Automatic Classification of Tremor Severity in Parkinson’s Disease Using a Wearable Device
Abstract
:1. Introduction
1.1. Background
1.2. Related Research
2. Methods
2.1. Subjects
2.2. Wearable Device and Acquisition of Tremor Signals
2.3. Data Analysis
2.3.1. Signal Processing
2.3.2. Feature Definition and Extraction
- Mean amplitude: average amplitude of a tremor for a segmented period
- Average regularity: average time from the prior peak to the next peak
- Mean frequency
2.3.3. Classification and Performance
3. Results
4. Discussion
4.1. Main Findings
4.2. Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 4th ed.; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Hurtado, J.M.; Gray, C.M.; Tamas, L.B.; Sigvardt, K.A. Dynamics of tremor-related oscillations in the human globus pallidus: A single case study. Proc. Natl. Acad. Sci. USA 1999, 96, 1674–1679. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- The Unified Parkinson’s Disease Rating Scale (UPDRS): Status and Recommendations. Available online: https://www.ncbi.nlm.nih.gov/pubmed/12815652/10.1002/mds.10473 (accessed on 7 September 2017).
- Goetz, G.C.; Stebbins, G.T.; Blasucci, L.M.; Grobman, M.S. Efficacy of a patient-training videotape on motor fluctuations for on-off diaries in Parkinson’s disease. Mov. Disord. 1997, 12, 1039–1041. [Google Scholar] [CrossRef] [PubMed]
- Davidson, B.M.; McGhee, D.J.; Counsell, C.E. Comparison of patient rated treatment response with measured improvement in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Maetzler, W.; Domingos, J.; Srulijes, K.; Ferreira, J.J.; Bloem, B.R. Quantitative Wearable Sensors for Objective Assessment of Parkinson’s Disease. Mov. Disord. 2013, 28, 1628–1637. [Google Scholar] [CrossRef] [PubMed]
- Rissanen, S.; Kankaanpaa, M.; Tarvainen, M.P.; Nuutinen, J.; Tarkka, I.M.; Airaksinen, O.; Karjalainen, P.A. Analysis of surface EMG signal morphology in Parkinson’s disease. Physiol. Meas. 2007, 28, 1507–1521. [Google Scholar] [CrossRef] [PubMed]
- Meigal, I.A.; Rissanen, S.; Tarvainen, M.P.; Karjalainen, P.A.; Iudina-Vassel, I.A.; Airaksinen, O.; Kankaanpaa, M. Novel parameters of surface EMG in patients with Parkinson’s disease and healthy young and old controls. J. Electromyogr. Kinesiol. 2009, 19, e206–e213. [Google Scholar] [CrossRef] [PubMed]
- Salarian, A.; Russmann, H.; Wider, C.; Burkhard, P.R.; Vingerhoets, F.J.; Aminian, K. Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans. Biomed. Eng. 2007, 54, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Daneault, F.J.; Carignan, B.; Codere, C.E.; Sadikot, A.F.; Duval, C. Using a smart phone as a standalone platform for detection and monitoring of pathological tremors. Front. Hum. Neurosci. 2012, 6, 357. [Google Scholar] [CrossRef] [PubMed]
- Meigal, Y.A.; Rissanen, S.M.; Tarvainen, M.P.; Georgiadis, S.D.; Karjalainen, P.A.; Airaksinen, O.; Kankaanpaa, M. Linear and nonlinear tremor acceleration characteristics in patients with Parkinson’s disease. Physiol. Meas. 2012, 33, 395–412. [Google Scholar] [CrossRef] [PubMed]
- Sturman, M.M.; Vaillancourt, D.E.; Corcos, D.M. Effects of aging on the regularity of physiological tremor. J. Neurophysiol. 2005, 93, 3064–3074. [Google Scholar] [CrossRef] [PubMed]
- Thanawattano, C.; Pongthornseri, R.; Anan, C.; Dumnin, S.; Bhidayasiri, R. Temporal fluctuations of tremor signals from inertial sensor: A preliminary study in differentiating Parkinson’s disease from essential tremor. Biomed. Eng. Online 2015, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kostikis, N.; Hristu-Varsakelis, D.; Arnaoutoglou, M.; Kotsavasiloglou, C. A Smartphone-Based Tool for Assessing Parkinsonian Hand Tremor. IEEE J. Biomed. Health Inf. 2015, 19, 1835–1842. [Google Scholar] [CrossRef] [PubMed]
- Rissanen, M.S.; Kankaanpaa, M.; Meigal, A.; Tarvainen, M.P.; Nuutinen, J.; Tarkka, I.M.; Airaksinen, O.; Karjalainen, P.A. Surface EMG and acceleration signals in Parkinson’s disease: Feature extraction and cluster analysis. Med. Biol. Eng. Comput. 2008, 46, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Wile, J.D.; Ranawaya, R.; Kiss, Z.H. Smart watch accelerometry for analysis and diagnosis of tremor. J. Neurosci. Methods 2014, 230, 2301–2304. [Google Scholar] [CrossRef] [PubMed]
- Kostikis, N.; Hristu-Varsakelis, D.; Arnaoutoglou, M.; Kotsavasiloglou, C. Smartphone-based evaluation of parkinsonian hand tremor: Quantitative measurements vs clinical assessment scores. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 906–909. [Google Scholar]
- Heida, T.; Wentink, E.C.; Marani, E. Power spectral density analysis of physiological, rest and action tremor in Parkinson’s disease patients treated with deep brain stimulation. J. Neuroeng. Rehabil. 2013, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rigas, G.; Tzallas, A.T.; Tsipouras, M.G.; Bougia, P.; Tripoliti, E.E.; Baga, D.; Fotiadis, D.I.; Tsouli, S.G.; Konitsiotis, S. Assessment of Tremor Activity in the Parkinson’s Disease Using a Set of Wearable Sensors. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Mera, O.T.; Heldman, D.A.; Espay, A.J.; Payne, M.; Giuffrida, J.P. Feasibility of home-based automated Parkinson’s disease motor assessment. J. Neurosci. Methods 2012, 203, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Manzanera, O.; Roosma, E.; Beudel, M.; Borgemeester, R.W.; van Laar, T.; Maurits, N.M. A Method for Automatic and Objective Scoring of Bradykinesia Using Orientation Sensors and Classification Algorithms. IEEE Trans. Biomed. Eng. 2016, 63, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Giuberti, M.; Ferrari, G.; Contin, L.; Cimolin, V.; Azzaro, C.; Albani, G.; Mauro, A. Assigning UPDRS Scores in the Leg Agility Task of Parkinsonians: Can It Be Done Through BSN-Based Kinematic Variables? IEEE Internet Things J. 2015, 2, 41–51. [Google Scholar] [CrossRef]
- Giuberti, M.; Ferrari, G.; Contin, L.; Cimolin, V.; Azzaro, C.; Albani, G.; Mauro, A. Automatic UPDRS Evaluation in the Sit-to-Stand Task of Parkinsonians: Kinematic Analysis and Comparative Outlook on the Leg Agility Task. IEEE J. Biomed. Health Inf. 2015, 19, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Parisi, F.; Ferrari, G.; Giuberti, M.; Contin, L.; Cimolin, V.; Azzaro, C.; Albani, G.; Mauro, A. Body-Sensor-Network-Based Kinematic Characterization and Comparative Outlook of UPDRS Scoring in Leg Agility, Sit-to-Stand, and Gait Tasks in Parkinson’s Disease. IEEE J. Biomed. Health Inf. 2015, 19, 1777–1793. [Google Scholar] [CrossRef] [PubMed]
- Parisi, F.; Ferrari, G.; Giuberti, M.; Contin, L.; Cimolin, V.; Azzaro, C.; Albani, G.; Mauro, A. Inertial BSN-Based Characterization and Automatic UPDRS Evaluation of the Gait Task of Parkinsonians. IEEE Trans. Affect. Comput. 2016, 7, 258–271. [Google Scholar] [CrossRef]
- Sama, A.; Perez-Lopez, C.; Rodriguez-Martin, D.; Catala, A.; Moreno-Arostegui, J.M.; Cabestany, J.; de Mingo, E.; Rodriguez-Molinero, A. Estimating bradykinesia severity in Parkinson’s disease by analysing gait through a waist-worn sensor. Comput. Biol. Med. 2017, 84, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Memedi, M.; Khan, T.; Grenholm, P.; Nyholm, D.; Westin, J. Automatic and Objective Assessment of Alternating Tapping Performance in Parkinson’s Disease. Sensors 2013, 13, 16965–16984. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, J.; Ambroise, J.; Cremers, J.; Sharei, H.; Delvaux, V.; Macq, B.; Garraux, G. Finger Tapping Clinimetric Score Prediction in Parkinson’s Disease Using Low-Cost Accelerometers. Comput. Intell. Neurosci. 2013, 2013, 1. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, P.J.; Riley, D.E.; Maddux, B.N.; Heldman, D.A. Clinically deployable Kinesia technology for automated tremor assessment. Mov. Disord. 2009, 24, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Dhall, R.; Lieberman, A.; Petitti, D.B. A mobile cloud-based Parkinson’s disease assessment system for home-based monitoring. JMIR Mhealth Uhealth 2015, 3, e29. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Zhang, P.; Lueth, C.T. Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit. Sensors 2015, 15, 25055–25071. [Google Scholar] [CrossRef] [PubMed]
- Bø, T.H.; Jonassen, I. New feature subset selection procedures for classification of expression profiles. Genome Biol. 2002, 3, research0017-1. [Google Scholar] [CrossRef] [PubMed]
- Michalak, K.; Kwasnicka, H. Correlation-based feature selection strategy in neural classification. In Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, Jinan, China, 16–18 October 2006. [Google Scholar]
- Pękalska, E.; Harol, A.; Lai, C.; Duin, R. Pairwise selection of features and prototypes, oral presentation. In Proceedings of the International Conference on Computer Recognition Systems, Rydzyna, Polanad, 22–25 May 2005; pp. 271–278. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Phil. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
Score | Guide |
---|---|
0 | Absent |
1 | Slight and infrequently present |
2 | Mild in amplitude and persistent, or moderate in amplitude but only intermittently present |
3 | Moderate in amplitude and present most of the time |
4 | Marked in amplitude and present most of the time |
Dimensions | Weight | |
---|---|---|
Finger part | 16 mm × 19.9 mm × 10 mm | 2.6 g |
Wrist part | 41 mm × 48 mm × 17.8 mm | 31.6 g |
Features | Definition |
---|---|
Power in low-frequency band ( | = |
Power in tremor-frequency band ( | = |
Power in high-frequency band ( | = |
Relative power in low-frequency band ( | = |
Relative power in tremor-frequency band () | = |
Relative power in high-frequency band ( | = |
Classifiers | Feature Selection Method | Acc. (%) | NAuC | RMSE |
---|---|---|---|---|
Decision Tree | MF, , Mean power, , PF | 85.55 (±6.03 †) | 0.980 | 0.410 |
Discriminant Analysis | PC1–PC2 | 83.97 (±6.28) | 0.977 | 0.479 |
RBF SVM | MF, | 83.21 (±6.40) | 0.977 | 0.573 |
Random Forest | MF, , Mean power | 83.21 (±6.40) | 0.971 | 0.437 |
kNN (No. of neighbors = 3) | MF, | 83.21 (±6.40) | 0.966 | 0.510 |
Linear SVM | PC1–PC2 | 82.44 (±6.52) | 0.972 | 0.446 |
Polynomial SVM | PC1–PC2 | 80.92 (±6.73) | 0.972 | 0.486 |
Predicted | |||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | Recall | ||
True | 0 | 75 | 4 | 0 | 0 | 0 | 0.949 (±0.038 *) |
1 | 4 | 18 | 0 | 0 | 0 | 0.818 (±0.066) | |
2 | 1 | 3 | 15 | 3 | 0 | 0.682 (±0.080) | |
3 | 0 | 0 | 2 | 4 | 0 | 0.667 (±0.081) | |
4 | 0 | 0 | 0 | 2 | 0 | 0 (±0.000) | |
Precision | 0.938 (±0.041) | 0.720 (±0.077) | 0.882 (±0.055) | 0.444 (±0.085) | undefined |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, H.; Lee, W.; Park, H.; Lee, H.J.; Kim, S.K.; Kim, H.B.; Jeon, B.; Park, K.S. Automatic Classification of Tremor Severity in Parkinson’s Disease Using a Wearable Device. Sensors 2017, 17, 2067. https://doi.org/10.3390/s17092067
Jeon H, Lee W, Park H, Lee HJ, Kim SK, Kim HB, Jeon B, Park KS. Automatic Classification of Tremor Severity in Parkinson’s Disease Using a Wearable Device. Sensors. 2017; 17(9):2067. https://doi.org/10.3390/s17092067
Chicago/Turabian StyleJeon, Hyoseon, Woongwoo Lee, Hyeyoung Park, Hong Ji Lee, Sang Kyong Kim, Han Byul Kim, Beomseok Jeon, and Kwang Suk Park. 2017. "Automatic Classification of Tremor Severity in Parkinson’s Disease Using a Wearable Device" Sensors 17, no. 9: 2067. https://doi.org/10.3390/s17092067
APA StyleJeon, H., Lee, W., Park, H., Lee, H. J., Kim, S. K., Kim, H. B., Jeon, B., & Park, K. S. (2017). Automatic Classification of Tremor Severity in Parkinson’s Disease Using a Wearable Device. Sensors, 17(9), 2067. https://doi.org/10.3390/s17092067