
sensors

Article

A Robotic Platform for Corn Seedling Morphological
Traits Characterization

Hang Lu 1, Lie Tang 1,*, Steven A. Whitham 2 and Yu Mei 2

1 Department of Agricultural and Biosystems Engineering, Iowa State University, 2346 Elings Hall,
Ames, IA 50011, USA; neallvhang@gmail.com

2 Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA;
swhitham@iastate.edu (S.A.W.); yumei@iastate.edu (Y.M.)

* Correspondence: lietang@iastate.edu; Tel.: +1-515-294-9778

Received: 16 July 2017; Accepted: 6 September 2017; Published: 12 September 2017

Abstract: Crop breeding plays an important role in modern agriculture, improving plant performance,
and increasing yield. Identifying the genes that are responsible for beneficial traits greatly facilitates
plant breeding efforts for increasing crop production. However, associating genes and their functions
with agronomic traits requires researchers to observe, measure, record, and analyze phenotypes
of large numbers of plants, a repetitive and error-prone job if performed manually. An automated
seedling phenotyping system aimed at replacing manual measurement, reducing sampling time,
and increasing the allowable work time is thus highly valuable. Toward this goal, we developed an
automated corn seedling phenotyping platform based on a time-of-flight of light (ToF) camera and
an industrial robot arm. A ToF camera is mounted on the end effector of the robot arm. The arm
positions the ToF camera at different viewpoints for acquiring 3D point cloud data. A camera-to-arm
transformation matrix was calculated using a hand-eye calibration procedure and applied to transfer
different viewpoints into an arm-based coordinate frame. Point cloud data filters were developed
to remove the noise in the background and in the merged seedling point clouds. A 3D-to-2D
projection and an x-axis pixel density distribution method were used to segment the stem and
leaves. Finally, separated leaves were fitted with 3D curves for morphological traits characterization.
This platform was tested on a sample of 60 corn plants at their early growth stages with between
two to five leaves. The error ratios of the stem height and leave length measurements are 13.7%
and 13.1%, respectively, demonstrating the feasibility of this robotic system for automated corn
seedling phenotyping.

Keywords: plant phenotyping; corn breeding; 3D reconstruction; point cloud; robot arm; ToF camera

1. Introduction

Crop breeding technologies can increase yield and improve plant performance. The key to
the success of crop breeding is to identify the genes that are responsible for different traits like
yield of different crops. It is inefficient and error-prone to observe, measure, record, and analyze
phenotypes of large numbers of plants manually, and to associate genes and their functions with
agronomic traits. We proposed an automated indoor corn seedling phenotyping system that can
replace manual measurement, reducing the sampling time and increasing system throughput. In this
project, a time-of-flight of light (ToF) camera and an industrial robot arm are utilized to develop an
automated corn seedling phenotyping platform.

Although scientists have collected abundant information of plant genotype due to the recent
revolution of genomic technologies, the genomic information could not be fully capitalized upon
without correct linkage between genotype and phenotype [1]. Plant breeders and ecologists have been
studying plant phenotyping for many years. High-throughput phenotyping for evaluating hundreds

Sensors 2017, 17, 2082; doi:10.3390/s17092082 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17092082
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 2082 2 of 17

of genotypes is routine in plant breeding [2]. 3D reconstruction has been shown to be a feasible method
for plant morphological traits extraction. For example, Ijiri et al. [3] developed an application for
modeling flowers in 3D. Their system provides a sketch-based interface that allows users to design and
model the layouts of floral components and inflorescences, helping botanists concisely describe the
structure of flowers quickly and easily. Some groups of researchers provided 3D models of rice plants
from images and barley plants from 3D sensors. Watanabe et al. [4] used a 3D digitizer to measure
rice plant structure to specify rice plant architecture and to find suitable functions for describing
its 3D growth at all stages. Multiple-view stereo imaging was applied to reconstruct 3D models of
plants from 2D images [5] and 3D plant models with high spatial resolution were also achieved [6].
However, it has proven to be challenging for stereo vision to handle the complexity of plant canopies
given the difficulties in stereo matching caused by leaf occlusion and the lack of leaf surface texture.
A visual hull algorithm was used to reconstruct 3D models of corn and barley plants [7], but it was
found challenging to apply it to complex plant canopies [8]. Recently, plant phenotyping has gained
more attention because of the development of advanced sensors and robotic data collection and plant
monitoring methodologies. Robots were used in plant phenotyping systems to improve the automatic
performance. Weiss et al. [9] used 3D LIDAR sensors to develop an application for reliably detecting
individual plants within a row in real-time. Their results showed that this application could be assisted
by using agricultural robots for localization, mapping, and navigation.

There are a variety of methods for corn plant phenotype discovery and 3D visualization.
Dornbusch et al. [10] improved the modeling function of the shapes of leaves and stems of corn
plants and proposed a new method for function parameterization from 3D point cloud data of the
plants. Although they achieved excellent results, the images could not be automatically captured.
De Morae Frasson et al. [11] also developed an application to build detailed three-dimensional digital
models of corn plants by using an unmodified commercial digital camera and software. In their
approach, 3D reconstruction of plants was the first step to provide morphological and position
information, which was needed to accomplish other operations on plants such as imaging, probing and
cutting at specific locations. Alenyà et al. [12] used ToF depth data to perform quadratic surface
fitting that was applied to segment plant images [8]. They showed that the obtained surface fit well
with the target leaves and the candidate leaves could be approached by a robot-mounted camera
using location information. This work proved that combining dense color data and depth data could
provide adequate 3D approximation to automatically complete plant measurements. Teng et al. [13]
treated normalized centroid-contour distance as the classification feature for sorting different leaves
in their system. Their leaf classification scheme combined 3D and color information but was not
fully automated. Klose et al. [14] constructed an outdoor automatic plant phenotyping system and
concluded that ToF cameras could also be useful with the help of sunlight shades in outdoor field
conditions. Their system could collect data while moving at a speed of 3.6 km/h, meaning that it could
be used in combination with an autonomous field robot.

This research aims to develop a fully automatic corn seedling phenotyping platform capable of
generating 3D reconstructions and outputting corn seedlings’ morphological traits, including number
of leaves, leaf length, and stem height.

2. Materials and Methods

An overview of our platform is shown in Figure 1. The system contains a ToF camera (SR_4000,
MESA Imaging, Rueschlikon, Switzerland), an industrial robot arm (RV_3SD, Mitsubishi Electric
Automation, Inc., Vernon Hills, IL, USA), and a computer station. To start the process, the user
initiates a request to the robotic system. Then the system sends commands to the robot arm, including
commands to specific positions with various poses to acquire a 3D point cloud from these viewpoints.
The point clouds are then transformed and merged into arm base coordinates. The platform performs
filtering, stem and leaf segmentation, phenotypic data extraction, and visualization.

Sensors 2017, 17, 2082 3 of 17

2.1. Plant Material and Data Collection Schedule

A total of 60 sweet corn (Zea mays L. “Golden × Bantam”) seedlings were used in this study.
These corn plants were grown in growth chambers set to a constant temperature of 22 ◦C and with
a 16 h photo period. Image and hand measurement data were collected starting at seven days after
germination. Every three days we measured the stem height and leaf length on each plant using the
developed robotic phenotyping system and also by hand. The measurements collected by hand were
treated as the reference values. There were nine measurements taken from the plants on days 8, 11, 14,
17, 20, 23, 26, 29, and 32. In total, 534 stem height and 1969 leaf measurements were taken over the
course of the experiment (two plants died on day 29, and then two more died on day 32).

2.2. Data Collection Station Setup

Figure 1 shows how the ToF camera connects to the end effector of the robot arm. The aluminum
mounting bracket has a 90 degree “L” shape with 5-inch width and 0.25-inch depth. It was designed
and machined by using a manual mill (Clausing Industry Inc., Kalamazoo, MI, USA), with four holes
on one side connecting to the robot arm end effector, and three holes on the other side for fixing the
ToF camera.

Sensors 2017, 17, 2082 3 of 17

2.1. Plant Material and Data Collection Schedule

A total of 60 sweet corn (Zea mays L. “Golden × Bantam”) seedlings were used in this study.
These corn plants were grown in growth chambers set to a constant temperature of 22 °C and with a
16 h photo period. Image and hand measurement data were collected starting at seven days after
germination. Every three days we measured the stem height and leaf length on each plant using the
developed robotic phenotyping system and also by hand. The measurements collected by hand were
treated as the reference values. There were nine measurements taken from the plants on days 8, 11,
14, 17, 20, 23, 26, 29, and 32. In total, 534 stem height and 1969 leaf measurements were taken over the
course of the experiment (two plants died on day 29, and then two more died on day 32).

2.2. Data Collection Station Setup
Figure 1 shows how the ToF camera connects to the end effector of the robot arm. The aluminum

mounting bracket has a 90 degree “L” shape with 5-inch width and 0.25-inch depth. It was designed
and machined by using a manual mill (Clausing Industry Inc., Kalamazoo, MI, USA), with four holes
on one side connecting to the robot arm end effector, and three holes on the other side for fixing the
ToF camera.

(a) (b) (c)
Figure 1. Robot arm setup (a); ToF camera mounted on the end effector of the robot arm (b); and the
ToF camera coordinate system (c).

Table 1 lists the technical specifications and some key performance indicators (tested at 25 °C)
of the SR_4000 camera.

Table 1. SR_4000 data sheet.

Illumination Wavelength 850 nm
modulation frequency 30 MHz

detection range 0.1–5.0 m
calibrated range 0.8–5.0 m

absolute distance measurement accuracy ±10 mm with less than 0.5 mm/°C drift with temperature
field of view 43° (h) × 34°

maximum frame rate 50 FPS
pixel array size 176 (h) × 144 (v)

operating temperature +10 °C to +50 °C

2.3. Hand–Eye Transformation

To estimate the 3D position and orientation of the target object relative to the robot base
coordinate frame, it is essential to know the relationship between the robot end effector and the robot
base, the relationship between the camera and the robot end effector, and also the relationship
between the target object and the camera. The transformation matrix between the robot end effector

Figure 1. Robot arm setup (a); ToF camera mounted on the end effector of the robot arm (b); and the
ToF camera coordinate system (c).

Table 1 lists the technical specifications and some key performance indicators (tested at 25 ◦C) of
the SR_4000 camera.

Table 1. SR_4000 data sheet.

Illumination Wavelength 850 nm

modulation frequency 30 MHz
detection range 0.1–5.0 m
calibrated range 0.8–5.0 m

absolute distance measurement accuracy ±10 mm with less than 0.5 mm/◦C drift with temperature
field of view 43◦ (h) × 34◦

maximum frame rate 50 FPS
pixel array size 176 (h) × 144 (v)

operating temperature +10 ◦C to +50 ◦C

Sensors 2017, 17, 2082 4 of 17

2.3. Hand–Eye Transformation

To estimate the 3D position and orientation of the target object relative to the robot base coordinate
frame, it is essential to know the relationship between the robot end effector and the robot base,
the relationship between the camera and the robot end effector, and also the relationship between
the target object and the camera. The transformation matrix between the robot end effector and the
base frame can be obtained from the robot controller output without any programming or computing.
The main function of the ToF camera is to output the 3D point clouds that provide the position and
orientation of the target object in the camera coordinate frame. Thus, the transformation matrix of the
camera and the robot end effector must be measured or calibrated to transfer target object position and
orientation information to the robot base frame.

2.3.1. Dimension Method

According to the dimensions and coordinate definition of the ToF camera in the manual, the origin
is the center of the surface of the lens cover and xyz directions are shown in Figure 1. The transformation
matrices from the camera’s xyz coordinates to the robot arm’s end effector includes both rotational and
translational matrices (mm as unit) which were calculated based on manual measurements of

RD =

 −0.9998, 0.0174,−0.0006
−0.0175,−0.9992, 0.0349
0.0000, 0.0349, 0.9994

TD =

 −30.69
−69.03
120.96

2.3.2. Fully Vision-Based Calibration

Through a standard camera calibration procedure, there are two main outputs, i.e., intrinsic
and extrinsic parameters. The intrinsic parameters are used to calibrate lens distortion, while the
extrinsic parameter can be used to associate the camera position with 3D world space. The camera’s
intrinsic parameters are calibrated by the manufacturer. Our vision-based robot hand-eye calibration
involved a standard camera calibration procedure to obtain the extrinsic parameters and incorporation
of a constant relationship between camera frame and robot end effector frame (Figure 2). We used a
hand–eye calibration toolbox [11] to calculate the camera to robot end effector transformation matrix.
Here Fe is the robot arm end-effector coordinate system, and Fc is the camera coordinate system.

Sensors 2017, 17, 2082 4 of 17

and the base frame can be obtained from the robot controller output without any programming or
computing. The main function of the ToF camera is to output the 3D point clouds that provide the
position and orientation of the target object in the camera coordinate frame. Thus, the transformation
matrix of the camera and the robot end effector must be measured or calibrated to transfer target
object position and orientation information to the robot base frame.

2.3.1. Dimension Method

According to the dimensions and coordinate definition of the ToF camera in the manual, the
origin is the center of the surface of the lens cover and xyz directions are shown in Figure 1. The
transformation matrices from the camera’s xyz coordinates to the robot arm’s end effector includes
both rotational and translational matrices (mm as unit) which were calculated based on manual
measurements of

0.9998, 0.0174, 0.0006
0.0175, 0.9992, 0.0349

0.0000,0.0349, 0.9994
DR

30.69
69.03

120.96
DT

2.3.2. Fully Vision-Based Calibration

Through a standard camera calibration procedure, there are two main outputs, i.e., intrinsic and
extrinsic parameters. The intrinsic parameters are used to calibrate lens distortion, while the extrinsic
parameter can be used to associate the camera position with 3D world space. The camera’s intrinsic
parameters are calibrated by the manufacturer. Our vision-based robot hand-eye calibration involved
a standard camera calibration procedure to obtain the extrinsic parameters and incorporation of a
constant relationship between camera frame and robot end effector frame (Figure 2). We used a hand–
eye calibration toolbox [11] to calculate the camera to robot end effector transformation matrix. Here
Fe is the robot arm end-effector coordinate system, and Fc is the camera coordinate system.

Figure 2. Hand–eye calibration to obtain the relationship between camera coordinate system (Fc) and
robot arm end-effector coordinate system (Fe).

This toolbox can solve eight sets of homogeneous transformation equations: AX = XB, where X
is the target matrix. The final result of the camera related to robot end effector transformation matrix
had an error of less than 20 mm in each direction and we assumed the ground truth is the
manual measurement.

Figure 2. Hand–eye calibration to obtain the relationship between camera coordinate system (Fc) and
robot arm end-effector coordinate system (Fe).

Sensors 2017, 17, 2082 5 of 17

This toolbox can solve eight sets of homogeneous transformation equations: AX = XB, where X
is the target matrix. The final result of the camera related to robot end effector transformation
matrix had an error of less than 20 mm in each direction and we assumed the ground truth is the
manual measurement.

The toolbox uses the reference pattern method to locate the location of the origin and the directions
of the coordinates. In the toolbox, the pattern is a map of black dots with a cross in the center.
We input the black dot diameter and distance between two dots as parameters into the toolbox.
Then it detects each dot from multiple images and calculates intrinsic and extrinsic parameters of
the camera. The toolbox can compute the transformation matrix between the camera and pattern
map coordinates by applying extrinsic parameters. Also, we input the robot arm positions into the
toolbox. Finally, it solves equation AX = XB to obtain the transformation matrix of the end effector
and the camera. However, this method becomes less effective when dealing with cameras with lower
resolution, because the algorithm relies on the accuracy of the detection of metric features such as
corners and circle centers. Larger error is generated when detecting and locating those features in
a low-resolution image acquired by a ToF camera such as SR_4000, which has a resolution of only
176 × 144 pixels (Figure 3).

Sensors 2017, 17, 2082 5 of 17

The toolbox uses the reference pattern method to locate the location of the origin and the
directions of the coordinates. In the toolbox, the pattern is a map of black dots with a cross in the
center. We input the black dot diameter and distance between two dots as parameters into the
toolbox. Then it detects each dot from multiple images and calculates intrinsic and extrinsic
parameters of the camera. The toolbox can compute the transformation matrix between the camera
and pattern map coordinates by applying extrinsic parameters. Also, we input the robot arm
positions into the toolbox. Finally, it solves equation AX = XB to obtain the transformation matrix of
the end effector and the camera. However, this method becomes less effective when dealing with
cameras with lower resolution, because the algorithm relies on the accuracy of the detection of metric
features such as corners and circle centers. Larger error is generated when detecting and locating
those features in a low-resolution image acquired by a ToF camera such as SR_4000, which has a
resolution of only 176 × 144 pixels (Figure 3).

Figure 3. ToF camera amplitude image of a checkerboard with a low resolution.

Comparing these two calibration methods, the error of the dimension method is apparently
smaller than that of the vision-based ToF camera. Kahn reported that there was an approximately 10
mm error of SR_4000 2D and 3D image-based hand-eye calibration in their experiment [15]. The
dimension method was therefore applied in this project.

2.4. System Architecture

This system contains four hierarchical modules: a main control module and user interface, a
robot arm control module, a ToF camera control module, and a data processing module (Figure 4).
The entire system was constructed by using multiple threads in which the central control module
was the main thread and submodules were the child threads. The software was developed in the Qt
development environment (www.qt.io/ide/) with programming language C++.

Figure 3. ToF camera amplitude image of a checkerboard with a low resolution.

Comparing these two calibration methods, the error of the dimension method is apparently
smaller than that of the vision-based ToF camera. Kahn reported that there was an approximately
10 mm error of SR_4000 2D and 3D image-based hand-eye calibration in their experiment [15].
The dimension method was therefore applied in this project.

2.4. System Architecture

This system contains four hierarchical modules: a main control module and user interface, a robot
arm control module, a ToF camera control module, and a data processing module (Figure 4). The entire
system was constructed by using multiple threads in which the central control module was the main
thread and submodules were the child threads. The software was developed in the Qt development
environment (www.qt.io/ide/) with programming language C++.

www.qt.io/ide/

Sensors 2017, 17, 2082 6 of 17

Sensors 2017, 17, 2082 6 of 17

Figure 4. System overview.

2.4.1. Main Control Layer

This main module and interface is the central controller responsible for communicating with the
robot arm, decision-making for ToF camera actions, and triggering data processing and
result visualization.

During the operation, the main control layer sends a request to the robot arm control module
that will then produce a program for jogging the arm to specific positions. Meanwhile, the robot arm
sends its current position to the main control module in real time. A judgment is made in the main
control layer on whether the arm properly determines the target sampling position. As soon as the
arm determines the target locations, the main control module issues a request instruction to the ToF
camera control module to acquire a 3D image. When the 3D images of multiple views are ready, the
processing module begins data filtering, leaf and stem segmentation, and parameter computation.
Finally, the phenotypic data are displayed in a table while the 3D reconstruction model is shown in
a visualization window in the user interface.

The HMI (human–machine interaction) interface contains robot arm controller IP and port
setting, command buttons, camera status-checking, a phenotype parameter output table, and 3D
model visualization.

Figure 4. System overview.

2.4.1. Main Control Layer

This main module and interface is the central controller responsible for communicating with the robot
arm, decision-making for ToF camera actions, and triggering data processing and result visualization.

During the operation, the main control layer sends a request to the robot arm control module
that will then produce a program for jogging the arm to specific positions. Meanwhile, the robot
arm sends its current position to the main control module in real time. A judgment is made in the
main control layer on whether the arm properly determines the target sampling position. As soon as
the arm determines the target locations, the main control module issues a request instruction to the
ToF camera control module to acquire a 3D image. When the 3D images of multiple views are ready,
the processing module begins data filtering, leaf and stem segmentation, and parameter computation.
Finally, the phenotypic data are displayed in a table while the 3D reconstruction model is shown in a
visualization window in the user interface.

The HMI (human–machine interaction) interface contains robot arm controller IP and port
setting, command buttons, camera status-checking, a phenotype parameter output table, and 3D
model visualization.

Sensors 2017, 17, 2082 7 of 17

2.4.2. Robot Arm Control Module

The Mitsubishi RV3S is an industrial vertical six-joint robot arm with a maximum speed
of 5.5 m/s and 0.02 mm position repeatability. The programming platform, RT ToolBox2 is an
independent software package with its own uniform robot programming language. It is impossible
to use the RT-toolbox in our platform because our system requires real-time communication, online
decision-making, and path planning. We therefore applied robot protocol and send protocol commands
to the robot controller through a TCP socket. The advantage of coding with the robot protocol is that
programmers can embed the robot control commands in their customized software using a programing
language of their choice.

The robot arm controller worked as a TCP server and the robot control module worked as a TCP
client; they were connected by Ethernet cable. In the communication mechanism, the client must open
a channel first followed by operation enable, turning on servo, movement programming, turning off
servo and disconnection. Figure 5 shows the robot arm protocol programming structure.

Sensors 2017, 17, 2082 7 of 17

2.4.2. Robot Arm Control Module

The Mitsubishi RV3S is an industrial vertical six-joint robot arm with a maximum speed of
5.5 m/s and 0.02 mm position repeatability. The programming platform, RT ToolBox2 is an
independent software package with its own uniform robot programming language. It is impossible
to use the RT-toolbox in our platform because our system requires real-time communication, online
decision-making, and path planning. We therefore applied robot protocol and send protocol
commands to the robot controller through a TCP socket. The advantage of coding with the robot
protocol is that programmers can embed the robot control commands in their customized software
using a programing language of their choice.

The robot arm controller worked as a TCP server and the robot control module worked as a TCP
client; they were connected by Ethernet cable. In the communication mechanism, the client must open
a channel first followed by operation enable, turning on servo, movement programming, turning off
servo and disconnection. Figure 5 shows the robot arm protocol programming structure.

Figure 5. Robot arm programming flow chart.

2.4.3. ToF Camera Control Module

The camera control module constantly provides a status signal to the main control module after
the system turns on. When these two conditions are satisfied: camera status is set to “succeed” and
when the robot arm has arrived at the target position, the central module generates an event and the
camera module triggers the sensor to acquire an image in response to this event. A calibrated output
stream will be transmitted to the camera module from the sensor through a USB connection, then the
camera module will send an event to the main module after completing image acquisition.

When the main module responds to the imaging completion event, the data processing module
becomes active; the details of the processing algorithm are discussed in the next section. Processed
results will be transmitted to the main module for visualization in the user interface.

Figure 5. Robot arm programming flow chart.

2.4.3. ToF Camera Control Module

The camera control module constantly provides a status signal to the main control module after
the system turns on. When these two conditions are satisfied: camera status is set to “succeed” and
when the robot arm has arrived at the target position, the central module generates an event and the
camera module triggers the sensor to acquire an image in response to this event. A calibrated output
stream will be transmitted to the camera module from the sensor through a USB connection, then the
camera module will send an event to the main module after completing image acquisition.

When the main module responds to the imaging completion event, the data processing module
becomes active; the details of the processing algorithm are discussed in the next section. Processed
results will be transmitted to the main module for visualization in the user interface.

Sensors 2017, 17, 2082 8 of 17

2.4.4. Data Processing Module

3D Image Pre-Processing and Segmentation

Point cloud data pre-processing and leaf and stem segmentation is one component of the data
processing module. Pre-processing provides background and noise filtering as well as multiple-views
data merging. In the leaf and stem segmentation algorithm, the 3D point cloud data were first projected
into a 2D z-y plane, then a y-axis pixels density distribution based method was developed to obtain
stem positions on the y-axis. After isolating the stem point clouds, the remaining points will be
separated into leaf clusters.

Multi-View Images

To reconstruct more details, multi-view images instead of a single front view were produced.
The corn seedling is placed about 550 mm to 800 mm in front of the origin of the robot arm base
coordinate system. The movement range of the robot arm is 0–859 mm along the z axis, −642 to
642 mm along the y axis, and −330 to 642 mm along the x axis. In fact, the movement is more limited
when all six joints work together and when considering the rotations, i.e., yaw, pitch, and roll of the
end effector frame. In this project the system acquired the 3D plant data from three viewpoints with
a corn plant placed in front of the robot arm. Figure 6 shows the right, middle, and left views of the
plant in the robot arm base coordinate system.

Sensors 2017, 17, 2082 8 of 17

2.4.4. Data Processing Module

3D Image Pre-Processing and Segmentation

Point cloud data pre-processing and leaf and stem segmentation is one component of the data
processing module. Pre-processing provides background and noise filtering as well as multiple-
views data merging. In the leaf and stem segmentation algorithm, the 3D point cloud data were first
projected into a 2D z-y plane, then a y-axis pixels density distribution based method was developed
to obtain stem positions on the y-axis. After isolating the stem point clouds, the remaining points will
be separated into leaf clusters.

Multi-View Images

To reconstruct more details, multi-view images instead of a single front view were produced.
The corn seedling is placed about 550 mm to 800 mm in front of the origin of the robot arm base
coordinate system. The movement range of the robot arm is 0–859 mm along the z axis, −642 to 642
mm along the y axis, and −330 to 642 mm along the x axis. In fact, the movement is more limited when
all six joints work together and when considering the rotations, i.e., yaw, pitch, and roll of the end
effector frame. In this project the system acquired the 3D plant data from three viewpoints with a
corn plant placed in front of the robot arm. Figure 6 shows the right, middle, and left views of the
plant in the robot arm base coordinate system.

Figure 6. 3D point cloud data acquisition from three viewpoints.

At each viewpoint, the robot arm produces a homogenous transformation matrix to describe the
relationship between the end effector frame and the robot arm base coordinates. All data from
different viewpoints can be transformed into the base coordinate system by implementing Equation (1),

where ܼܻܺ൩௦ represents the robot base coordinate system; ቈݖݕݔ represents the camera

coordinate system; ሾܶሿି௧ିௗ is the transformation matrix between the camera coordinate
system and the end-effector coordinate system; and ሾܶሿௗି௧ି௦ is the transformation matrix
between the end-effector coordinate system and the robot base coordinate system.

camera

basetoendendtocam

base

z
y
x

TT
Z
Y
X

11

 (1)

The camera to end-effector transformation matrix is calculated by a calibration method
described in Section 2.3 and the end effector to base transformation matrix is produced by the robot
arm controller.

Figure 6. 3D point cloud data acquisition from three viewpoints.

At each viewpoint, the robot arm produces a homogenous transformation matrix to describe
the relationship between the end effector frame and the robot arm base coordinates. All data from
different viewpoints can be transformed into the base coordinate system by implementing Equation (1),

where

 X
Y
Z

base

represents the robot base coordinate system;

 x
y
z

camera

represents the camera

coordinate system; [T]cam−to−end is the transformation matrix between the camera coordinate system
and the end-effector coordinate system; and [T]end−to−base is the transformation matrix between the
end-effector coordinate system and the robot base coordinate system.

X
Y
Z
1

base

= [T]cam−to−end × [T]end−to−base ×

x
y
z
1

camera

(1)

The camera to end-effector transformation matrix is calculated by a calibration method described
in Section 2.3 and the end effector to base transformation matrix is produced by the robot arm controller.

Sensors 2017, 17, 2082 9 of 17

Background and Noise Removal

The working area is a rectangle (250 mm × 150 mm) in front of the robot base. The maximum size
of a corn plant was limited to 600 mm × 500 mm. In this way, only the point clouds that were inside
the cuboid of 250 mm (width) × 500 mm (length) × 600 mm (height) were retained.

It is typical for a ToF camera to generate point clouds with varying densities; the raw data of
the corn plant point cloud always contains a few sparsely-distributed outlier points. The statistical
outlier removal algorithm treats a point as an outlier or inlier according to the distance to its k-nearest
neighbors [13]. This threshold is set as µ + βσ, where µ is the average and the σ is the standard
deviation of the k neighbor distances. The k-nearest neighbors distance value of sparse points is
normally greater than the threshold, µ + βσ.

The value of β can greatly affect the results of the filter. If the β is too small, only a few noise
points are removed; if too high, some points of the plant could be mistakenly removed. We used k = 10
and β = 10 as the filter parameters, as recommended by Chaivivatrakul et al. [16].

Leaf and Stem Segmentation

Parameter computation and trait extraction are based on segmentation, because an individual
component, such as a leaf, is needed to extract the morphological features of a plant. In 3D leaf and
stem segmentation, Chaivivatrakul et al. [16] sliced the corn point cloud from the bottom of the stem
to the top of the leaf, and performed least-squares ellipse fitting for each module. The linked ellipses
with close centers and similar semi-major axis lengths were considered as stem parts. Li projected the
3D corn point cloud into six binary images from 0, 60, 120, 180, 240, and 300 degrees of view angles [17].
If a straight line had over 50 pixels and with an inclination angle between −5◦ and +5◦, the system
would treat this line as the stem [17].

In our segmentation algorithm, the corn plant point cloud was projected as a binary image.
The white pixels belonging to the plant were given a value of 1 and the black pixels were given a value
of 0 in the image. In this research, the stems of our corn plants normally stood with an angle between
85◦−95◦ with respect to ground (Figure 7).

Sensors 2017, 17, 2082 9 of 17

Background and Noise Removal

The working area is a rectangle (250 mm × 150 mm) in front of the robot base. The maximum
size of a corn plant was limited to 600 mm × 500 mm. In this way, only the point clouds that were
inside the cuboid of 250 mm (width) × 500 mm (length) × 600 mm (height) were retained.

It is typical for a ToF camera to generate point clouds with varying densities; the raw data of the
corn plant point cloud always contains a few sparsely-distributed outlier points. The statistical outlier
removal algorithm treats a point as an outlier or inlier according to the distance to its k-nearest
neighbors [13]. This threshold is set as μ + βσ, where μ is the average and the σ is the standard
deviation of the k neighbor distances. The k-nearest neighbors distance value of sparse points is
normally greater than the threshold, μ + βσ.

The value of β can greatly affect the results of the filter. If the β is too small, only a few noise
points are removed; if too high, some points of the plant could be mistakenly removed. We used
k = 10 and β = 10 as the filter parameters, as recommended by Chaivivatrakul et al. [16].

Leaf and Stem Segmentation

Parameter computation and trait extraction are based on segmentation, because an individual
component, such as a leaf, is needed to extract the morphological features of a plant. In 3D leaf and
stem segmentation, Chaivivatrakul et al. [16] sliced the corn point cloud from the bottom of the stem
to the top of the leaf, and performed least-squares ellipse fitting for each module. The linked ellipses
with close centers and similar semi-major axis lengths were considered as stem parts. Li projected the
3D corn point cloud into six binary images from 0, 60, 120, 180, 240, and 300 degrees of view
angles [17]. If a straight line had over 50 pixels and with an inclination angle between −5° and +5°,
the system would treat this line as the stem [17].

In our segmentation algorithm, the corn plant point cloud was projected as a binary image. The
white pixels belonging to the plant were given a value of 1 and the black pixels were given a value of
0 in the image. In this research, the stems of our corn plants normally stood with an angle between
85°−95° with respect to ground (Figure 7).

Figure 7. 2D projection binary image.

We next calculated how many white pixels were in each unit in the y direction, generating a
pixel density distribution map along the y axis. Because the stem part was approximately vertical, it
must have the highest density in the distribution map. The y value of the highest density area was
the location of the stem on the y axis (Figure 8).

Figure 7. 2D projection binary image.

We next calculated how many white pixels were in each unit in the y direction, generating a pixel
density distribution map along the y axis. Because the stem part was approximately vertical, it must
have the highest density in the distribution map. The y value of the highest density area was the
location of the stem on the y axis (Figure 8).

Sensors 2017, 17, 2082 10 of 17
Sensors 2017, 17, 2082 10 of 17

Figure 8. Projected point distribution in y direction.

After extracting the stem point cloud, the remaining points correspond to the leaves (Figure 9).
To separate the leaf points into several single ones, a clustering method called “Euclidean Cluster
Extraction” was implemented in this algorithm [18]. The algorithm basically defines how a point
belongs to a particular point cluster and why it is different from other point clusters. Let pi be a point
in the point cloud � (pj ∈ �), if the minimum distance from a set of points {pi} to pj is larger than the
threshold dth, pj must belong to another cluster.

We created a Kd-tree T to represent the input leaves point cloud � and built an empty list of
clusters L to store the output. If for a point pi ∈ �, we added it to a queue Q and searched for the set
pk that was the neighbors of pi in a sphere with radius less than dth. When that step was completed,
we added the Q to the leaf cluster Lk. After traversing all pi, the segmented leaf clusters were
stored in L.

Figure 9. Separated leaf clusters.

Leaf Curve Fitting and Parameter Computation

Before extracting leaf parameters, the algorithm used a high-order 3D curve to describe the
skeleton of each leaf. In the x–y plane, the skeleton of the leaf is a line, and if the leaf is viewed in the
y–z plane, the leaf skeleton is a curve (Figure 10). We can thus split the high-order 3D curve into
two equations

x = ay +b (2)

z = c0 + c1y + c2y2+ … +ckyk (3)

Figure 8. Projected point distribution in y direction.

After extracting the stem point cloud, the remaining points correspond to the leaves (Figure 9).
To separate the leaf points into several single ones, a clustering method called “Euclidean Cluster
Extraction” was implemented in this algorithm [18]. The algorithm basically defines how a point
belongs to a particular point cluster and why it is different from other point clusters. Let pi be a point
in the point cloud

USV Symbol Macro(s) Description
01A0 Ơ \Ohorn

\textrighthorn{O}
LATIN CAPITAL LETTER O WITH HORN

01A1 ơ \ohorn
\textrighthorn{o}

LATIN SMALL LETTER O WITH HORN

01A4 Ƥ \m{P}
\textPhook

LATIN CAPITAL LETTER P WITH HOOK

01A5 ƥ \m{p}
\texthtp
\textphook

LATIN SMALL LETTER P WITH HOOK

01A9 Ʃ \ESH
\textEsh

LATIN CAPITAL LETTER ESH

01AA ƪ \textlooptoprevesh
\textlhtlongi

LATIN LETTER REVERSED ESH LOOP

01AB ƫ \textpalhookbelow{t}
\textlhookt

LATIN SMALL LETTER T WITH PALATAL HOOK

01AC Ƭ \m{T}
\textThook

LATIN CAPITAL LETTER T WITH HOOK

01AD ƭ \m{t}
\texthtt
\textthook

LATIN SMALL LETTER T WITH HOOK

01AE Ʈ \M{T}
\textTretroflexhook

LATIN CAPITAL LETTER T WITH RETROFLEX HOOK

01AF Ư \Uhorn
\textrighthorn{U}

LATIN CAPITAL LETTER U WITH HORN

01B0 ư \uhorn
\textrighthorn{u}

LATIN SMALL LETTER U WITH HORN

01B1 Ʊ \textupsilon
\m{U}

LATIN CAPITAL LETTER UPSILON

01B2 Ʋ \m{V}
\textVhook

LATIN CAPITAL LETTER V WITH HOOK

01B3 Ƴ \m{Y}
\textYhook

LATIN CAPITAL LETTER Y WITH HOOK

01B4 ƴ \m{y}
\textyhook

LATIN SMALL LETTER Y WITH HOOK

01B5 Ƶ \B{Z}
\Zbar

LATIN CAPITAL LETTER Z WITH STROKE

01B6 ƶ \B{z} LATIN SMALL LETTER Z WITH STROKE

01B7 Ʒ \m{Z}
\EZH
\textEzh

LATIN CAPITAL LETTER EZH

01B9 ƹ \textrevyogh LATIN SMALL LETTER EZH REVERSED

01BA ƺ \textbenttailyogh LATIN SMALL LETTER EZH WITH TAIL

01BB ƻ \B{2}
\textcrtwo

LATIN LETTER TWO WITH STROKE

01BE ƾ \textcrinvglotstop LATIN LETTER INVERTED GLOTTAL STOP WITH STROKE

01BF ƿ \wynn LATIN LETTER WYNN

01C0 ǀ \textpipe
\textpipevar
\textvertline

LATIN LETTER DENTAL CLICK

01C1 ǁ \textdoublepipe
\textdoublepipevar

LATIN LETTER LATERAL CLICK

01C2 ǂ \textdoublebarpipe
\textdoublebarpipevar

LATIN LETTER ALVEOLAR CLICK

01C3 ǃ \textrclick LATIN LETTER RETROFLEX CLICK

01C4 Ǆ \v{\DZ} LATIN CAPITAL LETTER DZ WITH CARON

01C5 ǅ \v{\Dz} LATIN CAPITAL LETTER D WITH SMALL LETTER Z WITH CARON

01C6 ǆ \v{\dz} LATIN SMALL LETTER DZ WITH CARON

01C7 Ǉ \LJ LATIN CAPITAL LETTER LJ

01C8 ǈ \Lj LATIN CAPITAL LETTER L WITH SMALL LETTER J

01C9 ǉ \lj LATIN SMALL LETTER LJ

01CA Ǌ \NJ LATIN CAPITAL LETTER NJ

9

(pj ∈

USV Symbol Macro(s) Description
01A0 Ơ \Ohorn

\textrighthorn{O}
LATIN CAPITAL LETTER O WITH HORN

01A1 ơ \ohorn
\textrighthorn{o}

LATIN SMALL LETTER O WITH HORN

01A4 Ƥ \m{P}
\textPhook

LATIN CAPITAL LETTER P WITH HOOK

01A5 ƥ \m{p}
\texthtp
\textphook

LATIN SMALL LETTER P WITH HOOK

01A9 Ʃ \ESH
\textEsh

LATIN CAPITAL LETTER ESH

01AA ƪ \textlooptoprevesh
\textlhtlongi

LATIN LETTER REVERSED ESH LOOP

01AB ƫ \textpalhookbelow{t}
\textlhookt

LATIN SMALL LETTER T WITH PALATAL HOOK

01AC Ƭ \m{T}
\textThook

LATIN CAPITAL LETTER T WITH HOOK

01AD ƭ \m{t}
\texthtt
\textthook

LATIN SMALL LETTER T WITH HOOK

01AE Ʈ \M{T}
\textTretroflexhook

LATIN CAPITAL LETTER T WITH RETROFLEX HOOK

01AF Ư \Uhorn
\textrighthorn{U}

LATIN CAPITAL LETTER U WITH HORN

01B0 ư \uhorn
\textrighthorn{u}

LATIN SMALL LETTER U WITH HORN

01B1 Ʊ \textupsilon
\m{U}

LATIN CAPITAL LETTER UPSILON

01B2 Ʋ \m{V}
\textVhook

LATIN CAPITAL LETTER V WITH HOOK

01B3 Ƴ \m{Y}
\textYhook

LATIN CAPITAL LETTER Y WITH HOOK

01B4 ƴ \m{y}
\textyhook

LATIN SMALL LETTER Y WITH HOOK

01B5 Ƶ \B{Z}
\Zbar

LATIN CAPITAL LETTER Z WITH STROKE

01B6 ƶ \B{z} LATIN SMALL LETTER Z WITH STROKE

01B7 Ʒ \m{Z}
\EZH
\textEzh

LATIN CAPITAL LETTER EZH

01B9 ƹ \textrevyogh LATIN SMALL LETTER EZH REVERSED

01BA ƺ \textbenttailyogh LATIN SMALL LETTER EZH WITH TAIL

01BB ƻ \B{2}
\textcrtwo

LATIN LETTER TWO WITH STROKE

01BE ƾ \textcrinvglotstop LATIN LETTER INVERTED GLOTTAL STOP WITH STROKE

01BF ƿ \wynn LATIN LETTER WYNN

01C0 ǀ \textpipe
\textpipevar
\textvertline

LATIN LETTER DENTAL CLICK

01C1 ǁ \textdoublepipe
\textdoublepipevar

LATIN LETTER LATERAL CLICK

01C2 ǂ \textdoublebarpipe
\textdoublebarpipevar

LATIN LETTER ALVEOLAR CLICK

01C3 ǃ \textrclick LATIN LETTER RETROFLEX CLICK

01C4 Ǆ \v{\DZ} LATIN CAPITAL LETTER DZ WITH CARON

01C5 ǅ \v{\Dz} LATIN CAPITAL LETTER D WITH SMALL LETTER Z WITH CARON

01C6 ǆ \v{\dz} LATIN SMALL LETTER DZ WITH CARON

01C7 Ǉ \LJ LATIN CAPITAL LETTER LJ

01C8 ǈ \Lj LATIN CAPITAL LETTER L WITH SMALL LETTER J

01C9 ǉ \lj LATIN SMALL LETTER LJ

01CA Ǌ \NJ LATIN CAPITAL LETTER NJ

9

), if the minimum distance from a set of points {pi} to pj is larger than the
threshold dth, pj must belong to another cluster.

We created a Kd-tree T to represent the input leaves point cloud

USV Symbol Macro(s) Description
01A0 Ơ \Ohorn

\textrighthorn{O}
LATIN CAPITAL LETTER O WITH HORN

01A1 ơ \ohorn
\textrighthorn{o}

LATIN SMALL LETTER O WITH HORN

01A4 Ƥ \m{P}
\textPhook

LATIN CAPITAL LETTER P WITH HOOK

01A5 ƥ \m{p}
\texthtp
\textphook

LATIN SMALL LETTER P WITH HOOK

01A9 Ʃ \ESH
\textEsh

LATIN CAPITAL LETTER ESH

01AA ƪ \textlooptoprevesh
\textlhtlongi

LATIN LETTER REVERSED ESH LOOP

01AB ƫ \textpalhookbelow{t}
\textlhookt

LATIN SMALL LETTER T WITH PALATAL HOOK

01AC Ƭ \m{T}
\textThook

LATIN CAPITAL LETTER T WITH HOOK

01AD ƭ \m{t}
\texthtt
\textthook

LATIN SMALL LETTER T WITH HOOK

01AE Ʈ \M{T}
\textTretroflexhook

LATIN CAPITAL LETTER T WITH RETROFLEX HOOK

01AF Ư \Uhorn
\textrighthorn{U}

LATIN CAPITAL LETTER U WITH HORN

01B0 ư \uhorn
\textrighthorn{u}

LATIN SMALL LETTER U WITH HORN

01B1 Ʊ \textupsilon
\m{U}

LATIN CAPITAL LETTER UPSILON

01B2 Ʋ \m{V}
\textVhook

LATIN CAPITAL LETTER V WITH HOOK

01B3 Ƴ \m{Y}
\textYhook

LATIN CAPITAL LETTER Y WITH HOOK

01B4 ƴ \m{y}
\textyhook

LATIN SMALL LETTER Y WITH HOOK

01B5 Ƶ \B{Z}
\Zbar

LATIN CAPITAL LETTER Z WITH STROKE

01B6 ƶ \B{z} LATIN SMALL LETTER Z WITH STROKE

01B7 Ʒ \m{Z}
\EZH
\textEzh

LATIN CAPITAL LETTER EZH

01B9 ƹ \textrevyogh LATIN SMALL LETTER EZH REVERSED

01BA ƺ \textbenttailyogh LATIN SMALL LETTER EZH WITH TAIL

01BB ƻ \B{2}
\textcrtwo

LATIN LETTER TWO WITH STROKE

01BE ƾ \textcrinvglotstop LATIN LETTER INVERTED GLOTTAL STOP WITH STROKE

01BF ƿ \wynn LATIN LETTER WYNN

01C0 ǀ \textpipe
\textpipevar
\textvertline

LATIN LETTER DENTAL CLICK

01C1 ǁ \textdoublepipe
\textdoublepipevar

LATIN LETTER LATERAL CLICK

01C2 ǂ \textdoublebarpipe
\textdoublebarpipevar

LATIN LETTER ALVEOLAR CLICK

01C3 ǃ \textrclick LATIN LETTER RETROFLEX CLICK

01C4 Ǆ \v{\DZ} LATIN CAPITAL LETTER DZ WITH CARON

01C5 ǅ \v{\Dz} LATIN CAPITAL LETTER D WITH SMALL LETTER Z WITH CARON

01C6 ǆ \v{\dz} LATIN SMALL LETTER DZ WITH CARON

01C7 Ǉ \LJ LATIN CAPITAL LETTER LJ

01C8 ǈ \Lj LATIN CAPITAL LETTER L WITH SMALL LETTER J

01C9 ǉ \lj LATIN SMALL LETTER LJ

01CA Ǌ \NJ LATIN CAPITAL LETTER NJ

9

and built an empty list of
clusters L to store the output. If for a point pi ∈

USV Symbol Macro(s) Description
01A0 Ơ \Ohorn

\textrighthorn{O}
LATIN CAPITAL LETTER O WITH HORN

01A1 ơ \ohorn
\textrighthorn{o}

LATIN SMALL LETTER O WITH HORN

01A4 Ƥ \m{P}
\textPhook

LATIN CAPITAL LETTER P WITH HOOK

01A5 ƥ \m{p}
\texthtp
\textphook

LATIN SMALL LETTER P WITH HOOK

01A9 Ʃ \ESH
\textEsh

LATIN CAPITAL LETTER ESH

01AA ƪ \textlooptoprevesh
\textlhtlongi

LATIN LETTER REVERSED ESH LOOP

01AB ƫ \textpalhookbelow{t}
\textlhookt

LATIN SMALL LETTER T WITH PALATAL HOOK

01AC Ƭ \m{T}
\textThook

LATIN CAPITAL LETTER T WITH HOOK

01AD ƭ \m{t}
\texthtt
\textthook

LATIN SMALL LETTER T WITH HOOK

01AE Ʈ \M{T}
\textTretroflexhook

LATIN CAPITAL LETTER T WITH RETROFLEX HOOK

01AF Ư \Uhorn
\textrighthorn{U}

LATIN CAPITAL LETTER U WITH HORN

01B0 ư \uhorn
\textrighthorn{u}

LATIN SMALL LETTER U WITH HORN

01B1 Ʊ \textupsilon
\m{U}

LATIN CAPITAL LETTER UPSILON

01B2 Ʋ \m{V}
\textVhook

LATIN CAPITAL LETTER V WITH HOOK

01B3 Ƴ \m{Y}
\textYhook

LATIN CAPITAL LETTER Y WITH HOOK

01B4 ƴ \m{y}
\textyhook

LATIN SMALL LETTER Y WITH HOOK

01B5 Ƶ \B{Z}
\Zbar

LATIN CAPITAL LETTER Z WITH STROKE

01B6 ƶ \B{z} LATIN SMALL LETTER Z WITH STROKE

01B7 Ʒ \m{Z}
\EZH
\textEzh

LATIN CAPITAL LETTER EZH

01B9 ƹ \textrevyogh LATIN SMALL LETTER EZH REVERSED

01BA ƺ \textbenttailyogh LATIN SMALL LETTER EZH WITH TAIL

01BB ƻ \B{2}
\textcrtwo

LATIN LETTER TWO WITH STROKE

01BE ƾ \textcrinvglotstop LATIN LETTER INVERTED GLOTTAL STOP WITH STROKE

01BF ƿ \wynn LATIN LETTER WYNN

01C0 ǀ \textpipe
\textpipevar
\textvertline

LATIN LETTER DENTAL CLICK

01C1 ǁ \textdoublepipe
\textdoublepipevar

LATIN LETTER LATERAL CLICK

01C2 ǂ \textdoublebarpipe
\textdoublebarpipevar

LATIN LETTER ALVEOLAR CLICK

01C3 ǃ \textrclick LATIN LETTER RETROFLEX CLICK

01C4 Ǆ \v{\DZ} LATIN CAPITAL LETTER DZ WITH CARON

01C5 ǅ \v{\Dz} LATIN CAPITAL LETTER D WITH SMALL LETTER Z WITH CARON

01C6 ǆ \v{\dz} LATIN SMALL LETTER DZ WITH CARON

01C7 Ǉ \LJ LATIN CAPITAL LETTER LJ

01C8 ǈ \Lj LATIN CAPITAL LETTER L WITH SMALL LETTER J

01C9 ǉ \lj LATIN SMALL LETTER LJ

01CA Ǌ \NJ LATIN CAPITAL LETTER NJ

9

, we added it to a queue Q and searched for the set
pk that was the neighbors of pi in a sphere with radius less than dth. When that step was completed,
we added the Q to the leaf cluster Lk. After traversing all pi, the segmented leaf clusters were stored
in L.

Sensors 2017, 17, 2082 10 of 17

Figure 8. Projected point distribution in y direction.

After extracting the stem point cloud, the remaining points correspond to the leaves (Figure 9).
To separate the leaf points into several single ones, a clustering method called “Euclidean Cluster
Extraction” was implemented in this algorithm [18]. The algorithm basically defines how a point
belongs to a particular point cluster and why it is different from other point clusters. Let pi be a point
in the point cloud � (pj ∈ �), if the minimum distance from a set of points {pi} to pj is larger than the
threshold dth, pj must belong to another cluster.

We created a Kd-tree T to represent the input leaves point cloud � and built an empty list of
clusters L to store the output. If for a point pi ∈ �, we added it to a queue Q and searched for the set
pk that was the neighbors of pi in a sphere with radius less than dth. When that step was completed,
we added the Q to the leaf cluster Lk. After traversing all pi, the segmented leaf clusters were
stored in L.

Figure 9. Separated leaf clusters.

Leaf Curve Fitting and Parameter Computation

Before extracting leaf parameters, the algorithm used a high-order 3D curve to describe the
skeleton of each leaf. In the x–y plane, the skeleton of the leaf is a line, and if the leaf is viewed in the
y–z plane, the leaf skeleton is a curve (Figure 10). We can thus split the high-order 3D curve into
two equations

x = ay +b (2)

z = c0 + c1y + c2y2+ … +ckyk (3)

Figure 9. Separated leaf clusters.

Leaf Curve Fitting and Parameter Computation

Before extracting leaf parameters, the algorithm used a high-order 3D curve to describe the
skeleton of each leaf. In the x–y plane, the skeleton of the leaf is a line, and if the leaf is viewed in
the y–z plane, the leaf skeleton is a curve (Figure 10). We can thus split the high-order 3D curve into
two equations

x = ay + b (2)

Sensors 2017, 17, 2082 11 of 17

z = c0 + c1y + c2y2+ . . . +ckyk (3)
Sensors 2017, 17, 2082 11 of 17

(a) (b)

Figure 10. plant projected in y–z plane (a) and x–y plane (b).

In the y–z plane, the leaf skeleton with greater curvature must have a larger k value, where k is
the order of the curve in the y–z plane. There were 97 leaves, ranging in length from 50 mm to 521 mm,
chosen randomly to test which order of curve fitting is more suitable in this project. The error was
calculated by comparing the algorithm output with the manual measurements (Equation (4)); and
the error distribution plot (Figure 11) and a summary statistics table (Table 2) are given below. ݎݎݎܧ = ݐݑݐݑ	݉݁ݐݏݕܵ − ݈ܽݑ݊ܽ݉ ݈ܽݑ݊ܽ݉ݐ݊݁݉݁ݎݑݏܽ݁݉ ݐ݊݁݉݁ݎݑݏܽ݁݉ ൈ 100% (4)

The mean of the third curve fitting error is 13.2%, which is smaller than that of the second order
(15.3%) and fourth order (15.6%) curve fitting, thus third order curve fitting was adopted in this
project. The boxplot shows the error distribution. When the second order fitting was applied, the
error focuses on 5% to 10%, whereas when the third and fourth order fitting were applied, the error
concentrates more on 0 to 5%. This means the third and fourth order curve fitting bring smaller errors
than that of the second order fitting.

(a) (b) (c)

Figure 11. Leaf length error (%) distribution with different order of curve fitting: (a) second order, (b)
third order, and (c) fourth order.

Figure 10. plant projected in y–z plane (a) and x–y plane (b).

In the y–z plane, the leaf skeleton with greater curvature must have a larger k value, where k is
the order of the curve in the y–z plane. There were 97 leaves, ranging in length from 50 mm to 521 mm,
chosen randomly to test which order of curve fitting is more suitable in this project. The error was
calculated by comparing the algorithm output with the manual measurements (Equation (4)); and the
error distribution plot (Figure 11) and a summary statistics table (Table 2) are given below.

Error =
System output−manual measurement

manual measurement
× 100% (4)

The mean of the third curve fitting error is 13.2%, which is smaller than that of the second order
(15.3%) and fourth order (15.6%) curve fitting, thus third order curve fitting was adopted in this project.
The boxplot shows the error distribution. When the second order fitting was applied, the error focuses
on 5% to 10%, whereas when the third and fourth order fitting were applied, the error concentrates
more on 0 to 5%. This means the third and fourth order curve fitting bring smaller errors than that of
the second order fitting.

Sensors 2017, 17, 2082 11 of 17

(a) (b)

Figure 10. plant projected in y–z plane (a) and x–y plane (b).

In the y–z plane, the leaf skeleton with greater curvature must have a larger k value, where k is
the order of the curve in the y–z plane. There were 97 leaves, ranging in length from 50 mm to 521 mm,
chosen randomly to test which order of curve fitting is more suitable in this project. The error was
calculated by comparing the algorithm output with the manual measurements (Equation (4)); and
the error distribution plot (Figure 11) and a summary statistics table (Table 2) are given below. ݎݎݎܧ = ݐݑݐݑ	݉݁ݐݏݕܵ − ݈ܽݑ݊ܽ݉ ݈ܽݑ݊ܽ݉ݐ݊݁݉݁ݎݑݏܽ݁݉ ݐ݊݁݉݁ݎݑݏܽ݁݉ ൈ 100% (4)

The mean of the third curve fitting error is 13.2%, which is smaller than that of the second order
(15.3%) and fourth order (15.6%) curve fitting, thus third order curve fitting was adopted in this
project. The boxplot shows the error distribution. When the second order fitting was applied, the
error focuses on 5% to 10%, whereas when the third and fourth order fitting were applied, the error
concentrates more on 0 to 5%. This means the third and fourth order curve fitting bring smaller errors
than that of the second order fitting.

(a) (b) (c)

Figure 11. Leaf length error (%) distribution with different order of curve fitting: (a) second order, (b)
third order, and (c) fourth order.

Figure 11. Leaf length error (%) distribution with different order of curve fitting: (a) second order,
(b) third order, and (c) fourth order.

Sensors 2017, 17, 2082 12 of 17

Table 2. Leaf length error estimated by different orders fitting (%).

Quantiles

k = 2 (Second Order) k = 3 (Third Order) k = 4 (Fourth Order)

100% Maximum 48.4 100% Maximum 37.4 100% Maximum 48.4
75% Quartile 22.4 75% Quartile 21.1 75% Quartile 22.7
50% Median 11.9 50% Median 11.8 50% Median 12.4
25% Quartile 6.4 25% Quartile 5.0 25% Quartile 5.1
0% Minimum 0.6 0% Minimum 0.0 0% Minimum 0.4

Summary Statistics

Mean 15.3 Mean 13.2 Mean 15.6
Std. Deviation 11.5 Std. Deviation 9.1 Std. Deviation 12.1
Std. Err Mean 1.2 Std. Err Mean 0.9 Std. Err Mean 1.2

Upper 95% Mean 17.6 Upper 95% Mean 15.0 Upper 95% Mean 18.0
Lower 95% Mean 12.9 Lower 95% Mean 11.3 Lower 95% Mean 13.2

N 97 N 97 N 97

The y range of the leaf was divided into N subsections. For each y value, there were corresponding
x and z values to make up a leaf point (x, y, z). When these points were connected, they formed the 3D
leaf skeletons (Figure 12).

Sensors 2017, 17, 2082 12 of 17

Table 2. Leaf length error estimated by different orders fitting (%).

Quantiles
k = 2 (Second Order) k = 3 (Third Order) k = 4 (Fourth Order)

100% Maximum 48.4 100% Maximum 37.4 100% Maximum 48.4
75% Quartile 22.4 75% Quartile 21.1 75% Quartile 22.7
50% Median 11.9 50% Median 11.8 50% Median 12.4
25% Quartile 6.4 25% Quartile 5.0 25% Quartile 5.1
0% Minimum 0.6 0% Minimum 0.0 0% Minimum 0.4

 Summary Statistics
Mean 15.3 Mean 13.2 Mean 15.6

Std. Deviation 11.5 Std. Deviation 9.1 Std. Deviation 12.1
Std. Err Mean 1.2 Std. Err Mean 0.9 Std. Err Mean 1.2

Upper 95% Mean 17.6 Upper 95% Mean 15.0 Upper 95% Mean 18.0
Lower 95% Mean 12.9 Lower 95% Mean 11.3 Lower 95% Mean 13.2

N 97 N 97 N 97

The y range of the leaf was divided into N subsections. For each y value, there were
corresponding x and z values to make up a leaf point (x, y, z). When these points were connected,
they formed the 3D leaf skeletons (Figure 12).

(a) (b)

Figure 12. Red line is the leaf fitting in y–z plane (a) and x–y plane (b).

Based on the leaf skeleton fitting curve, the length of the leaf is the sum of N fractional lengths.

ℎݐ݃݊݁ܮ =ඥሺݔ − ିଵሻଶݔ + ሺݕ − ିଵሻଶݕ + ሺݖ − ିଵሻଶேݖ
ୀଵ (5)

For stem model estimation, we fitted it as a cylinder and compensated the bottom part through
a lost filtering (Figure 13). The length of the stem is the highest z value minus the distance between
the desktop and the bottom of the stem.

Figure 12. Red line is the leaf fitting in y–z plane (a) and x–y plane (b).

Based on the leaf skeleton fitting curve, the length of the leaf is the sum of N fractional lengths.

Length =
N

∑
i=1

√
(xi − xi−1)

2 + (yi − yi−1)
2 + (zi − zi−1)

2 (5)

For stem model estimation, we fitted it as a cylinder and compensated the bottom part through a
lost filtering (Figure 13). The length of the stem is the highest z value minus the distance between the
desktop and the bottom of the stem.

Sensors 2017, 17, 2082 13 of 17

Sensors 2017, 17, 2082 13 of 17

Figure 13. Stem fitting model.

3. Results and Discussion

The robot arm automatically brought the ToF camera to different positions to begin collecting
the 3D point cloud data of each plant. Then the software would reconstruct the 3D model of the plant
by using the point cloud data from multiple views. Figure 14 shows the developed hardware and
software components with an illustration where leaf length and stem height are defined. The stem
and different leaves were labeled with different colors. At the same time, a table displayed the
parameters of the plant, e.g., the length of each leaf and the stem height (Figure 14).

(a)

Figure 13. Stem fitting model.

3. Results and Discussion

The robot arm automatically brought the ToF camera to different positions to begin collecting the
3D point cloud data of each plant. Then the software would reconstruct the 3D model of the plant
by using the point cloud data from multiple views. Figure 14 shows the developed hardware and
software components with an illustration where leaf length and stem height are defined. The stem and
different leaves were labeled with different colors. At the same time, a table displayed the parameters
of the plant, e.g., the length of each leaf and the stem height (Figure 14).

Sensors 2017, 17, 2082 13 of 17

Figure 13. Stem fitting model.

3. Results and Discussion

The robot arm automatically brought the ToF camera to different positions to begin collecting
the 3D point cloud data of each plant. Then the software would reconstruct the 3D model of the plant
by using the point cloud data from multiple views. Figure 14 shows the developed hardware and
software components with an illustration where leaf length and stem height are defined. The stem
and different leaves were labeled with different colors. At the same time, a table displayed the
parameters of the plant, e.g., the length of each leaf and the stem height (Figure 14).

(a)

Figure 14. Cont.

Sensors 2017, 17, 2082 14 of 17

Sensors 2017, 17, 2082 14 of 17

(b)

Figure 14. Robotic scanning station (a) and the software interface (b).

Figure 15 is the error distribution of stem height and leaf length. These are half-normal
distributions and their mean and median values are close. There is no obvious bias shown in the error
distributions, meaning that the measurements did not overestimate or underestimate the true values.
When comparing the cumulative error distribution curves of stem height and leaf length
measurements, the stem height measurement error ratio has a substantially higher ramp rate in the
first quartile, indicating a larger concentration of stem height measurement than that of leaf length
measurement in the low error range.

(a) (b)

Figure 15. Error (%) distribution of the stem height (a) and leaf length (b) measurements generated
by the system. The blue dotted lines are cumulative error distribution curves.

Figure 14. Robotic scanning station (a) and the software interface (b).

Figure 15 is the error distribution of stem height and leaf length. These are half-normal
distributions and their mean and median values are close. There is no obvious bias shown in the
error distributions, meaning that the measurements did not overestimate or underestimate the true
values. When comparing the cumulative error distribution curves of stem height and leaf length
measurements, the stem height measurement error ratio has a substantially higher ramp rate in the
first quartile, indicating a larger concentration of stem height measurement than that of leaf length
measurement in the low error range.

Sensors 2017, 17, 2082 14 of 17

(b)

Figure 14. Robotic scanning station (a) and the software interface (b).

Figure 15 is the error distribution of stem height and leaf length. These are half-normal
distributions and their mean and median values are close. There is no obvious bias shown in the error
distributions, meaning that the measurements did not overestimate or underestimate the true values.
When comparing the cumulative error distribution curves of stem height and leaf length
measurements, the stem height measurement error ratio has a substantially higher ramp rate in the
first quartile, indicating a larger concentration of stem height measurement than that of leaf length
measurement in the low error range.

(a) (b)

Figure 15. Error (%) distribution of the stem height (a) and leaf length (b) measurements generated
by the system. The blue dotted lines are cumulative error distribution curves.

Figure 15. Error (%) distribution of the stem height (a) and leaf length (b) measurements generated by
the system. The blue dotted lines are cumulative error distribution curves.

Sensors 2017, 17, 2082 15 of 17

The stem heights of the corn plants at the time of measurement ranged from 30 mm to 220 mm, the
length of the leaves at the time of measurement ranged from 20 mm to 567 mm. Table 3 shows that the
error of stem height measurement by the system is 12.5% (median) and 13.7% (mean). The minimum
error between the system outputs and the manual measurements were approximately 0%. More than
75% of stem height measurements exhibited error of less than 20%. A quarter of the stem height
measurements have very small errors (6.6%). The confidence interval (95%) of the error mean is
12.9–14.4%. The leaf length measurement error is 11.1% (median value) and 13.1% (mean value)
(Table 4). A quarter of the measurements of leaf length have an error of 5%, and three quarters of the
measurements have an error rate less than 20%. However, there are outliers with error values of over
40% in the error distribution. Such large errors usually happened when the stems were as short as
30–60 mm. The ToF sensor contributes 10 mm error, close to the stem height, causing a large relative
error value when stems are short. The error comes from the ToF camera (10 mm), filtering and leaf
curve fitting. The choice of filter parameters and the order of fitting curve to satisfy all situations is
difficult because each plant has differently shaped leaves. The surface of a corn leaf is not flat, and the
fluctuating part of the leaf may require higher orders of curve fitting.

Table 3. Stem height error table (%).

Quantiles Summary Statistics

100% Maximum 43.6 Mean 13.7
75% Quartile 19.5 Std Deviation 8.9
50% Median 12.5 Std Err Mean 0.4
25% Quartile 6.6 Upper 95% Mean 14.4
0% Minimum 0.02 Lower 95% Mean 12.9

N 534

Table 4. Leaf length error table (%).

Quantiles Summary Statistics

100% Maximum 53.5 Mean 13.1
75% Quartile 19.2 Std Deviation 9.9
50% Median 11.1 Std Err Mean 0.2
25% Quartile 5.0 Upper 95% Mean 13.5
0% Minimum 0 Lower 95% Mean 12.7

N 1969

4. Conclusions

In this project, we were able to use an automated system to generate phenotypic data of stem
height and leaf length of corn seedlings. When comparing the values acquired by the developed robotic
measurement system and those obtained by manual measurement, the robotic system performed
satisfactorily, proving its utility in automated plant phenotyping for corn plant seedlings.

The larger outlier errors were likely caused by the filters, the accuracy of ToF camera, and the
curve fitting algorithm. The ToF camera we used in this project has a resolution of only 176 × 144, so a
higher resolution 3D sensor will improve the accuracy of this robotic measurement system. The filter
parameters are also important to the measurement output of the system. We used pass-through and
outlier removal filters in this project and, because these two filters are sensitive to plant shape, it is
difficult to fix the parameter values of the filter while satisfying all situations. If color data could
be used to remove the noise, the measurement error would decrease. This could be accomplished
by using a RGB threshold to retain only point cloud points that are of green color (corn plants) and
remove background and other noise. The current system considers only the shape of the plant but,
in addition to measuring plant structural features, there are some other traits that can be of interest
to plant scientists—including responses to pathogens, pests, and environment stresses—that can be

Sensors 2017, 17, 2082 16 of 17

manifested as changes in color. Different sensors, such as hyperspectral cameras, can be added to the
system to observe changes in color, chemical composition, and photosynthetic activities.

The developed phenotyping platform requires that plants are brought to a staging area next
to the robot arm, which is fixed to a work table. However, for phenotyping applications, it will be
helpful if this system becomes mobile. A mobile system can collect data on plants in growth chamber,
greenhouse, or field without the need to move plants. The mobile application will require coordination
of the robot arm, the end effector, and the mobile rover to repeatedly visit plants for data collection
over the course of the plant growth period.

Acknowledgments: This project was partly funded by the Plant Science Institute (PSI) Innovative Grant (2013–2015)
at Iowa State University, and partly funded by National Science Foundation Major Research Instrumentation (MRI)
grant (award number 1428148).

Author Contributions: H.L. conducted the experiment, developed the software, analyzed the data, and wrote
the paper. L.T. conceived the design, supervised Lu’s robotic work, revised the manuscript, was the co-PI of
the project. S.A.W. was the PI of the project, supervised Lu’s experiment design work, revised the manuscript.
Y.M. assisted Lu’s experiment and data analysis and revised the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cobb, J.N.; DeClerck, G.; Greenberg, A.; Clark, R.; McCouch, S. Next-generation phenotyping: Requirements
and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to
crop improvement. Theor. Appl. Genet. 2013, 126, 867–887. [CrossRef] [PubMed]

2. Phenomics: Genotype to Phenotype; A Report of the Phenomics Workshop Sponsored by the USDA and
NSF; 2011. Available online: https://www.nsf.gov/bio/pubs/reports/phenomics_workshop_report.pdf
(accessed on 12 September 2017).

3. Ijiri, T.; Owada, S.; Okabe, M.; Igarashi, T. Floral diagrams and inflorescences: Interactive flower modeling
using botanical structural constraints. ACM Trans. Graph. TOG 2005, 24, 720–726. [CrossRef]

4. Watanabe, T.; Hanan, J.S.; Room, P.M.; Hasegawa, T.; Nakagawa, H.; Takahashi, W. Rice morphogenesis
and plant architecture: Measurement, specification and the reconstruction of structural development by 3D
architectural modelling. Ann. Bot. 2005, 95, 1131–1143. [CrossRef] [PubMed]

5. Klodt, M.; Cremers, D. High-resolution plant shape measurements from multi-view stereo reconstruction.
In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014.

6. Pound, M.P.; French, A.P.; Murchie, E.H.; Pridmore, T.P. Automated recovery of three-dimensional models
of plant shoots from multiple color images. Plant Physiol. 2014, 166, 1688–1698. [CrossRef] [PubMed]

7. Kumar, P.; Connor, J.; Mikiavcic, S. High-throughput 3D reconstruction of plant shoots for phenotyping.
In Proceedings of the 2014 13th International Conference on Control Automation Robotics & Vision
(ICARCV), Singapore, 10–12 December 2014.

8. Ward, B.; Bastian, J.; van de Hengel, A.; Pooley, D.; Bari, R.; Berger, B.; Tester, M. A model-based approach to
recovering the structure of a plant from images. arXiv 2015, arXiv:1503.03191.

9. Weiss, U.; Biber, P. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor.
Robot. Auton. Syst. 2011, 59, 265–273. [CrossRef]

10. Dornbusch, T.; Wernecke, P.; Diepenbrock, W. A method to extract morphological traits of plant organs from
3D point clouds as a database for an architectural plant model. Ecol. Model. 2007, 200, 119–129. [CrossRef]

11. De Moraes Frasson, R.P.; Krajewski, W.F. Three-dimensional digital model of a maize plant. Agric. For. Meteorol.
2010, 150, 478–488. [CrossRef]

12. Alenyà, G.; Dellen, B.; Torras, C. 3D modelling of leaves from color and ToF data for robotized plant
measuring. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, 9–13 May 2011; pp. 3408–3414.

13. Teng, C.H.; Kuo, Y.T.; Chen, Y.S. Leaf segmentation, classification, and three-dimensional recovery from a
few images with close viewpoints. Opt. Eng. 2011, 50, 937–946.

14. Klose, R.; Penlington, J.; Ruckelshausen, A. Usability study of 3D time-of-flight cameras for automatic plant
phenotyping. Bornimer Agrartech. Ber. 2009, 69, 12.

http://dx.doi.org/10.1007/s00122-013-2066-0
http://www.ncbi.nlm.nih.gov/pubmed/23471459
https://www.nsf.gov/bio/pubs/reports/phenomics_workshop_report.pdf
http://dx.doi.org/10.1145/1073204.1073253
http://dx.doi.org/10.1093/aob/mci136
http://www.ncbi.nlm.nih.gov/pubmed/15820987
http://dx.doi.org/10.1104/pp.114.248971
http://www.ncbi.nlm.nih.gov/pubmed/25332504
http://dx.doi.org/10.1016/j.robot.2011.02.011
http://dx.doi.org/10.1016/j.ecolmodel.2006.07.028
http://dx.doi.org/10.1016/j.agrformet.2010.01.003

Sensors 2017, 17, 2082 17 of 17

15. Kahn, S.; Haumann, D.; Willert, V. Hand-eye calibration with a depth camera: 2D or 3D? In Proceedings of
the 2014 International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal,
5–8 January 2014; Volume 3, pp. 481–489.

16. Chaivivatrakul, S.; Tang, L.; Dailey, M.N.; Nakarmi, A.D. Automatic morphological trait characterization for
corn plants via 3D holographic reconstruction. Comput. Electron. Agric. 2014, 109, 109–123. [CrossRef]

17. Li, J. 3D Machine Vision System for Robotic Weeding and Plant Phenotyping. Ph.D. Thesis, Iowa State
Universtiy, Ames, IA, USA, 2014.

18. Rusu, R.B.; Cousins, S. 3D is here: Point cloud library (PCL). In Proceedings of the 2011 IEEE International
Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 1–4.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compag.2014.09.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Plant Material and Data Collection Schedule
	Data Collection Station Setup
	Hand–Eye Transformation
	Dimension Method
	Fully Vision-Based Calibration

	System Architecture
	Main Control Layer
	Robot Arm Control Module
	ToF Camera Control Module
	Data Processing Module

	Results and Discussion
	Conclusions

