach

To acquire additional characteristics for differentiating between postural Situations, we also
proposed a graphic approach which represents COP displacements from the insole as an image (matrix
of pixels). To fix the surface of the insole to be discretized, we first computed the minimum/maximum
values of XCOP and YCOP across all measurements. The resulting area, shown in Figure 14, has a total
size of 43 × 134 mm2 and is discretized using different resolutions (i.e., number of pixels in the image).
Table 3 gives the correspondence between the resolution and the corresponding area of a single matrix
element. The features obtained by this method are the elements of the matrix representing the area of
the insole that has been occupied by the center of pressure at least once. Figure 15 shows an example
of matrices obtained using this method.
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Table 3. List of the tested resolutions and their correspondent superficies.

Resolution (Number of Matrix Elements) Area Represented by a Single Matrix (mm2)

420 3.50 × 3.82
574 3.07 × 3.26
768 2.68 × 2.79
990 2.38 × 2.43

1220 2.15 × 2.19
1564 1.86 × 1.97
2187 1.59 × 1.65

Sensors 2017, 17, 2003 12 of 24 

 

and De Luca [58], which are based on the Stabilogram Diffusion Analysis method. This method 
models the trajectory of the COP using stochastic processes such as the fractional Brownian motions. 
The Fractal Analysis developed by Blaszczyk [59] also provides other structural variables related to 
postural perturbations. In the context of this work, we limited our selection of features to the set of 
global variables shown in Table 2. These features were grouped into three categories: spatiotemporal 
data extracted from the statokinesigram, spatiotemporal data extracted from the stabilograms and 
frequency data. 

4.1.2. The Graphic Approach 

To acquire additional characteristics for differentiating between postural Situations, we also 
proposed a graphic approach which represents COP displacements from the insole as an image 
(matrix of pixels). To fix the surface of the insole to be discretized, we first computed the 
minimum/maximum values of XCOP and YCOP across all measurements. The resulting area, shown in 
Figure 14, has a total size of 43 × 134 mm2 and is discretized using different resolutions (i.e., number 
of pixels in the image). Table 3 gives the correspondence between the resolution and the 
corresponding area of a single matrix element. The features obtained by this method are the elements 
of the matrix representing the area of the insole that has been occupied by the center of pressure at 
least once. Figure 15 shows an example of matrices obtained using this method. 

 

Figure 14. Representation of the area of the insole occupied by the COP. 

 
(a) (b)

Figure 15. The matrix of pixels in two different situations with a resolution of 1564: (a) Adequate 
posture in Task 2; (b) Inadequate posture in Task 2. 
Figure 15. The matrix of pixels in two different situations with a resolution of 1564: (a) Adequate
posture in Task 2; (b) Inadequate posture in Task 2.

4.2. Dimensionality Reduction

Dimensionality reduction is an important step of classification systems to select an optimal set of
features and limit the complexity of the model [60]. There are two main types of methods for reducing
the dimensionality, based on feature transformation and feature selection. Feature transformation
methods like Principal Component Analysis (PCA) and the Linear Discriminant Analysis (LDA) project
the initial features into a new space with lower dimensionality. While feature transformation generates
a new set of features by combining existing ones, feature selection methods simply reduce the initial
set of features to those most useful for classification [61–64]. The advantage of this method is that it
allows keeping the semantics of the initial features thereby facilitating the analysis of results. In our
study, we considered two popular features selection models: the Filter Model and the Wrapper Model.

4.2.1. The Filter Model

We performed a selection of features, with five commonly-used filter techniques presented in
Table 4. These techniques are based on statistical tests, which evaluate the importance of a feature for
discriminating between classes. The scores of each feature (see Table A1) are first measured using each of
these statistical tests, and normalized to a value between 0 and 1. Since the importance of features may
vary from one test to another, we combine these scores into a single value by taking their average for
each feature. Using this aggregate score, features are then ranked and the highest ranked ones are kept
for classification. Note that this feature selection step is independent of the model used for classification.
Table A2 shows the selected features according to each method, and using the combination of all statistical
tests. The disadvantage of this approach is that it does not consider interactions between features and,
thus, there may be information redundancy in the final subset of features.
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Table 4. The filter techniques and their characteristics.

Name Description Equation

Fisher criterion

It represents one of the most common «filter» models used to
select features [61,65]. This criterion emphasizes the importance
of each feature by calculating the ratio of separation between
two classes with respect to their dispersions. With this criterion,
the features with the highest results allow a better
discrimination between the classes

F(i) = (µ2(i)−µ1(i))
2

((σ1(i))
2+(σ2(i))

2)
µj(i) and σj(i) represent

respectively the mean and the
standard deviation of the ith

feature of the class j

Two-sample
t-test

This «filter» approach is also widely used to estimate the
importance of each feature in discriminating between the
different classes [61]. The two-sample t-test, is a univariate
statistical test that analyses whether we could consider two
independent samples as coming from classes with unequal
means by analyzing the values of the given feature

t(i) = µ2(i)−µ1(i)√(
σ1(i)

n

)2
+
(

σ2(i)
m

)2

n and m represent respectively the
number of samples of the classes 1

et 2. They are equal in our case

Pearson
Correlation
Coefficient

The correlation coefficient is also used to determine the
discrimination power of each features between the different
classes [64,66]. The result of the equation gives us an idea about
the degree of similarity between two classes. It varies between
−1 and 1. The closer it is to 0, the more insignificant the
relationship between classes is, and the closer it gets to 1 or −1,
the more significant it is

R(i) =
(

1
n

)∑n
j

(
xj

1−µ1(i)
)(

xj
2−µ2(i)

)
σ1(i)×σ2(i)

xj
1 and xj

2 represent the jth samples
of the classes 1 and 2 respectively

ANOVA

The analysis of variance aims to test the significant differences
between the means, it represents an extension of the Ttest2 for
multi-class problems. We used this technique to test whether or
not a feature allows a good discrimination between the different
classes of the problem

-

Relief

The Relief technique makes it possible to measure the relevance
of the features by accumulating the difference of the distances
between randomly selected learning variables and their closest
neighbors of the same class, and subtracting the distances with
the variables of the other classes [62,63]. We used the
generalized version of this method, named ReliefF, used for
multi-class problems

-

4.2.2. The Wrapper Model

Unlike the filter one, the wrapper model selects features according to the accuracy of a classifier.
As its name suggests, the classifier’s training algorithm is “wrapped” inside the feature selection
process, making it this approach suitable for any classifier. However, since the classifier has to be
trained and evaluated several times, it is costlier in terms of time and calculation. The wrapper model
chosen in this work is the Sequential Forward Selection (SFS) [63]. This model starts with an initial set
of features regrouping the preselected features of the filter model and a final set of features initially
empty. The operation consists of filling the final set of features with the sorted features of the initial set.
The sorting process is performed as follows: it iteratively adds to the final set, the feature that gives
the best classification result when combined to the actual final set. The model stops once the final set is
filled with all the initial features. In our experiments, we applied the SFS feature selection using the
wrapper model on the intermediate subsets kept at the previous step (the first twenty features kept by
the dir_filter_1 and dir_filter_6 methods in Table A2).

4.2.3. The Hybrid Feature Selection

This method, illustrated in Figure 16, corresponds to the successive application of the filter model
followed by the wrapper model. These models work in a complementary way, the former being faster
but less reliable (mainly because of its independence from the classifier) than the latter. Here, we use
the filter model to do a preselection of important features, and then apply the wrapper model on this
intermediate set for selecting the final best features. This hybrid feature selection is applied on all the
features obtained with the direct approach and the graphic approach during the feature preparation
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process. Using the hybrid feature selection method, the 60 direct approach features (Table A1) have
been reduced to eight (Table 5) and the 990 graphic approach features to three.
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Table 5. List of the best «Direct» features obtained with the method dir_hybride_1 (dir_filter_1 (Test2)
and wrapper).

Id Name Description Tool

55 AccZm Mean acceleration of the head along the axis Z Helmet
10 Yvar YCOP variance Insole
51 AccYstd Standard deviation of the acceleration along the axis Y Helmet
47 AccXrms The root mean square of the acceleration along the axis X Helmet
3 Xstd Standard deviation of XCOP Insole
49 AccYm Mean acceleration of the head along the axis Y Helmet
44 AccXmax Maximal head acceleration along the axis X Helmet
52 AccYvar Variance of the head acceleration along the axis Y Helmet

4.3. Classification Phase

After feature selection, we proceeded with the classification process. Given the recent successes
of Artificial Neural Networks (ANN), in this work, we chose a multi-layer perceptron as classifier.
Our network is organized as follows:

• An input layer of i neurons, where i is the number of inputs (i.e., final set features);
• A hidden layer of j = 12 neurons whose activation function is the hyperbolic tangent;
• An output layer of k = 6 neurons, where k is the number of classes (posture situations presented

previously). A softmax function is used to convert the output of these neurons into class
probabilities [67].

As in most classification networks [68,69], cross-entropy is used as loss function:

E =
1
l

l

∑
j=1

k

∑
n=1

Tij ln
(
Sij
)

(2)

where k represents the number of classes, l represents the total number of sample groups and Tij is
the desired response of the output neuron i of the sample group j. The specificity of this function is
that it strongly penalizes the wrong outputs (whose values are far from the desired value Tij and thus
closer to (1−Tij)) and emphasize those that are correct [69]. As a learning algorithm, we adopted the
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conjugate gradient method. This method is appropriate for classification problems when the volume
of data is not very large [68].

5. Classification Results and Discussion

Bestaven et al. [70] show that the total center of pressure (TCOP) displacements, initially located
between the two feet, seems to be a good tool to identify some strategies but during the sit-to-walk
especially in the elderly. Several studies cited in [42,43] have shown that COP does not differ between
dominant and non-dominant limbs. Thereby, in our study, we therefore believe that no effect can
be observed on the results of measurement by both feet. The goal of this study is to use a minimal
configuration and architecture allowing the classification of six postures in order to develop an
inexpensive assistance device which can be used at work in real environment. This system is mainly
designed for a long-term monitoring of worker. Then, using one insole is an efficient solution giving
an adequate classification of postures presented below:

5.1. Application of the Filter Technique on the Direct Approach Features

In Table A2, we notice that most of the tests kept more or less the same features in their top
ten lists, which allowed us to keep the overall score naturally. The only exception is the Pearson
test (dir_filter_2 method), which gave one of the poorest classification performances. We tested the
different sets of features on a neural network, using a 10-fold cross validation technique. For more
reliable results, this cross-validation process was repeated 10 times, and the average classification rate
over these 10 runs used as final performance measure.

Figure 17 shows the mean classification rate of the feature selection techniques, for different numbers
of selected features. We notice a poor performance when no feature selection is used. For most feature
selection methods, classification rates reach a peak performance (around 80%) between 20 and 30 features,
this performance remaining stable for larger numbers of feature. To have an efficient classifier, we limit
the number of features to 20. Using this limit, Ttest2 (dir_filter_1 method) gave the best classification
result, followed by the combination of all the scores (dir_filter_6 method). Therefore, we kept the first
20 features of these two methods as intermediate subsets of features for the wrapper technique.
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5.2. Application of the Hybrid Feature Selection on the Direct Approach Features

Table A3 gives the importance-sorted list of features obtained with the dir_hybride_1 and
dir_hybride_2 methods (i.e., dir_filter_1 and dir_filter_6 technique, respectively, followed by the
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SFS wrapper). The classification results of these two methods are shown in Figure 18. To compare the
hybrid feature selection method with using the filter method alone, and highlight the contribution of
the wrapper model, the figure also gives the network’s performance corresponding to the features kept
by dir_filter_1 and dir_filter_6. For both these filter models, we notice an increase in performance when
going from the filter alone to the hybrid model. Comparing the two hybrid methods, no significant
difference in performance can be seen. Overall, a best performance of 90% was obtained by the
dir_hybride_1 method using only eight features.
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5.3. Application of the Hybrid Feature Selection on the Graphic Approach Features

We applied dir_hybride_1 and dir_hybride_2 (described in Table A3) to the graphic approach
features, the resulting methods called graph_hybride_1 and graph_hybride_2, respectively. Since both
these methods selected the same features (with similar feature rankings), we only show in Figure 19.
the classification results of graph_hybride_2. These results indicate that using the graphic approach
features alone leads to poor performances, with a best classification rate near 60% (matrix resolution
of 990). In the next section, we improve our results by combining these features with those of the
direct approach.
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5.4. Combination of Direct and Graph Approach Features

We added the three best features of the graphic approach, obtained by applying the
graph_hybride_1 method, to the features of the direct approach selected via the dir_hybride_1 and
dir_hybride_2 methods (shown previously in Figure 18). We name integrate_1 and integrate_2,
respectively, these two combinations of features. The classification results of these methods are shown
in Figure 20. It can be seen that combining features improves results, the classification rate now
reaching 95% when using the eight best features (presented by order of importance in Table 5) of
dir_hybride_1 with the three best features of graph_hybride_1. We note that this result is achieved
with only 11 features from the initial set of 1050 features.
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6. Conclusions and Future Works

This study aimed to design an automated assessment tool for posture analysis. Using specific
features, we demonstrated that artificial neural networks (ANN) can effectively be used to detect
inadequate postures of individuals in a work environment. A direct approach was used to collect
features from different postures and movements. We also introduced an innovative graphic approach,
which represents movements of the center of pressure, captured by the insole, as an image. A hybrid
model was used to select the most discriminative features generated by these two approaches.
An important contribution of this study was to combine features from both approaches for the
effective identification and prevention of inadequate postures. The proposed methodology allowed us
to improve the recognition rate from 90% to 95%, an accuracy superior to that of existing models.

A limitation of this study is the small sample size, which was obtained using a single participant.
Although our results suggest that the proposed method can be used successfully to assess work-related
MSDs, testing on a larger dataset with multiple participants would help to further validate these results.
Future research can also apply the Graphic approach to extract features from the helmet recordings.
Toward this goal, measurements of the IMU can be exploited to determine the trajectories of the head
in the planes formed by its three axes of motion, namely the plane (X, Y), the plane (Y, Z) and the
plane (X, Z). Subsequently, as with COP displacements, we can use three matrices representing these
trajectories. We also plan to integrate other inertial units located in areas of the body, such as the back
and the upper/lower limbs. Adding these new sensors in other locations may improve the accuracy
of the system. In addition, these sensors (specifically those in the upper limbs) may detect repetitive
movements, which are one of the major risk factors aside from awkward postures and movements.
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Finally, we can extend our detection system to significant muscle efforts, for instance, detected via an
electromyogram (EMG).
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Appendix A

Table A1. Scores obtained by the filter feature selection methods.

Id Name Anova
(p-Value)

Ttest2
(p-Value)

Pearson
(Score) Fisher (Score) Relief (Score) Final

(Score)

1 Xm 8.43 × 10−32 1.06 × 10-1 2.64 × 10−2 2.63 1.84 × 10−1 0.443
2 Xmax 3.55 × 10−24 1.10 × 10−1 −6.51 × 10−2 1.90 2.97 × 10−1 0.338
3 Xstd 3.88 × 10−54 3.53 × 10−2 −5.27 × 10−2 7.01 2.79 × 10−1 0.324
4 Xvar 6.28 × 10−40 1.30 × 10−1 −4.98 × 10−2 3.97 2.04 × 10−1 0.394
5 Xrms 8.03 × 10−29 9.36 × 10−2 −5.45 × 10−2 2.06 1.61 × 10−1 0.399
6 Xkurt 5.05 × 10−1 2.28 × 10−1 −4.26 × 10−2 6.28 × 10−1 6.22 × 10−3 0.625
7 Ym 1.16 × 10−57 2.47 × 10−2 −6.02 × 10−2 11.20 2.38 × 10−1 0.331
8 Ymax 1.03 × 10−75 1.46 × 10−1 2.10 × 10−2 2.83 × 102 4.56 × 10−1 0.135
9 Ystd 2.21 × 10−93 2.64 × 10−3 5.44 × 10−2 40.5 3.34 × 10−1 0.330
10 Yvar 1.08 × 10−66 2.18 × 10−2 9.64 × 10−3 11.10 2.23 × 10−1 0.379
11 Yrms 1.09 × 10−69 1.82 × 10−2 7.27 × 10−32 10.90 2.32 × 10−1 0.413
12 Ykurt 4.06 × 10−1 2.89 × 10−1 2.11 × 10−1 3.79 × 10−1 4.13x10−3 0.784
13 Vm 1.45 × 10−48 1.22 × 10−1 5.01 × 10−4 5.52 2.41 × 10−1 0.405
14 Vmax 1.04 × 10−19 1.69 × 10−1 4.47 × 10−2 2.91 9.14 × 10−2 0.517
15 Vstd 4.16 × 10−34 1.79 × 10−1 −8.17 × 10−3 3.08 1.52 × 10−1 0.460
16 Vvar 9.64 × 10−35 1.50 × 10−1 5.97 × 10−3 3.19 1.55 × 10−1 0.457
17 Vrms 4.33x10−11 1.87 × 10−1 −7.68 × 10−3 8.34 × 10−1 4.84 × 10−2 0.511
18 Vkurt 4.50x10−5 2.10 × 10−1 4.93 × 10−2 3.72 × 10−1 4.52 × 10−2 0.556
19 VXm 9.86 × 10−1 5.00 × 10−1 3.55 × 10−2 3.59 × 10−2 4.98 × 10−3 0.867
20 VXmax 1.60 × 10−17 2.16 × 10−1 3.50 × 10−2 2.41 6.11 × 10−2 0.541
21 VXstd 2.74 × 10−31 2.22 × 10−1 −2.70 × 10−2 2.89 1.07 × 10−1 0.484
22 VXvar 2.78 × 10−31 2.22 × 10−1 −2.70 × 10−2 2.89 1.07 × 10−1 0.484
23 VXrms 2.51 × 10−9 2.46 × 10−1 −1.08 × 10−2 8.32 × 10−1 2.26 × 10−2 0.541
24 VXkurt 1.72 × 10−9 2.28 × 10−1 −1.52 × 10−2 6.61 × 10−1 6.78 × 10−2 0.512
25 Vym 9.76 × 10−1 5.70 × 10−1 6.22 × 10−3 2.76 × 10−2 7.69 × 10−3 0.871
26 VYmax 3.30 × 10−15 1.94 × 10−1 2.56 × 10−2 1.14 5.99 × 10−2 0.529
27 VYstd 2.48 × 10−31 1.59 × 10−1 1.28 × 10−2 2.50 1.45 × 10−1 0.470
28 VYvar 2.52 × 10−31 1.59 × 10−1 1.29 × 10−2 2.50 1.45 × 10−1 0.470
29 VYrms 2.13 × 10−9 1.58 × 10−1 1.52 × 10−2 7.00 × 10−1 4.49 × 10−2 0.517
30 VYkurt 1.12 × 10−7 1.81 × 10−1 4.79 × 10−2 5.48 × 10−1 6.13 × 10−2 0.538
31 long_tot 1.54 × 10−45 9.67 × 10−2 4.98 × 10−3 4.42 1.92 × 10−1 0.421
32 m_long_seg 6.90 × 10−50 1.03 × 10−1 6.50 × 10−3 5.51 2.33 × 10−1 0.405
33 std_long_seg 2.78 × 10−44 1.26 × 10−1 2.96 × 10−2 4.19 2.10 × 10−1 0.439
34 dist_prdr 2.39 × 10−2 1.55 × 10−1 4.08 × 10−2 2.62 × 10−1 7.15 × 10−3 0.553
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Table A1. Cont.

Id Name Anova
(p-Value)

Ttest2
(p-Value)

Pearson
(Score) Fisher (Score) Relief (Score) Final

(Score)

35 plage_X 1.79 × 10−53 7.59 × 10−2 −4.99 × 10−2 7.52 3.88 × 10−1 0.291
36 plage_Y 2.14 × 10−59 9.94 × 10−2 2.05 × 10−1 12.10 3.28 × 10−1 0.480
37 surf_ellip 5.65 × 10−49 4.67 × 10−2 −3.49 × 10−2 5.40 2.36 × 10−1 0.359
38 Lfs 8.33 × 10−9 2.40 × 10−2 6.83 × 10−2 6.18 × 10−1 3.39 × 10−2 0.507
39 mnfreqX 4.08 × 10−29 1.47 × 10−1 −2.06 × 10−2 2.06 1.40 × 10−1 0.448
40 mnfreqY 9.05 × 10−31 7.43 × 10−2 1.45 × 10−1 2.88 1.37 × 10−1 0.525
41 mdfreqX 7.60 × 10−29 7.92 × 10−2 9.55 × 10−3 2.19 1.27 × 10−1 0.448
42 mdfreqY 4.83 × 10−31 3.74 × 10−2 1.31 × 10−1 2.83 1.19 × 10−1 0.511
43 AccXm 2.19 × 10−40 7.51 × 10−2 1.62 × 10−1 6.33 2.05 × 10−1 0.503
44 AccXmax 1.94 × 10−34 7.24 × 10−2 8.73 × 10−2 4.36 1.94 × 10−1 0.462
45 AccXstd 2.21 × 10−95 6.56 × 10−2 −1.89 × 10−2 66.30 3.24 × 10−1 0.293
46 AccXvar 2.77 × 10−60 9.76 × 10−2 6.33 × 10−2 2.16 × 101 2.33 × 10−1 0.427
47 AccXrms 1.12 × 10−87 5.78 × 10−2 −4.74 × 10−2 2.01 × 101 2.55 × 10−1 0.336
48 AccXkurt 7.37 × 10−2 3.33 × 10−1 1.73 × 10−2 1.55 × 10−1 8.31 × 10−3 0.611
49 AccYm 1.74 × 10−42 8.42 × 10−4 −2.31 × 10−2 6.46 2.02 × 10−1 0.364
50 AccYmax 5.61 × 10−31 9.43 × 10−3 −9.55 × 10−2 4.48 1.47 × 10−1 0.349
51 AccYstd 3.04 × 10−72 3.26 × 10−4 −3.65 × 10−2 17.80 3.34 × 10−1 0.289
52 AccYvar 4.14 × 10−48 3.44 × 10−2 −7.64 × 10−5 9.98 2.23 × 10−1 0.379
53 AccYrms 6.35 × 10−54 1.46 × 10−3 −3.38 × 10−2 6.62 2.66 × 10−1 0.330
54 AccYkurt 5.93 × 10−1 3.47 × 10−1 −1.15 × 10−1 1.86 × 10−1 6.84 × 10−3 0.641
55 AccZm 1.15 × 10−66 3.23 × 10−2 5.87 × 10−3 1.55 × 101 3.14 × 10−1 0.337
56 AccZmax 7.20 × 10−32 1.06 × 10−1 8.16 × 10−2 8.62 1.86 × 10−1 0.471
57 AccZstd 1.45 × 10−72 2.44 × 10−3 −8.06 × 10−2 19.90 3.18 × 10−1 0.268
58 AccZvar 1.29 × 10−70 1.06 × 10−3 5.93 × 10−2 18.00 2.61 × 10−1 0.381
59 AccZrms 7.42 × 10−53 2.66 × 10−3 −6.87 × 10−2 6.41 2.19 × 10−1 0.330
60 AccZkurt 7.72 × 10−8 3.32 × 10−1 1.18 × 10−1 6.57 × 10−1 6.09 × 10−2 0.634

Table A2. Features kept by the filter feature selection methods.

Method Features Kept (from the Most Relevant to the Least))
Name Test

dir_filter_1 Ttest 2 (p-value ≥ 0.05) 51-49-58-53-57-9-59-50-11-10-38-7-55-52-3-42-37

dir_filter_2 Pearson
52-13-31-55-16-25-32-17-15-41-10-23-27-28-29-24-48-45-39-8-
49-26-1-21-22-33-53-37-20-19-51-34-6-14-47-30-18-4-35-3-9-5-
58-7-46-2-38-59-11-57-56-44-50-54-60-42-40-43-36-12

dir_filter_3 Fisher
8-45-9-46-47-57-58-51-55-36-7-10-11-52-56-35-3-53-49-59-43-
13-32-37-50-31-44-33-4-16-15-14-21-22-40-42-1-27-28-20-41-5-
39-2-26-17-23-29-24-60-6-38-30-12-18-34-54-48-19-25

dir_filter_4 Anova (p-value ≥ 0.05)
45-9-47-8-57-51-58-11-10-55-46-36-7-3-53-35-59-32-37-13-52-31-
33-49-43-4-16-44-15-56-1-27-28-21-22-42-50-40-39-41-5-2-14-20-
26-17-24-29-23-38-60-30-18-34-48

dir_filter_5 Relief
8-35-51-9-36-45-57-55-2-3-53-58-47-13-7-37-32-46-11-10-52-59-
33-43-4-49-44-31-56-1-5-16-15-50-27-28-39-40-41-42-21-22-14-
24-30-20-60-26-17-18-29-38-23-48-25-34-54-6-19-12

dir_filter_6 Combination (combination of all tests)
8-57-51-35-45-3-59-53-9-7-47-55-2-50-37-49-52-10-58-4-5-13-32-
11-31-46-33-1-39-41-16-15-44-27-28-56-36-21-22-43-38-42-17-24-
14-29-40-26-30-20-23-34-18-48-6-60-54-12-19-25

Table A3. Features kept with the hybrid feature selection methods.

Name Description Features Kept (from the Most Relevant to the Least)

dir_hybride_1 dir_filter_1 (Ttest2) + wrapper (SFS) 55-10-51-47-3-49-44-52-9-45-59-42-53-37-7-57-58-50-38-11

dir_hybride_2 dir_filter_6 (Combination) + wrapper (SFS) 10-49-58-7-9-37-51-45-52-3-31-53-59-55-13-32-57-35-47-8
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