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Abstract: Photogrammetry methods are being used more and more as a 3D technique for large scale
metrology applications in industry. Optical targets are placed on an object and images are taken
around it, where measuring traceability is provided by precise off-process pre-calibrated digital
cameras and scale bars. According to the 2D target image coordinates, target 3D coordinates and
camera views are jointly computed. One of the applications of photogrammetry is the measurement
of raw part surfaces prior to its machining. For this application, post-process bundle adjustment
has usually been adopted for computing the 3D scene. With that approach, a high computation
time is observed, leading in practice to time consuming and user dependent iterative review and
re-processing procedures until an adequate set of images is taken, limiting its potential for fast,
easy-to-use, and precise measurements. In this paper, a new efficient procedure is presented for
solving the bundle adjustment problem in portable photogrammetry. In-process bundle computing
capability is demonstrated on a consumer grade desktop PC, enabling quasi real time 2D image and
3D scene computing. Additionally, a method for the self-calibration of camera and lens distortion has
been integrated into the in-process approach due to its potential for highest precision when using
low cost non-specialized digital cameras. Measurement traceability is set only by scale bars available
in the measuring scene, avoiding the uncertainty contribution of off-process camera calibration
procedures or the use of special purpose calibration artifacts. The developed self-calibrated in-process
photogrammetry has been evaluated both in a pilot case scenario and in industrial scenarios for raw
part measurement, showing a total in-process computing time typically below 1 s per image up to
a maximum of 2 s during the last stages of the computed industrial scenes, along with a relative
precision of 1/10,000 (e.g., 0.1 mm error in 1 m) with an error RMS below 0.2 pixels at image plane,
ranging at the same performance reported for portable photogrammetry with precise off-process
pre-calibrated cameras.
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1. Introduction

Large parts machining is performed on a near-to-shape raw part, obtained by processes like
casting or welding. These raw parts very often do not have any reliable surface or feature reference that
can be used for in-machine alignment. However, initial alignment of the part at the machine is a critical
process, since an incorrect alignment will give rise to material shortage, which is associated with
spoiling the part or with a costly recovery process. Due to the high cost associated with the rejection of
a part, the initial alignment is usually done by way of long, time consuming manual processes.
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Photogrammetry methods are being used more and more as a 3D technique for large scale
applications [1–4]. To overcome the aforementioned limitations of the large raw part manual alignment,
a photogrammetry based process was developed in previous work [5]. The process consists of two
steps (Figure 1): (a) Out-of-machine measurement by photogrammetry of optical targets on raw
part surfaces, and its mathematical orientation (fitting) to the ideal designed part frame, where the
optimal location of optical targets is obtained to use them as feature references in the machine, and
(b) In-machine measurement of such references by a machine-integrated measurement system, a special
purpose machine vision or a spindle-integrated contact probe, where the in-machine location and
orientation of the raw part is measured, assisting the machine operator through an efficient alignment
and part fixturing process prior to part machining.
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Figure 1. Portable photogrammetry for out-of-machine raw part measurement (a) for efficient
in-machine alignment process (b) of large components prior to machining.

Two main limitations were observed for the out-of-machine portable photogrammetry presented
in [5]: First, since a post-process ray-net bundle adjustment [6] was adopted, long computing times
were needed for solving the 3D target coordinates after taking an image set, being in the range of
some minutes. Due to the post-process computing approach, the lack of adequate images for having a
solvable and consistent multiple view geometry or the diagnosis of pending optical targets to measure,
could only be performed after all images were taken [7,8]. This resulted in a time consuming and
user dependent iterative review and re-process measuring procedure until an adequate set of images
was completed. As a result, the measuring process was clearly far away from the potential that
photogrammetry may bring to easy, low-cost and fast industrial metrology for large components [9].
Better in-process computational efficiency was required for solving the bundle adjustment, so that
images taken together thus far with solved 3D target coordinates could be checked-out in quasi real
time for a reliable measuring process, making the most of the potential of portable photogrammetry in
large scale applications.

Second, the system was thoroughly tested in a pilot case scenario showing measuring errors in
the range of 1 mm for 1 m long parts (1/1000 relative precision), mainly due to the lack of precise
calibration of the camera. Better accuracy was necessary for gaining performance when measuring
raw parts larger than 1 m where the errors would increase proportionally to the size, as well as for
applications where tighter raw material clearances may be expected. Indeed, camera calibration is
a relevant uncertainty contributor in photogrammetry [2,10,11], and precise measurements require
precise camera model calibration (so called intrinsic parameters). Continuous and recent improvements
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regarding the mathematical analysis of the data taken for calibration [11–13] and image distortion
correction [14,15] can be found in the literature.

In the present work, a new efficient procedure is presented for solving the bundle adjustment
problem in portable photogrammetry. The presented development demonstrates efficient in-process
bundle computing capability on a consumer grade desktop PC, enabling quasi real time 2D image
and 3D scene diagnosis so that a reliable measuring procedure can be conducted by portable
photogrammetry, avoiding user dependent and inefficient measuring procedures. Additionally, based
on the efficient computational approach, an in-process self-calibration method is implemented using
the solved 3D point cloud scene itself as calibration geometry, avoiding the need for specialized
off-process pre-calibrated cameras or the use of special purpose calibration artifacts in the scene for
precise measurements in an industrial metrology application, where traceability is set only by the scale
bars available in the measuring scene.

The developed self-calibrated in-process photogrammetry has been evaluated both in the pilot
case scenario of [5] (1.5 m long reference part) and at two large scale industrial scenarios (up to 15 m
long raw parts), showing successful results with an in-process computing time ranging around 1 s
per image and a relative precision of 1/10,000, which is at the precision level reported for portable
photogrammetry with precise pre-calibrated cameras.

Section 2 below describes the raw part measuring process by photogrammetry, along with
the adopted method for evaluating measurement accuracy both in the pilot case and industrial
scenarios. Section 3 introduces the multiple view geometry in portable photogrammetry, along with
the non-linear multivariable optimization problem to compute the bundle adjustment. Section 4
presents the implemented in-process image and target computing procedure, and Section 5 describes
the self-calibration functionality development, where computing efficiency and precision performance
are demonstrated for the pilot case under study, respectively. Section 6 shows the evaluation results for
large scale industrial scenarios. Finally, main conclusions and further steps are described in Section 7.

2. Materials and Methods

Regarding precision in portable photogrammetry, the uncertainty determination of optical
measurement methods is still an issue [16]. Analytical calculated uncertainty budget of photogrammetric
systems according to GUM [17] using error propagation theory is a challenge and consistent approaches
have not been found in the literature. The main reason is the large number of undefined error sources
affecting the process, especially when not working in laboratory conditions [1,2]. Variability simulation is
an alternative to uncertainty budgeting for complex measurement tasks. However, it also requires deep
knowledge of the measurement chain and the statistical distribution of each influence quantity [18], which
is also a challenging issue in photogrammetry [19]. Therefore, despite the existence of well-accepted
guidelines and standards, the definition of accuracy performance is still very heterogeneous [20].
However, industrially accepted assessment guidelines such as the VDI 2634 [21] offer an alternative
for evaluating photogrammetric measurement performance, where the recommended procedure is to
arrange a set of calibrated scale bars (control bars) around the object scene and through the principal
coordinate axes. Lengths measured by photogrammetry are compared to their calibrated values and
corresponding length measuring errors (LME) are then evaluated.

Photogrammetry is the core technique used in the procedure presented in [5] for raw part
alignment into a machine tool prior to its machining (Figure 1). The raw part is measured by
photogrammetry, using retroreflective coded and non-coded optical targets. Non-coded targets
(Figure 2) are used to measure the raw part surfaces to be machined. Auxiliary coded targets are
used to assist the measuring process by portable photogrammetry so that consistent image-taking
is performed during measurement, enabling the correspondence matching between the information
given at consecutive images. Images are taken around the part by a digital camera, and transferred
in-process to a desktop PC via wireless communication. Images are computed and optical target 3D
coordinates are obtained. After measuring, non-coded target coordinates are fitted to the desired
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nominal part geometry (defined in a CAD file in this work), using a specific purpose computing criteria
for fitting [5], enabling even and positive overstock distribution over the surfaces to be machined.
As a result, available overstock over all raw part surfaces can be controlled prior to part set-up into the
machine. After out-of-machine measurement and fitting finishes, a subset among the optical target 3D
coordinates are selected and used as a reference for raw part in-machine alignment. An in-machine
measuring system is then used for measuring the selected target coordinates in the machine frame,
and the raw part fixturing is adjusted so that its alignment to the machine axes corresponds with its
computed optimal by fitting.
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Figure 2. Measuring instrumental in portable photogrammetry (a), including a fixed focal consumer
grade digital camera (Nikon D300S, 4288 × 2848 pixels, 24 mm), measuring frame, and multicoded
target artifacts for efficient image matching assistance; (b) non-coded targets (Geodesie, diameter
8 mm) [22] for raw part measurement; and (c) carbon-fiber scale (Geodesie) [22] for precise traceability
and precision evaluation, with precalibrated distances between non-coded targets (blue).

Figure 3 shows the verification scenario adopted in this work in order to evaluate the precision
of the developed self-calibrated portable photogrammetry. A reference part is adopted as a pilot
case (Figure 3a), resembling the measuring scenario at [5] where limited relative precisions of 1/1000
were reported for portable photogrammetry, with four prismatic steel subelements screwed to a
mechano-welded structure and milled to a nominal geometry (Figure 3b). A length measuring
error (LME) approach similar to VDI 2634 has been adopted for evaluating measuring procedure
uncertainty in the developed self-calibrated portable photogrammetry, verifying the performance of
the corresponding measurands (i.e., optical target 3D coordinates). Six scale bars (L1 to L6) were set
around the scene (1.5 m × 1 m × 0.5 m) in two groups of three (L1 to L3, and L4 to L6), along with a
scale bar in the center of the scene (L0), up to a total of seven bars in order to analyze uncertainty in
non-coded target measuring (Figure 3c). Each group of three was located in opposite corners of the
scene and each scale bar in a group was aligned such that the length components were set in all three
spatial directions. For avoiding the influence of length calibration uncertainty between different scale
bars in the LME analysis, only one and same scale bar, a calibrated carbon fiber bar with two non-coded
targets separated a length Lscale = 1340.099 mm, was used and moved around the scene to each location.
Additionally, as an alternative way of evaluating measuring performance, prismatic subelements
(Figure 3d) have been measured placing non-coded targets on each milled surface. 3D coordinates of
the computed non-coded targets were fitted to its nominal geometry, and the errors corresponding to
each nominal reference surface were evaluated.

Eventually, the self-calibrated in-process photogrammetry was evaluated in two industrial
scenarios with up to 15 m long raw parts, having as a reference a spindle integrated contact probe
measuring process (repeatability ranging 1 µm) executed in relatively accurate milling machines
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(assumed uncertainty ranging at a typical value of 0.01 mm). Raw part surfaces to be machined
were measured and non-coded target coordinates fitted [5] to its nominal. A subset among the fitted
target coordinates (control points) were then used as a reference for raw part in-machine alignment,
measured by a machine-spindle integrated contact probe during the alignment process. Once the part
was properly aligned, machine coordinates of optical targets not used as control points for alignment
(i.e., check points) were measured by the contact probe. In order to evaluate the measuring performance
of the developed self-calibrated photogrammetry, errors were evaluated between the gauged values
by the contact probe and the corresponding 3D coordinates obtained after measurement and fitting.
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Figure 3. Steel raw part pilot case (a) under analysis (1.5 m × 1 m × 0.5 m) with prismatic subelements
(in red, 400 mm × 200 mm × 100 mm) milled to a 0.01 mm precision, with multicoded targets around
the scene for assisting image matching; (b) CAD describing nominal reference surfaces (in red), and
(c) uncertainty evaluation scene and scale bar lay-out for LME evaluation, with non-coded targets on
surfaces to measure (d).

3. Measurement by Portable Photogrammetry

Photogrammetry has been defined by the American Society for Photogrammetry and Remote
Sensing (ASPRS) [23] as the art, science, and technology of obtaining reliable information about
physical objects and the environment through processes of recoding, measuring and interpreting
photographic images and patterns of recorded radiant electromagnetic energy and other phenomena.
In precise industrial metrology applications, it calculates the 3D coordinates of a discrete number of
optical targets on an object [20,24] based on their 2D image coordinates. Several photographs of an
object are obtained from different positions of the camera. By detection of optical target 2D coordinates
at different images it is possible to calculate the positions and orientations of the camera for each
of the photographs (so called extrinsic parameters), and also to calculate the 3D coordinates of the
target points by multiple view triangulation. The measuring frame is given by a predefined set of
coded optical targets with initially known 3D coordinates (Figure 2) and process traceability is set by
appropriate scale bars (Figure 2) with calibrated lengths between corresponding pairs of optical targets.
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3.1. Multiple-View Geometry

The geometry of a general photogrammetric problem is illustrated in Figure 4. A set of i = 1 . . . N
targets with 3D coordinates Xi are projected in the image plane pij from j = 1 . . . M different points
of view. Each camera position has associated extrinsic parameters, given by the rotation matrix Rj
defined by the rotations around the reference frame axes x, y, z-based on the αj, βj and γj Euler angles-
and the translation vector dj. The main goal of portable photogrammetry is the joint determination
of the 3D coordinates of the N targets (Xi) along with the location and orientation (camera extrinsic
parameters, Rj and dj) of the M image camera frames.

Sensors 2017, 17, 2066 6 of 30 

 

of view. Each camera position has associated extrinsic parameters, given by the rotation matrix Rj 
defined by the rotations around the reference frame axes x, y, z-based on the αj, βj and γj Euler angles- 
and the translation vector dj. The main goal of portable photogrammetry is the joint determination of 
the 3D coordinates of the N targets ( ܺ) along with the location and orientation (camera extrinsic 
parameters, Rj and dj) of the M image camera frames.  

 

Figure 4. Epipolar ray-net geometry in portable photogrammetry. Camera frame coordinates (Rj and 
dj) and optical target 3D coordinates ( ܺ) can be expressed with respect to a predefined measuring 
frame, and computed according to the ray-net corresponding to a set of projected 2D target 
coordinates (pij) at each image plane. 

Each target 3D coordinates ܺ = can be expressed as ்ܷ[ݖ	ݕ	ݔ] =  ൧்in each cameraݓ	ݒ	ݑൣ
frame depending on its extrinsic parameters Rj and dj as: 

ܷ = ܴ ܺ + ݀ (1) 

Each target 3D coordinate U୧୨ can be projected into the corresponding camera 2D image plane 
as p୧୨ and q୧୨ coordinates (Figure 5), following the widely assumed pin-hole conic projection model 
in machine vision [24] as: 

ቂݍቃ = ݂ ݑ ݒൗݓ ൗݓ  (2) 

being f the focal distance of the camera lens.  
The widely assumed Brown’s model [1,16,25] is adopted for modelling camera and lens 

distortions, which can be expressed as follows: 

పఫ෦ݍపఫ෦൨ = 	 ቈℎ൫1 + ݇ଵݎଶ + ݇ଶݎସ൯ + ଶݎଵ൫ߨ + 2ℎଶ ൯ + ൫1ݒݒଶℎߨ2 + ݇ଵݎଶ + ݇ଶݎସ൯ ଶݎଶ൫ߨ	+ + ଶݒ2 ൯ + ݎ ݒଵℎߨ2 = ට(ℎ݆݅ − ℎ0)ଶ + ݆݅ݒ) −  ଶ (3)(0ݒ

where (ℎ, ݒ ) are the 2D detected target coordinates in the image plane and (పఫ,෦ ෦	పఫݍ )	are the 
undistorted or corrected image coordinates, given ݇ଵ and ݇ଶ as the first and second order coefficient 
for modelling the radial distortion, (ℎ,v) as the center of distortion and ߨଵ and ߨଶ as the first order 
tangential distortion coefficients.  

Figure 4. Epipolar ray-net geometry in portable photogrammetry. Camera frame coordinates (Rj and
dj) and optical target 3D coordinates (Xi) can be expressed with respect to a predefined measuring
frame, and computed according to the ray-net corresponding to a set of projected 2D target coordinates
(pij) at each image plane.

Each target 3D coordinates Xi = [xi yi zi]
T can be expressed as Uij =

[
uij vij wij

]T in each camera
frame depending on its extrinsic parameters Rj and dj as:

Uij = RjXi + dj (1)

Each target 3D coordinate Uij can be projected into the corresponding camera 2D image plane as
pij and qij coordinates (Figure 5), following the widely assumed pin-hole conic projection model in
machine vision [24] as: [

pij
qij

]
= f

 uij
wij
vij
wij

 (2)

being f the focal distance of the camera lens.
The widely assumed Brown’s model [1,16,25] is adopted for modelling camera and lens distortions,

which can be expressed as follows:

[
p̃ij
q̃ij

]
=

 hij

(
1 + k1r2

ij + k2r4
ij

)
+ π1

(
r2

ij + 2h2
ij

)
+ 2π2hijvij

vij

(
1 + k1r2

ij + k2r4
ij

)
+ π2

(
r2

ij + 2v2
ij

)
+ 2π1hijvij

rij =
√(

hij − h0
)2

+
(
vij − v0

)2 (3)

where (hij, vij) are the 2D detected target coordinates in the image plane and
(

p̃ij, q̃ij

)
are the

undistorted or corrected image coordinates, given k1 and k2 as the first and second order coefficient
for modelling the radial distortion, (h0,v0) as the center of distortion and π1 and π2 as the first order
tangential distortion coefficients.
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coordinate detection (p̃ij and q̃ij) at image plane; (b) Conic projection (pij and qij) into image plane
of the target 3D coordinate Xi according to epipolar line from Oj camera frame (Rj and dj), with the
corresponding projection error contribution (rpij and rqij ) to the joint residual error.

The camera and lens distortion model, along with the focal distance, form the so called camera
intrinsic parameters characterizing the camera condition for multiple view geometry. The camera
intrinsic parameters can be obtained by previous off-line calibration processes [26,27].

Reprojection residual errors rpij =
(

pij − p̃ij
)

and rqij =
(
qij − q̃ij

)
can then be defined for every

target observed at every image (Figure 5) as the difference between the corrected target coordinates p̃ij
and q̃ij and the projected target coordinates pij and qij, which directly depend on the 3D coordinates
of the targets (Xi) and camera extrinsic parameters (Rj and dj) to be solved. As a result, given by
the camera intrinsic parameters and the multiple view geometry, target 3D coordinates and camera
extrinsic parameters can be jointly computed so that residual errors are minimized for every target at
every image, leading to the so-called bundle adjustment [24] for solving the reprojection optimization
problem in portable photogrammetry.

3.2. Optimization Problem

The problem is thus defined as a nonlinear multivariate overdetermined system, which can be
solved as a least square optimization problem or bundle adjustment by numerical methods such as
Levenberg-Marquardt or Gauss-Newton [6,20,24,25]. An initial approximation is defined for the set of
variables to solve (αj, βj, γj, and dj from j = 1 . . . M camera views, and Xi from i = 1 . . . N optical targets)
and a numerical iteration procedure is applied to compute them so that residual errors (rpij and rqij )
are minimized.

Residual errors can be grouped into a single residual vector r according to the following structure:

rj =


r11

r11
...

r1Nj
r2Nj

 =


p1 − p̃1

q1 − q̃1
...

pNj − p̃Nj
qNj − q̃Nj


r =

 r1
...

rM


(4)

where each rj vector corresponds to the reprojection error distribution at the j image, being Nj the
number of targets detected in each image.
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There are two main sets of parameters to be solved-extrinsic and target coordinates, represented
by θe and θx, respectively, which can be grouped in a common vector θ.

The extrinsic parameters vector θe is represented as follows,

θe =
[
α1 β1 γ1 dT

1 . . . αM βM γM dT
M

]T
(5)

and the target coordinates vector θx is like

θx = [x1 y1 z1 . . . xN yN zN ]T (6)

Based on these definitions, the complete vector θ is defined as

θ =

[
θe

θx

]
(7)

Following the above definitions, the process consists in the iteration of vector θ ( θk ← θk−1 + ∆θ )

towards an optimal value θ̂ which minimizes the residual vector ‖→r ‖
2

norm. According to
Gauss-Newton method [28], each iteration ∆θ can be computed as a linear system by

JT J∆θ = −JTr (8)

where J is the Jacobian matrix containing the partial derivatives of each component of the residual
vector with respect to the parameters to optimize in θ.

J(θ) =


∂r1
∂θ1

. . . ∂r1
∂θ6M+3N

... . . .
...

∂r2m
∂θ1

. . . ∂r2N
∂θ6M+3N

 (9)

with m =
M
∑

j=1
Nj being the total number of targets detected at all images.

4. In-Process Computing Procedure for Time Efficiency

The computing performance of the bundle adjustment method plays a relevant role in the
development of a time-efficient in-process strategy for portable photogrammetry. The convergence
time of the numerical method depends on the size of the Jabobian matrix J, due to matrix element
allocation, assignation and computation times for managing relatively large and sparse JT J and JT

matrices, and due to the conditioning and size of the
(

JT J
)−1 inverse matrix calculation so that ∆θ

is determined in each iteration. As an example, given a measuring scenario with 100 images and
100 targets, assuming all targets are detected at every image, JT J matrix size is 900 × 900, with J being
40,000 × 900. Indeed, this problem increases with the number of images and targets included in the
joint bundle during the measuring process. An alternative for reducing this computational work is the
decomposition of the linear system to solve ∆θ (Equation (8)) to a set of a lower range and individually
solved linear subsystems. In this work, the reprojection error partial derivatives forming the Jacobian
matrix J (Equation (9)) are analytically expressed and system decomposition is adopted so that ∆θe

and ∆θx are individually solved for interdependent extrinsic and target coordinate iteration, avoiding
direct computation of ∆θ in order to increase computational efficiency.

On the other hand, the total number of iterations (k) and the corresponding convergence time
depends on the initial adopted approximation for every variable in θ to optimize in the joint bundle
minimization problem. Furthermore, the numerical method may diverge if a too-inaccurate initial
approximation is adopted. So, along with the former system decomposition approach, the adoption of
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adequate and robust initial approaches for new camera extrinsic and target coordinates every time a
new image is taken can avoid unnecessary joint computation effort every time a new image is taken.

Figure 6 shows a schematic view of the in-process procedure developed. The following steps are
conducted each time a new image is taken during the measuring process by portable photogrammetry:

1. Image processing proceeds for optical target detection (hij, vij) and correction ( p̃ij, q̃ij), along with
decoding of coded targets [24,29].

2. Computation of an initial approach is performed for the camera extrinsic parameters of the new
image (αj, βj, γj, and dj), according to already solved coded optical target 3D coordinates detected
on the image (Figure 6a).

3. In case a minimum set of three coded optical targets with known coordinates is not available in
the new image, the camera extrinsic is not computed and the procedure stops asking for a new
image having a minimum set of targets to proceed back in step 1.

4. Given by the new camera extrinsic, code assignation is performed to non-coded targets with
still unsolved correspondences in all images captured so far, following the so called Hungarian
method [30,31].

5. Given by the new camera extrinsic parameters, computation of an initial approach is performed
for new target 3D coordinates Xi unsolved so far but coded, provided that each one is jointly
observed by a minimum set of two camera views with known extrinsic parameters (Figure 6b).

6. An intermediate joint bundle adjustment (Figure 6c) is conducted for the camera extrinsic and
target coordinates solved according to all images so far. Given by the initial approaches in steps
2 and 5, only one bundle iteration is performed, so that a sufficiently accurate and consistent
epipolar net construction is obtained every time a new image is included in the minimization
problem, ensuring a reliable correspondence solving for non-coded targets in step 4, and avoiding
unnecessary computational work until joint bundle convergence at this step. The measuring
process can now continue with the acquisition of new images, computed in-process from step 1
to 6 every time a new image is taken.

7. Finally, once the measuring process finishes, the post-process joint bundle of camera extrinsic
parameters and target coordinates is computed until convergence and measuring process
traceability is set by calibrated scale bar distances available at the scene, where measuring
frame target coordinates are also included into the bundle adjustment.

Regarding process reliability, step 3 enables in-process control of the information provided by each
image, so that measuring process by portable photogrammetry can be guided ensuring a set of images
that will form a consistent and geometrically determined ray-net, avoiding inefficient post-process
evaluation and iterative processes [7,8].

The main steps of the presented in-process strategy are described below. Results are shown for
the pilot case under study (Figure 3). Sections 4.1 and 4.2 show the initial computation approach
of the camera’s extrinsic parameters (step 2, Figure 6a) and target coordinates (step 5, Figure 6b)
as independent computing problems, respectively. Sections 4.3 and 4.4 describe the joint bundle
adjustment problem both before (step 6, Figure 6c) and after, including scale bars for traceability
(step 7), respectively. Special attention is paid to the particular analytic expression of Equation (9)
corresponding to each step of the in-process procedure. Although linear closed form expressions
can be given in Sections 4.1 and 4.2 for the independent camera extrinsic parameters and target
coordinate computing [24], nonlinear approaches are shown as intermediate steps towards presenting
the submatrix decomposition of Equation (8) for the nonlinear joint bundle computation described
in Section 4.3 and the following. Optical target image coordinate detection (hij,vij) and decoding of
coded targets is performed following [29].
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4.1. Camera Extrinsic Parameters Initial Approach Computation 

Computation of the extrinsic parameters of a  j-thcamera view (Figure 6a) means determining 
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measuring frame (Figure 4) determined by a pre-set of optical coded targets. The detection of a 
minimum set of 3 targets is required in order to geometrically determine image extrinsic computing. 

Figure 6. In-process computing procedure. Once a new image is processed, the extrinsic parameters are
solved according to X1, X2, and X3 target coordinates (a). Then, the 3D coordinates of a new target (X4)
is solved given by different points of view with known camera extrinsic parameters (b); Finally, camera
extrinsic parameters and target coordinates are jointly optimized in an in-process bundle adjustment (c).

4.1. Camera Extrinsic Parameters Initial Approach Computation

Computation of the extrinsic parameters of a j-th camera view (Figure 6a) means determining
vector θej , where camera principal frame location (dx, dy, and dz) and orientation (α, β, and γ Euler
angles defining a corresponding rotation matrix Rj as RγRβRα) are defined with respect to a measuring
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frame (Figure 4) determined by a pre-set of optical coded targets. The detection of a minimum set of 3
targets is required in order to geometrically determine image extrinsic computing.

θej =
[
α β γ dx dy dz

]T (10)

As inputs for the method, Xi coordinates of the set of coded reference targets are known, as well
as camera intrinsic parameters (focal distance, and distortion model parameters for Equation (3)).
As a result, partial derivatives (Equation (9)) in a Jacobian matrix Ej can be defined as follows
(Equation (11)) for solving camera extrinsic parameters for the j-th image as a nonlinear reprojection
minimization problem.

(
Ej
)

2Nj×6 =


Je1j
...

JeNj

 (11)

where each submatrix Jeij contains the partial derivatives of the projection errors rpij =
(

pij − p̃ij
)

and
rqij =

(
qij − q̃ij

)
of the i-th target Xi coordinates with respect to the j-th image camera extrinsic, to a

total of Nj optical targets detected in the that j-th image. Each Jeij submatrix can be expressed as(
Jeij

)
2×6

=
(
Eij
)

2×6 = DPDUE (12)

where DP contains the partial derivatives of the i-th projected target coordinates pij and qij in the j-th
image with respect to Uij target coordinates (Equation (1)) in the corresponding j-th camera principal
frame, given as follows according to Equation (2)

DP =

 1
wij

0 − uij

w2
ij

0 1
wij

− vi
w2

ij

 (13)

and where DUE expresses the partial derivatives of the Uij target coordinates with respect to the j-th
camera extrinsic in θej as

DUE = [ DAXi DBXi DCXi I3×3]DA = RγRβDαDB = RγRβRαDC = DγRβRα (14)

given the partial derivatives DA, DB, and DC of the camera principal frame rotation matrix R with
respect to each Euler angle α, β, and γ, respectively.

At the beginning of the measuring process by portable photogrammetry, first images are taken to
the set of coded targets determining the measuring frame. Given that a minimum number of three
targets are detected in an image, the corresponding individual iteration of ∆θej and independent
extrinsic computing can proceed for each image. Figure 7 shows an example of computation of
the extrinsic initial approach for the first three images of a measuring process conducted on the
pilot case evaluation scenario (Figure 3). Nominal values are adopted as an initial approach for the
intrinsic parameters, with focal distance f being 24.0 mm and first order radial distortion coefficient k1

being 5.0 × 10−9 pixel−2, where higher order radial distortion coefficients are neglected, along with
decentering and tangential distortion coefficients in Equation (3). At this stage, the initial adopted
approach for the intrinsic parameters is not intended to be accurate but only a nominal value close
enough to the expected precise one, to be computed by the in-process self-calibration (see Section 5) so
that the final bundle converges in a stable and efficient way.
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is shown (a–c), where coded targets on measuring reference frame are detected (highlighted in purple 
on each image). Camera frames according to computed extrinsic parameters are depicted in (d,e), and 
(f) corresponding to each image (a–c), respectively, along with the epipolar net for each image to the 
set of detected targets in the measuring reference frame (purple). 

Table 1 presents the known 3D coordinates (Xi, i = 1 ..6) of the detected coded targets on each 
image, along with the detected image coordinates for each target at each image (ℎ,ݒ, j = 1 .. 3). 

Table 1. Input data for extrinsic computing: 3D coordinates (x, y, and z in mm, for X1 to X6) for 
coded targets on reference frame, and image coordinates (hij and vij in pixels, for image j = 1 to 3). 

 Reference Frame Targets (Xi) Image Coordinates (࢜,ࢎ) 

 x y z hi1 vi1 hi2 vi2 hi3 vi3 
X1 0 0 0 −51.652 21.593 −21.713 −24.392 24.592 37.326 
X2 −169.963 2.650 −0.356 −696.361 27.686 −10.666 −574.886 18.178 637.234 
X3 170.036 0 0 594.253 7.982 −26.418 528.265 23.846 −561.086 
X4 −1.742 −169.186 0 −52.039 541.249 −448.374 −41.592 504.455 37.142 
X5 −0.162 26.998 145.558 −64.312 −473.212 403.334 −25.024 −431.115 32.518 
X6 0.109 26.590 28.314 −54.508 −125.784 104.393 −22.956 −112.206 36.936 

Table 2 shows the computed extrinsic parameters for each camera view, according to Gauss-
Newton method following Equation (8) for θୣౠ iteration. The extrinsic computing performance can 

Figure 7. Computing of initial approach of a new camera extrinsic parameters. First set of three images
is shown (a–c), where coded targets on measuring reference frame are detected (highlighted in purple
on each image). Camera frames according to computed extrinsic parameters are depicted in (d,e),
and (f) corresponding to each image (a–c), respectively, along with the epipolar net for each image to
the set of detected targets in the measuring reference frame (purple).

Table 1 presents the known 3D coordinates (Xi, i = 1 ..6) of the detected coded targets on each
image, along with the detected image coordinates for each target at each image (hij,vij, j = 1 .. 3).

Table 1. Input data for extrinsic computing: 3D coordinates (x, y, and z in mm, for X1 to X6) for coded
targets on reference frame, and image coordinates (hij and vij in pixels, for image j = 1 to 3).

Reference Frame Targets (Xi) Image Coordinates (hij,vij)

x y z hi1 vi1 hi2 vi2 hi3 vi3

X1 0 0 0 −51.652 21.593 −21.713 −24.392 24.592 37.326
X2 −169.963 2.650 −0.356 −696.361 27.686 −10.666 −574.886 18.178 637.234
X3 170.036 0 0 594.253 7.982 −26.418 528.265 23.846 −561.086
X4 −1.742 −169.186 0 −52.039 541.249 −448.374 −41.592 504.455 37.142
X5 −0.162 26.998 145.558 −64.312 −473.212 403.334 −25.024 −431.115 32.518
X6 0.109 26.590 28.314 −54.508 −125.784 104.393 −22.956 −112.206 36.936



Sensors 2017, 17, 2066 13 of 30

Table 2 shows the computed extrinsic parameters for each camera view, according to
Gauss-Newton method following Equation (8) for θej iteration. The extrinsic computing performance
can be observed in the resulting RMS value of the reprojection error vector after convergence, ranging at
0.5 pixels. Regarding computing efficiency, a mean time lower than 0.1 ms is observed for each iteration.

Table 2. Computed results for independent camera extrinsic approaches (dx, dy, and dz in mm, and α,
β, and γ in radians), given by the input data in Table 1, along with the optimization quality index for
each minimized reprojection error vector (RMS in pixels).

dX dY dZ α β γ RMS

Image 1 −13.552 5.620 1145.020 −2.375 0.005 0.020 0.482
Image 2 −6.593 −7.545 1340.136 −2.348 −0.009 −1.580 0.454
Image 3 6.894 10.494 1233.812 −2.378 0.023 −4.712 0.471

4.2. Target 3D Coordinate Initial Approach Computation

Once the camera extrinsic parameters are available (Table 2), 3D coordinates of new targets
other than those defining the measuring frame can be computed. Analog to extrinsic computing in
Section 4.1, the computation of the 3D coordinates of a i-th new target (Figure 6b) means determining
vector θxi , where Xi coordinates are defined in the same measuring frame at which camera extrinsic
parameters are known. The detection of the target in a minimum set of 2 images is required in order to
geometrically determine target coordinate computing by triangulation.

θxi = Xi = [x y z]T (15)

As inputs for the method, camera intrinsic and extrinsic parameters (αj, βj, γj, and dj) of a
minimum set of images are known. As a result, partial derivatives (Equation (9)) in a Jacobian matrix
DXi can be defined as follows (Equation (16)) for solving 3D coordinates for the i-th target.

(DXi)2Mi×3 =

 Jx1i
...

JxMi

 (16)

where each submatrix Jxij contains the partial derivates of the projection errors rpij and rqij of the i-th
target with respect to its Xi coordinates, to a total of Mi images in which the i-th target is detected.
Each Jxij submatrix can be expressed as

Jxij =
(
Xij
)

2×3 = DPDUX (17)

where DP was defined in Equation (13), and DUX expresses the partial derivatives of the Uij target
coordinates at the j-th camera frame with respect to its Xi coordinates at the common measuring frame
as

DUX = Rj (18)

being Rj the rotation matrix corresponding to the jth camera frame.
Following the example in Section 4.1, given the computed extrinsic parameters of the set of three

camera views (Table 2), the iteration of ∆θxi and the computation of the Xi coordinates proceeds for
coded targets detected at least in two camera views. Figure 8 shows an example of computation of
a coded target detected in all three images (Figure 8a–c). Again, nominal values are adopted for the
camera intrinsic parameters. Figure 8d depicts the 3D location computed for that new target in the
same measuring frame as camera views are given.
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Figure 8. Computing of initial approach of a new target Xi coordinates. A coded target is detected 
(highlighted in blue) in each image (a–c), where images corresponds to those three in Figure 7. 
Computed target coordinates are depicted in 3D scene (d) (in blue), along with the three epipolars 
from the images to the detected target. 

Along with computing the new target Xi coordinates, new camera extrinsic parameters also 
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detected coordinates in different images. The set of 3D epipolar lines given by the non-coded targets 
detected in all images can be expressed as 2D epipolar lines in each image. The distances from each 
2D epipolar line to each non-coded target detected in the image can be calculated, so that the subset 
of 2D epipolar lines closest to a specific non-coded target in that image are likely to correspond to the 
epipolars of that 3D target detected in the other images. All possible 2D epipolar-to-target distances 
can be computed according to all possible correspondences between non-coded targets detected in 
three consecutive images, and the Hungarian method [24,29] can be adopted for solving the 
correspondences as the optimal combination which minimizes epipolar-to-target distance 
distribution among all 2D epipolars and non-coded target coordinates. As a result, codes can be 
assigned to non-coded targets in each image, and their 3D coordinate can be correspondingly 
computed. 

Figure 9a shows all the detected targets in the image presented in Figure 8c, including both 
coded targets and non-coded targets with solved correspondences between the three images. Figure 
9b shows the resulting scene including the 3D coordinates of the computed new targets, along with 
the 3D epipolar net used to solve them. Computed target coordinates are listed in Table 3, along with 
corresponding code identification and assignation (id) for coded and non-coded targets, respectively. 
The reprojection error minimization performance is also shown for computing each individual target, 
with a RMS value ranging from 0.085 pixels to 1.617 pixels. Again, the mean computing time ranges 
below 0.1 ms per iteration. 

Table 3. Computed results for independent target coordinate initial approaches, given by the input 
data in Table 2, along with the optimization quality index for each minimized reprojection error vector 
(RMS in pixels). 

Target Coordinates (Xi) Image Coordinates (࢜,ࢎ)  
id x y z hi1 vi1 hi2 vi2 hi3 vi3 RMS 
11 −171.283 −118.827 −4.814 −745.019 400.151 −316.781 −623.685 362.860 679.588 0.334 
81 123.935 −80.850 −0.931 446.849 247.991 −221.605 392.106 243.357 −423.092 0.085 

150 −389.999 271.547 62.835 −1370.495 −757.428 673.595 −1141.890 −734.434 1274.263 0.691 
194 254.725 −340.006 −97.490 1086.097 1369.686 −1175.381 899.456 1284.152 −994.748 1.617 
942 48.080 393.260 65.336 84.859 −1027.708 869.982 127.453 −958.663 −95.253 1.144 

Figure 8. Computing of initial approach of a new target Xi coordinates. A coded target is detected
(highlighted in blue) in each image (a–c), where images corresponds to those three in Figure 7.
Computed target coordinates are depicted in 3D scene (d) (in blue), along with the three epipolars from
the images to the detected target.

Along with computing the new target Xi coordinates, new camera extrinsic parameters also
enable code assignation to non-coded targets with pending correspondence to solve between detected
coordinates in different images. The set of 3D epipolar lines given by the non-coded targets detected
in all images can be expressed as 2D epipolar lines in each image. The distances from each 2D epipolar
line to each non-coded target detected in the image can be calculated, so that the subset of 2D epipolar
lines closest to a specific non-coded target in that image are likely to correspond to the epipolars of that
3D target detected in the other images. All possible 2D epipolar-to-target distances can be computed
according to all possible correspondences between non-coded targets detected in three consecutive
images, and the Hungarian method [24,29] can be adopted for solving the correspondences as the
optimal combination which minimizes epipolar-to-target distance distribution among all 2D epipolars
and non-coded target coordinates. As a result, codes can be assigned to non-coded targets in each
image, and their 3D coordinate can be correspondingly computed.

Figure 9a shows all the detected targets in the image presented in Figure 8c, including both coded
targets and non-coded targets with solved correspondences between the three images. Figure 9b
shows the resulting scene including the 3D coordinates of the computed new targets, along with the
3D epipolar net used to solve them. Computed target coordinates are listed in Table 3, along with
corresponding code identification and assignation (id) for coded and non-coded targets, respectively.
The reprojection error minimization performance is also shown for computing each individual target,
with a RMS value ranging from 0.085 pixels to 1.617 pixels. Again, the mean computing time ranges
below 0.1 ms per iteration.

Table 3. Computed results for independent target coordinate initial approaches, given by the input
data in Table 2, along with the optimization quality index for each minimized reprojection error vector
(RMS in pixels).

Target Coordinates (Xi) Image Coordinates (hij,vij)

id x y z hi1 vi1 hi2 vi2 hi3 vi3 RMS

11 −171.283 −118.827 −4.814 −745.019 400.151 −316.781 −623.685 362.860 679.588 0.334
81 123.935 −80.850 −0.931 446.849 247.991 −221.605 392.106 243.357 −423.092 0.085
150 −389.999 271.547 62.835 −1370.495 −757.428 673.595 −1141.890 −734.434 1274.263 0.691
194 254.725 −340.006 −97.490 1086.097 1369.686 −1175.381 899.456 1284.152 −994.748 1.617
942 48.080 393.260 65.336 84.859 −1027.708 869.982 127.453 −958.663 −95.253 1.144
943 37.041 366.774 50.754 52.101 −940.542 795.293 96.428 −877.274 −63.611 0.970
944 73.083 376.546 50.491 165.633 −959.464 808.956 195.930 −892.928 −170.040 1.008
947 17.904 395.752 53.643 −10.528 −998.670 847.403 43.948 −934.252 −4.878 1.039
948 2.228 387.889 20.125 −57.610 −895.363 759.110 0.405 −839.240 42.036 0.878
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Figure 9. Example of target detection (a) in image 3 (Figure 8c), including coded targets (blue) and 
non-coded targets with solved correspondences (red), along with targets on the measuring reference 
frame (purple). 3D view of the scene (b) including the epipolar net (red) for solving the detected 3D 
target coordinates (blue and red) given by the three images in Figure 8. 

4.3. Joint Bundle Adjustment  

Once the new target coordinates are solved, other than those defining the measuring frame, the 
bundle adjustment for joint computation (ߠ in Equation (7)) of i = 1 .. N target 3D coordinates (ߠ௫) 
and j = 1 ..M camera extrinsic parameters (ߠೕ) proceeds, given by their interdependency through the 
epipolar net multiple view geometry (Figure 6c). Now, partial derivatives (Equation (9)) in a Jacobian 
matrix ܬ  can be defined (Equation (19)) for minimizing a joint reprojection error vector of 2 m 
elements, being m as defined at the end of Section 3. (ߠ)ܬ = ܧ] ܺ] (19) 

with (ܧ)ଶ	×	ெ  and (ܺ)ଶ	×	ଷே  containing the partial derivatives of each reprojection error with 
respect to all camera extrinsic (αj, βj, γj, and dj) and target coordinates (Xi), respectively. Reprojection 
error vector elements can be arranged so that ܧ can be defined as a non-square diagonal matrix with (ܧ)ଶேೕ× submatrices in its diagonal with the partial derivative to each image extrinsic parameters ߠೕ (Equation (11)) per the set of Nj reprojection errors of all targets detected in each j-th image, and ܺ  can be correspondingly expressed as a sparse matrix with ( ܺ)ଶ×ଷ  submatrices with partial 
derivative to each target coordinate ߠ௫ (Equation (17)) per the set of Mi reprojection errors of each ith 
target detected in its subset of images per ܺ column and zeros in the rest of elements. Given this 
arrangement, ܬ்ܬ in Equation (8) can be expressed as follows [ܧ ܧ]்[ܺ ܺ] = ቂ ܣ ்ܤܤ  ቃ (20)ܥ

where (ܣ)ெ×ெ is a square diagonal matrix in which its diagonal is composed of (ܧ்ܧ)× square 
submatrices accounting for each j-th camera extrinsic contribution to the minimization problem in 
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Figure 9. Example of target detection (a) in image 3 (Figure 8c), including coded targets (blue) and
non-coded targets with solved correspondences (red), along with targets on the measuring reference
frame (purple). 3D view of the scene (b) including the epipolar net (red) for solving the detected 3D
target coordinates (blue and red) given by the three images in Figure 8.

4.3. Joint Bundle Adjustment

Once the new target coordinates are solved, other than those defining the measuring frame, the
bundle adjustment for joint computation (θ in Equation (7)) of i = 1 .. N target 3D coordinates (θxi )
and j = 1 ..M camera extrinsic parameters (θej ) proceeds, given by their interdependency through the
epipolar net multiple view geometry (Figure 6c). Now, partial derivatives (Equation (9)) in a Jacobian
matrix J can be defined (Equation (19)) for minimizing a joint reprojection error vector of 2 m elements,
being m as defined at the end of Section 3.

J(θ) = [E X] (19)

with (E)2m×6M and (X)2m×3N containing the partial derivatives of each reprojection error with respect
to all camera extrinsic (αj, βj, γj, and dj) and target coordinates (Xi), respectively. Reprojection error
vector elements can be arranged so that E can be defined as a non-square diagonal matrix with(

Ej
)

2Nj×6 submatrices in its diagonal with the partial derivative to each image extrinsic parameters θej

(Equation (11)) per the set of Nj reprojection errors of all targets detected in each j-th image, and X can
be correspondingly expressed as a sparse matrix with

(
Xij
)

2×3 submatrices with partial derivative to
each target coordinate θxi (Equation (17)) per the set of Mi reprojection errors of each ith target detected
in its subset of images per X column and zeros in the rest of elements. Given this arrangement, JT J in
Equation (8) can be expressed as follows

[E X]T [E X] =

[
A B
BT C

]
(20)

where (A)6M×6M is a square diagonal matrix in which its diagonal is composed of (Ej
TEj)6×6 square

submatrices accounting for each j-th camera extrinsic contribution to the minimization problem in
the least square sense, given Ej as defined in Equation (11), and (C)3N×3N is also a square diagonal

matrix in which its diagonal is composed of (
Mi
∑

j=1
XT

ij Xij)
3×3

square submatrices accounting for the

contribution of the 3D coordinate of each corresponding i-th target detected in its Mi image subtset,
given Xij as defined in Equation (17).

(B)6M×3N is a non-square sparse matrix where the interdependency between extrinsic parameters
and target coordinate computation through the joint epipolar net is taken into account, with elements
(ET

ij Xij)6×3
contributing along with the joint product of the partial derivatives to image extrinsic and

target coordinates for a i-th target detected in a j-th image, and zero when a i-th target is not seen in a
j-th image, given Eij as defined in Equation (12).
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Thus, according to Equation (20), Equation (8) can be decomposed as[
A B
BT C

][
∆θe

∆θx

]
= −JTr (21)

where the residual term JTr can be redefined according to Equation (19) as[
εe

εx

]
= −JTr = −

[
ET

XT

]
r (22)

Given Equations (21) and (22), the linear system in Equation (8) can now be decomposed to a
set of two lower range subsystems where ∆θe and ∆θx can be individually solved for interdependent
extrinsic and target coordinate iteration, where extrinsic iteration ∆θe can be obtained as

∆θe =
(

A− BC−1BT
)−1(

εe − BC−1 εx

)
(23)

and target coordinate iteration ∆θx can correspondingly be given as

∆θx = C−1
(

εx − BT ∆θe

)
(24)

Following the examples in Sections 4.1 and 4.2, given the computed initial approaches for the
three first image extrinsic parameters (Table 2) and for the corresponding target coordinates (Table 3)
in the evaluation scene shown in Figure 9b, their joint computation can be conducted according to
Equations (23) and (24). As inputs for the method, 3D coordinates of the set of coded targets on
the measuring frame are known (Table 1), as well as nominal camera intrinsic parameters, along
with image coordinates of coded and non-coded target with solved correspondences between images
(Tables 1 and 3). Tables 4 and 5 show the results of the intermediate joint bundle computing for
extrinsic parameters and targets (step 6 of the in-process procedure), respectively. The RMS of the joint
reprojection error is optimized to 0.802 pixel, with an iteration time of 0.17 ms.

Table 4. Camera extrinsic parameters (dx, dy, and dz in mm, and α, β, and γ in radians) after joint
bundle of epipolar net scene at Figure 9b.

dX dY dZ α β γ

Image 1 −13.561 5.492 1145.880 −2.378 0.005 0.020
Image 2 −6.635 −7.598 1339.838 −2.347 −0.008 −1.580
Image 3 7.005 10.447 1232.964 −2.389 0.023 −4.712

Table 5. Coded (id) target 3D coordinates (mm) after joint bundle of scene at Figure 9b.

id x y z

11 −170.704 −121.223 −1.921
81 123.995 −80.446 −1.397

150 −390.866 274.147 60.943
194 254.332 −340.750 −96.037
942 49.131 422.060 46.501
943 37.779 392.934 32.957
944 74.603 403.023 32.620
947 18.272 425.879 33.690
948 2.222 417.722 −0.569

The measuring process may now continue with the acquisition and in-process computing of
new images, following the in-process procedure described in the introduction of Section 4 (steps 1
to 6). An example of a complete measuring set is shown in Figure 10a for the pilot case under study
(Figure 3), where non-coded targets were placed on the milled surfaces and coded targets were placed
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around the scene enabling a consistent epipolar net construction during measurement, along with the
reference frame with its corresponding coded targets. A total number of 68 images were taken, solving
the 3D coordinates of 80 non-coded (20 at each milled prism) and 340 coded targets. A maximum joint
bundle computation time ranging 150 ms was observed for the last images of the measuring process
(see Section 4.4).Sensors 2017, 17, 2066 17 of 30 
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Figure 10. Measurement results for the pilot case (Figure 3) after bundle adjustment (a), where camera 
frames and the set of measured targets (coded in blue, non-coded in green) are shown given their 
computed coordinates in the reference frame (blue, green, and red axes) along with a scale bar for 
precise scale definition (orange), and histogram showing the reprojection error vector distribution in 
pixels (b) after including the scale bar distance (orange) into the joint bundle. 

So far, the measuring scale and traceability depend on the coded target 3D coordinates defining 
the reference frame (Table 1), along with the adopted nominal camera intrinsic parameters. An 
alternative for increasing accuracy in portable photogrammetry is the adoption of appropriate scale 
bars with calibrated lengths between corresponding pairs of optical targets (highlighted in orange in 
Figure 10a), so that measuring process traceability is given by precise scale bar distances. Then, once 
image-taking finishes (steps 1 to 6), the final post-process joint bundle of camera extrinsic parameters 
and target coordinates can proceed until convergence (step 7), imposing calibrated relative distances 
between corresponding pairs of target coordinates in each scale bar available in the scene. A free 
network adjustment is then carried out. For this, the 3D coordinates of the coded targets on the 
reference frame (Table 1) have to be also computed, so that their assumed coordinates so far (in steps 
1 to 6) do not influence measuring process traceability, and the measuring frame is correspondingly 
redefined according to their computed coordinates following the widely adopted 3 (to define a 

Figure 10. Measurement results for the pilot case (Figure 3) after bundle adjustment (a), where camera
frames and the set of measured targets (coded in blue, non-coded in green) are shown given their
computed coordinates in the reference frame (blue, green, and red axes) along with a scale bar for
precise scale definition (orange), and histogram showing the reprojection error vector distribution in
pixels (b) after including the scale bar distance (orange) into the joint bundle.

So far, the measuring scale and traceability depend on the coded target 3D coordinates defining
the reference frame (Table 1), along with the adopted nominal camera intrinsic parameters. An
alternative for increasing accuracy in portable photogrammetry is the adoption of appropriate scale
bars with calibrated lengths between corresponding pairs of optical targets (highlighted in orange in
Figure 10a), so that measuring process traceability is given by precise scale bar distances. Then, once
image-taking finishes (steps 1 to 6), the final post-process joint bundle of camera extrinsic parameters
and target coordinates can proceed until convergence (step 7), imposing calibrated relative distances
between corresponding pairs of target coordinates in each scale bar available in the scene. A free
network adjustment is then carried out. For this, the 3D coordinates of the coded targets on the
reference frame (Table 1) have to be also computed, so that their assumed coordinates so far (in steps
1 to 6) do not influence measuring process traceability, and the measuring frame is correspondingly
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redefined according to their computed coordinates following the widely adopted 3 (to define a reference
plane) −2 (to define a reference axis) −1 (to define the origin point) rule in metrology, setting back a
determined origin and orientation to the measuring coordinate system.

To do so, a corresponding error vector rt can be expressed (Equation (25)) and its corresponding
joint minimization can be accomplished along with the reprojection error vector r in Equation (4).

(rt)(B+6)×1 =

[
rb
rx

]
(25)

where rb expresses (Equation (26)) the square distance between each pair of target coordinates minus

the corresponding scale square length, given by
∣∣∣xb

k − xe
k

∣∣∣2 − b2
k , from k = 1 ..B bars with bk scales in the

scene, with xb
k and xe

k being the 3D computed coordinates for each pair of targets of the kth scale bar,
which can be expressed as

(rb)B×1 =



∣∣∣xb
1 − xe

1

∣∣∣2 − b2
1

...∣∣∣xb
k − xe

k

∣∣∣2 − b2
k

...∣∣∣xb
B − xe

B

∣∣∣2 − b2
B


(26)

and rx contains (Equation (27)) the 3D coordinate errors of a set of reference targets selected for
determining the measuring coordinate system according to the 3-2-1 rule, which can be expressed as

(rx)6×1 = [x0 y0 z0 y1 z1 z2]
T (27)

where a first reference target X0 is set and constrained to be the coordinate system origin (X1 in Table 1),
so that X0 = [x0 y0 z0]

T coordinates have to be minimized to zero as first elements in rx setting 3
restrictions, a second reference target X1 is constrained (X3 in Table 1) to have its Y and Z coordinates
to zero, so that y1 and z1 coordinates in X1 = [x1 y1 z1]

T are included as the next elements in rx

setting 2 restrictions determining X coordinate axis, and a last reference target X2 is constrained (X4 in
Table 1) to have its Z coordinate to zero, so that z2 coordinate in X2 = [x2 y2 z2]

T is included as the
last elements in rx setting 1 restriction determining XY plane of the measuring frame. As a result,
6 constraints are included and a coordinate system is determined, the rest of the initially assumed
reference target coordinates (Table 1) being unconstrained and correspondingly computed, so that
measuring traceability is now set by the scales imposed in Equation (26).

A Jacobian matrix G corresponding to rt minimization problem (as in Equation (8)) can be defined
as follows

(G)(B+6)×(3N) =

[
Gb
Gx

]
(28)

where (Gb)B×(3N) contains (Equation (29)) the partial derivatives of the k = 1 ..B square distance errors
to the each pair of corresponding target coordinates xb

k and xe
k given as

(Gb)B×(3N) =



G1
...

Gk
...

GB


(29)

being each Gk
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(Gk)1×(3N) =
[
· · · · · · · · · Dxb

k · · · · · · · · · Dxe
k · · · · · · · · ·

]
(30)

with derivatives Dxb
k and Dxe

k following Equations (31) and (32) and zeros for the rest of the elements
in Gk, being N the new total number of computed targets,

Dxb
k = 2

[(
xb

k − xe
k

) (
yb

k − ye
k

) (
zb

k − ze
k

)]
(31)

Dxe
k = −Dxb

k (32)

and (Gx)6×(3N) expresses the partial derivatives of rx to the constrained reference target coordinates,
equal to 1 at the columns corresponding to each computed coordinate, and zeros in the rest of the
elements.

Thus, a joint error vector rs can be defined as follows (Equation (33)) integrating reprojection
errors in r along with error vector rt

rs =

[
r
rt

]
(33)

and joint bundle can be conducted (as in Equation (8)) with the corresponding redefined joint Jacobian
for numerical iteration as

(J)(2m+B+6)×(6M+3N) =

[
E X
0 G

]
(34)

Following the same system decomposition approach as in Equations (21)–(24), it can be
demonstrated that the main iteration equations given by Equation (21) can be redefined to a similar
form as [

A B
BT Ct

][
∆θe

∆θx

]
=

[
εe

εxt

]
(35)

where terms C and εx are redefined to Ct and εxt according to G and rt as

Ct = C + GTGεxt = εx − GTrt (36)

so that expressions given at Equations (23) and (24) for ∆θe and ∆θx , respectively, can be used for
computing to convergence the post-process joint bundle (step 7) of the scene extrinsic and target
coordinates integrating scale and 3-2-1 rule restrictions. As input for the post-process joint bundle,
results after processing the last image at step 6 are known. Figure 10b shows the corresponding
histogram of the minimized reprojection error vector r after joint bundle with rt, resulting in a RMS
value of 2.378 pixel.

4.4. Computing Performance of the In-Process Approach

The procedure described above was developed in C++ language, using the OpenCV library for
image processing and the Eigen library for matrix management and processing, on a desktop PC
Intel Core i7-5600U 2.6 Ghz, with 16 Gb RAM, running on Windows 7 with 64 bits. Wireless image
transmission was used, observing a transmission time of 0.5–1 s per image for 12.2 Mpixel raw images.
Image processing time (step 1) was observed to reach 0.5 s per image, depending on the number of
segmented and decoded targets on the image. Computing time for the initial extrinsic and target
approach (steps 2 and 5) for new images and targets prior to their first bundle could be relatively
neglected, ranging below 1 ms. Code assignation to non-coded targets (step 4) was observed to range
up to 0.1–0.3 s per image, depending on the number of non-coded targets and correspondences to
solve between images.

Figure 11 shows the dependence of the computation time of the intermediate bundle (step 6) on
the number of cumulated images and solved targets so far during the measuring process, with a time
ranging up to 0.15 s per image for the last images of the measuring scenario shown in Figure 10. As a
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result, total in-process computation time (steps 1 to 6) ranged at a maximum of 1 s per image, in the
same order of magnitude of the wireless image transmission time itself.

However, an average increase of 3 ms per additional image can be estimated from Figure 11 for
step 6, which would lead to relevant in-process computation time contribution if larger measuring
scenarios were adopted with more images and targets. If a better in-process computing performance
was required for step 6, further optimization could be conducted following the system decomposition
approach presented in this paper, taking advantage of the symmetry and characteristics of the involved
submatrices in Equation (21) (diagonal A and C submatrices, dominating presence of zeros in sparse B
submatrix, etc.) along with the development of analytic expressions for the involved inverse matrices
in Equations (23) and (24).

Finally, the post-process joint computation time (step 7) reached 3 s in the same scenario, with
5 iterations to convergence, assuming convergence criteria of ∆θe and ∆θx being below a minimum
iteration value of 10−6 mm and 10−6 radians for all location and orientations, respectively.Sensors 2017, 17, 2066 20 of 30 
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Figure 11. In-process intermediate bundle (step 6) computing time (ms) and number of solved
targets each time a new image is taken during the measuring process of the scenario depicted in
Figure 10. A discontinuity is observed at image 20 bundle computing time, which corresponded to
a steep computational change in the management and allocation time (Eigen library) of submatrices
in Equation (23).

5. Camera Model Self-Calibration for Precision

Along with scale bars in the scene, camera intrinsic parameters determine measuring process
traceability. Nominal camera intrinsic parameters have been adopted for the results shown so far. As
introduced in Section 2, a length measuring error (LME) approach similar to VDI 2634 can be adopted
for evaluating measuring procedure uncertainty in portable photogrammetry. Figure 12 shows the
same measuring scenario as in Figure 10a, but additional six scale bars are included covering the scene
so that just one bar is used for imposing scale to the measurement and LME errors can be evaluated on
the rest of measured scales.

A maximum LME error of 1.2 mm was observed in the photogrammetric measurement
given calibrated scale lengths ranging 1340 mm, corresponding to a limited relative precision of
approximately 1/1000 similar to the reported in [5], one order of magnitude below the expected
performance of portable photogrammetry using precise pre-calibrated cameras, where a relative
precision ranging better than 1/10,000 is typically reported [20] for 1 m long scenes.
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Figure 12. LME approach for precision evaluation, with one calibrated bar as the scale for measurement
(red, same scale as in Figure 10a and L3 in Figure 3) and six bars for length error evaluation (orange),
all covering the measuring scene of the pilot case under study, with multicoded artifacts (in blue, as
shown previously in Figures 2 and 3) and non-coded targets on prismatic subelements (green).

Other than assuming nominal values for intrinsic parameters, precise camera calibration is
required for precise measuring. Accurate camera calibration is necessary in photogrammetry systems
and that is why continuous and recent improvements regarding mathematical analysis of the data
taken for self-calibration [11–13] and image distortion correction [14,15] can be found in the literature.
Nowadays there are several software applications for close range photogrammetry in industry using
optical targets (i.e., Aicon 3D, Geodetic V-Stars, Creaform MaxShot3D, GOM Tritop, etc.) that can
automatically perform camera self-calibration. These photogrammetry specific commercial systems
present a main limitation when talking about their self-calibration since they only provide this option
by a specific procedure that must be performed out of the measuring process itself since traditional
self-calibration methods need precise calibration pattern and extensive post-processing work. This does
not enable the option of in-process self-calibration. Such self-calibration capabilities integrated into the
measuring process would be essential to compensate for main uncertainty contributors, especially by
determining the intrinsic parameters of the camera model on the fly. In addition, such a self-calibrated
machine vision would enable the use of low-cost cameras—and not only specific photogrammetry
cameras—for metrology applications.

Some approaches for the calibration of commercial digital cameras in different applications can
be found in the literature. In [32] an accuracy comparison is carried out between three low-cost
consumer grade digital cameras and a specific photogrammetry proven camera. In [33] a study of
different commercial software options for the calibration and self-calibration of cameras mounted
on unmanned aerial vehicles (UAVs) is presented. A similar approach for the self-calibration of
commercial small action cameras applied to photogrammetric purpose is proposed in [34] by using a
2D external calibrated reference and a specifically developed software. However, the options presented
do not allow in-process self-calibration since they need extensive post processing.

To overcome the time limitations of off-process calibrations, some approaches propose diagnosis
methods for camera internal parameters in order to prevent the need to stop the measuring process
so often to check them: in [35] a diagnostic method for internal parameters based on multivariate
control charts is proposed in order to provide a comprehensive stability control over all the performed
calibrations for systems used for regular monitoring of production lines. However, this cannot be
considered a self-calibration, but a stability control of the intrinsic parameters.

Special attention should be paid to texture-based software for 3D reconstruction and modelling
(i.e., Agisoft PhotoScan, Photomodeler Scanner, Bundler, Pix4Dmapper, VisualSFM, iWitness, MicMac,
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3DF Zephir, etc.), with a broad range of applications (e.g., mapping, architecture, mining, construction,
agriculture, heritage recording, archeology, forensic 3D modelling, etc.). Other than using optical
retroreflective targets, measuring results are obtained on object surface textures available in the images.
Texture-based techniques (SIFT [36] and SURF [37] image descriptors, SfM [38–40], etc.) are used,
enabling dense 3D surface meshing and reconstruction. In-process camera model self-calibration
techniques are integrated, demonstrating the capability of 3D surface reconstruction and modelling
using consumer grade low-cost cameras [41–43]. However, strong limitations can be found for taking
these texture-based approaches to precise industrial metrology. Textures available in the images
depend on object characteristics and light conditions, limiting measurement precision and reliability
compared to the use of physical optical targets. Additionally, computationally hard texture-based
approaches are required, with, again, extensive post-processing times, limiting its application for
efficient measuring processes in industry by photogrammetry.

The in-process self-calibration method proposed in this work overcomes these limitations by
allowing its computationally efficient application for precise industrial metrology applications using
optical targets. The method for the self-calibration of camera and lens distortion has been integrated
due to its potential for highest precision and accuracy level [20,44] when using low cost non specialized
digital cameras, where the solved 3D point cloud scene itself is used as calibration geometry. Measuring
traceability is set only by the scale bars in the measuring scene, avoiding uncertainty contributors from
off-process camera calibration processes. The camera can be continuously controlled and compensated
on the fly, bringing the potential of getting independent measurement results to changes in camera
condition over time, such as with thermo-mechanically unstable low-cost cameras. As a step forward
to off-process camera calibration and in-process stability control, the approach adopted in this work
consist in taking advantage of redundant information available in the portable photogrammetry scene,
so that, along with extrinsic and target coordinates, camera intrinsic parameters are also included into
a final bundle adjustment computing, having as the only inputs the measuring images themselves and
the scale bar distances for precise traceability.

5.1. Including Camera Model into Bundle Adjustment

Computation of the camera intrinsic parameters means determining vector θi (Equation (37))
along with camera extrinsic θe (Equation (5)) and target coordinates in θx (Equation (6)) in a joint
bundle minimizing error vector rs (Equation (33)) including scale bars restrictions.

(θi)7×1 = [ f h0 v0 k1 k2 π1 π2 ]
T (37)

where the focal distance f , the coordinates of the distortion center (h0,v0), the radial distortion
coefficients (k1 and k2) and the tangential distortion coefficients (π1 and π2) are included.

Hence, θ vector to compute in the joint bundle is redefined as

θ =

 θe

θx

θi

 (38)

and following Equation (34), a corresponding complete joint Jacobian matrix can be expressed as

(J)(2m+B+6)×(6M+3N+7) =

[
E X F
0 G 0

]
(39)

where F expresses the partial derivatives of the reprojection error vector r to the camera intrinsic
parameters in θi, so that
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(F)2m×7 =



F11
...

Fij
...

F2m


(40)

being Fij the partial derivatives of the reprojection error rij of the i-th target in the j-th camera view,
according to the projection model in Equation (2) and the distortion model in Equation (3), as

Fij =
[

∂rij
∂ f

∂rij
∂h0

∂rij
∂v0

∂rij
∂k1

∂rij
∂k2

∂rij
∂π1

∂rij
∂π2

]
(41)

Given the partial derivatives in F and following again the same system decomposition approach
as in Equation (35) for the join bundle including scale bars, the main iteration equations including
camera self-calibration can be redefined as A B E f

BT Ct D f
ET

f DT
f Ff


 ∆θe

∆θx

∆θ f

 =

 εe

εxt

ε f

 (42)

where
Ff = FT F (43)

E f = ET F (44)

D f = XT F (45)

being F, E and X defined as in Equations (40) and (19), respectively, where
(

Ff

)
7×7

is a square

symmetric matrix accounting for each camera intrinsic parameter direct contribution to the
minimization problem, and

(
E f

)
6M×7

and
(

D f

)
3N×7

are non-square matrices accounting for the

corresponding joint product of partial derivatives integrating the interdependency between extrinsic
and target coordinate computing with camera intrinsic parameters through the joint epipolar net,
respectively, and ε f is expressed as

ε f = FTr (46)

analog to εe and εx in Equation (22).
From the linear system in Equation (42), it can be obtained

∆θ f = Ff
−1
(

ε f − E f
T∆θe − D f

T∆θx

)
(47)

and then, Equation (42) can be reduced to a similar system as Equation (35)[
A f B f 1
B f 2 C f

][
∆θe

∆θx

]
=

[
εe f

εx f

]
(48)

where ∆θe and ∆θx can be obtained following analog equations to Equations (23) and (24), substituting
A, B, BT , C, εe and εx, by A f , B f 1, B f 2, C f , εe f and εx f , given them as

A f = A− E f Ff
−1E f

T (49)

B f 1 = B− E f Ff
−1D f

T (50)

B f 2 = BT − D f Ff
−1E f

T (51)
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C f = Ct − D f Ff
−1D f

T (52)

εe f = εe − E f Ff
−1ε f (53)

εx f = εxt − D f Ff
−1ε f (54)

5.2. Computing Efficiency and Precision Performance Evaluation for Self-Calibrated Photogrammetry

Bundle computing that includes self-calibration can be conducted following Equations (47) and
(48) for the joint iteration of θe, θx, and θi to convergence, having as initial approach the previous joint
bundle computation given constant camera intrinsic parameters. Following the examples in Figures 10
and 12, post-process joint bundle including self-calibration was conducted including the same scale
bar (L3) for traceability.

Figure 13 shows the histogram of the optimized reprojection error distribution, where an order
of magnitude lower RMS value is obtained compared to that obtained by assuming nominal camera
instrinsics (histogram in Figure 10b). Table 6 shows the computed camera intrinsic parameters for
this example, optimized to those assumed to be nominal in Section 4. Post-process joint computation
including self-calibration took up to 8 s, with 11 iterations to convergence. As a result, the total
post-processing after measuring was limited to 8 + 3 = 11 s, enabling on the fly camera self-calibration
and measuring self-compensation, assuming a constant camera condition during measurement.Sensors 2017, 17, 2066 24 of 30 
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Table 6. Camera intrinsic parameters after self-calibration.

f (mm) cl0 (pixel) rw0 (pixel) k1 (pixel−2) k2 (pixel−4) π1 (pixel−1) π2 (pixel−1)

24.557 −7.652 31.396 4.866 × 10−09 −2.150 × 10−16 −8.636 × 10−08 −1.236 × 10−08

Again, the length measuring error (LME) approach was adopted for evaluating measuring
uncertainty in self-calibrated portable photogrammetry. A set of 10 consecutive photogrammetric
measurements were taken on the scene. Each measurement was solved imposing L3 scale bar (Figure 12),
and remaining scales were used as control bars for LME evaluation. Maximum LME between targets on
control scale bars obtained was 121.4 µm in L0, with a standard deviation for all the set of measurements
of 45.1 µm. However, except for L0, the values obtained showed relatively lower LME results for lengths
measured in the XY plane (ranging below 40 µm). Nevertheless, that maximum observed LME was
assumed as a conservative estimation to characterize optical target measurement process uncertainty in
all spatial directions, corresponding to a relative precision ranging 1/10,000.
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According to the maximum observed LME value of 121.4 µm, the spatial uncertainty for the
target coordinates can be estimated in 70.1 µm (σ), given that σ = LME/√3 assuming a rectangular
distribution. As an alternative way of evaluating measuring performance, the 3D coordinates of
the computed non-coded targets in each measurement, properly placed on relatively precise milled
prismatic elements of the pilot case (see Figure 3), can be fitted and compared with its nominal
geometry [5], and the corresponding errors to each nominal surface can be evaluated for all targets in
all 10 measurements. Figure 14 shows an example of fitting of a measurement result to the nominal
reference geometry for error evaluation. A maximum standard deviation (σ) of 14 µm was observed for
the measuring errors of non-coded targets to all surfaces in the XY plane in all measurements, but up to
60 µm for the measuring errors of the targets laying in lateral surfaces, close to the estimated σ of 70.1
µm given by the LME evaluation. This result points out again the conservative character of the spatial
uncertainty (σ) value previously estimated by the LME approach, due to the observed anisotropy
on the non-coded target measurement accuracy. In any case, a relative precision ranging 1/10,000
by LME analysis is confirmed in the worst-case scenario for all spatial directions, demonstrating
the adequate accuracy of the developed in-process self-calibrated photogrammetry in the pilot case
scenario, comparing to previously reported limited performance of 1/1000 relative precision [5],
ranging now at the same precision level as the performance expected when using precise pre-process
camera calibration.
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6. Evaluation at Industrial Scenarios

Finally, the self-calibrated in-process photogrammetry system has been evaluated in an industrial
scenario with two different parts (Figure 15a,c) demonstrating a fast, reliable and precise raw part
measuring process. The system was applied for the measurement and alignment of up to 15 m long
raw parts prior to their machining, at least one order of magnitude larger than the considered pilot
case (Figure 3), with scene sizes ranging now up to 200 m3.

The measurement process took an overall time of 1 h per part in both industrial scenarios,
determining the 3D coordinates of the set of non-coded target placed on the surfaces to be machined.
An approximated total number of 800 targets and 200 images were computed in both scenarios
(Figure 16a,c). Performance of the in-process computing procedure was observed, ranging now at a
total maximum in-process computing time of almost 2 s per image for the last images taken during the
measuring processes, higher than the 1 s per image observed at the pilot case scenario, but still enabling
practical quasi real time diagnosis and control of correct images taken in an industrial scenario, so that
every time an incorrect images was acquired (due to an image not contributing to a consistent epipolar
net, pending target to be solved in a particular zone of the scene, etc.) measuring could be properly
guided to locally take new adequate images if necessary before continuing with the process.
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Figure 15. Evaluation tests at industrial scenarios for two end-users (Goimek and Liebherr). Large raw
parts prior to their machining are shown, (a) Soraluce milling machine travelling column (6 m long)
manufactured at Goimek machining shop, and (c) Liebherr drilling rig lead center (15 m long), along
with corresponding CAD views (b,d) showing measured surfaces (in red) for overstock control.
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Figure 16. Measurement results (a,c) in large raw parts for industrial examples shown in Figure 15a,c
respectively, where solved target 3D coordinates and camera views are jointly depicted, and
corresponding in-process intermediate bundle computing times (b,d).

The higher intermediate bundle computing time was the main contributor to the increase of the
in-process computation time in the last stages of the measuring process, as expected by the dependence
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of the bundle computational work on the number of images and targets to solve (as shown in Figure 11).
Along with the alternatives pointed out in Section 4.4 for increasing its computing performance, a
strategy could also be adopted for limiting bundle adjustment only to a minimum subset of the scene
measured so far, so that continuous computing of the joint bundle of the complete scene could be
avoided or only periodically executed.

Accordingly, the post-process computing time including self-calibration of camera intrinsic
parameters ranged a maximum of 15 s, slightly higher than the observed one in the pilot case
scenario as a result of the higher number of images and targets, but meeting efficient operation
at an industrial scenario.

Regarding precision, according to the LME evaluation results reported in the literature [20], typical
scale dependent LME errors could be estimated as 50 µm + 20 µm/m for portable photogrammetry
with precise pre-calibrated cameras. For the considered industrial cases, with up to 15 m long parts,
an estimated LME performance of 0.35 mm could be expected as a reference for precise operation,
corresponding to 0.20 mm (σ) spatial uncertainty for the measured targets, given that σ = LME/

√
3

assuming again a rectangular distribution.
After raw part measurement by photogrammetry, the complete process (Figure 1) was conducted

towards in-machine raw part alignment in both industrial scenarios, so that gauging on the optical
targets by a touch probe integrated in the machine (with machine axes typically ranging at 0.01 mm
accuracy) was adopted as a reference for evaluating measuring precision. Optimal target coordinates
were computed by fitting (Figure 17). Positive and even overstock was applied as in [5] as best-fitting
criteria. A subset of targets was used as control points for alignment by a machine-integrated contact
probe. In-machine fixturing of the part was adjusted to properly align it to machine axes so that probed
relative coordinates between reference targets matched those optimally computed by fitting, to a
difference below 0.1 mm so that alignment process uncertainty could be considered relatively neglected
comparing to the measuring uncertainty of 0.2 mm (σ) estimated for the portable photogrammetry.
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Figure 17. Fitting of measured non-coded targets (yellow) to the nominal part geometry, corresponding
to the industrial examples ((a) Soraluce milling machine travelling column, and (b) Liebherr drilling rig
lead center), where optimal target coordinates are given in the ideal part frame for an even overstock
distribution in all surfaces to be machined (red).

Once the part was precisely aligned, the measuring process performance was evaluated by contact
probe gauging of a minimum set of 10 check points (i.e., non-coded targets not used as a reference
for alignment), distributed in all 3 machine coordinate axes directions and at extreme and opposite
surfaces of the part. A maximum probing error interval of ±0.6 mm (3σ) could be expected according
to the above estimated target spatial uncertainty by LME (σ = 0.20 mm). Probing errors were evaluated
between the overstock values resulting from the fitting process and the actual ones by the in-machine
gauging to nominal surface coordinates. In both industrial scenarios (Figure 15a,c), all the probing
errors ranged below ±0.5 mm, demonstrating the adequate accuracy of the developed self-calibrated
in-process photogrammetry for large raw part measuring and overstock control.
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7. Conclusions

A new efficient procedure has been presented in this work for solving the bundle adjustment
problem in portable photogrammetry. In-process bundle computing capability is demonstrated
on a consumer grade desktop PC, enabling quasi real time 2D image and 3D scene computing and
diagnosis so that a reliable measuring procedure can be conducted, avoiding inefficient user-dependent
post-process iterative procedures that limit the potential of portable photogrammetry for an easy,
low-cost and fast solution for industrial metrology of large components.

A method for the self-calibration of camera and lens distortion has been integrated into the
in-process approach due to its potential for highest precision and accuracy levels when using a
non-specialized consumer grade digital camera (i.e., Nikon D300S), where the solved 3D point
cloud scene itself is used as calibration geometry and measurement traceability is set only by the
scale bars in the measuring scene, avoiding the need of off-process pre-calibrated cameras or the
use of special purpose calibration artifacts in the scene for precise measurement in an industrial
metrology application.

The developed self-calibrated in-process photogrammetry has been evaluated in a pilot case
scenario (1.5 m long reference part) and at two large scale industrial scenarios (up to 15 m) for raw
part measurement and alignment before machining, showing an in-process computing time typically
below 1 s per image to a maximum of 2 s at the last stages of the computed industrial scenes, and a
relative precision of 1/10,000 with an error RMS below 0.2 pixel at image plane, ranging at the same
precision performance reported for portable photogrammetry with precise off-process pre-calibrated
cameras. Efficient camera model in-process self-calibration is also demonstrated, with post-processing
times ranging 11 s.

Alternatives for increasing computational in-process efficiency have been pointed out, especially
focusing on large scale industrial scenarios where a high number of images and optical targets to
compute can be expected. Regarding precision, anisotropy has been observed in the spatial uncertainty
distribution of the optical target coordinates, pointing to a better potential for the developed system
than the figures reported according to the worst-case scenario. Further steps towards the prediction
of ray-net-conditioning-induced uncertainty contributions, such as analytical approaches using error
propagation theory, may enable to take the most of that potential, still remaining as a relevant and
challenging issue in the state-of-the-art. Additionally, further steps could be conducted for enabling
precise measurements with low cost but thermo-mechanically unstable consumer grade digital cameras,
where the influence of an image dependent focal length due to integrated autofocus optics might be
considered for precise self-calibration.

Finally, in the actual context, the need for “smart” systems integrating software procedures and
hardware systems for data acquisition, self-diagnostics, set-up, control of tolerances, etc., is becoming
more and more pressing. In addition, rapid advances in computing processing, image measurement
and characterization algorithms have allowed photogrammetric systems to integrate with CAD/CAM
systems offering high accuracy capabilities, and more and more “real-time” (1/25 s and faster) image
sequence acquisition. The photogrammetric system presented here is a step towards meeting these
requirements, accomplishing accurate measurements with inexpensive, easy-to-use measuring systems
and with optimized procedures that make the whole measuring process much less time consuming.
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