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Abstract:



Both three-dimensional (3D) object recognition and pose estimation are open topics in the research community. These tasks are required for a wide range of applications, sometimes separately, sometimes concurrently. Many different algorithms have been presented in the literature to solve these problems separately, and some to solve them jointly. In this paper, an algorithm to solve them simultaneously is introduced. It is based on the definition of a four-dimensional (4D) tensor that gathers and organizes the projections of a 3D object from different points of view. This 4D tensor is then represented by a set of 4D orthonormal moments. Once these moments are arranged in a matrix that can be computed off-line, recognition and pose estimation is reduced to the solution of a linear least squares problem, involving that matrix and the 2D moments of the observed projection of an unknown object. The abilities of this method for 3D object recognition and pose estimation is analytically proved, demonstrating that it does not rely on experimental work to apply a generic technique to these problems. An additional strength of the algorithm is that the required projection is textureless and defined at a very low resolution. This method is computationally simple and shows very good performance in both tasks, allowing its use in applications where real-time constraints have to be fulfilled. Three different kinds of experiments have been conducted in order to perform a thorough validation of the proposed approach: recognition and pose estimation under z axis (yaw) rotations, the same estimation but with the addition of y axis rotations (pitch), and estimation of the pose of objects in real images downloaded from the Internet. In all these cases, results are encouraging, at a similar level to those of state-of-the art algorithms.
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1. Introduction


Three-dimensional (3D) object recognition and pose estimation are two open problems in the scientific community. There are many algorithms to solve them separately and some to solve them concurrently. In fact, both problems are deeply related, since a 3D object can be observed from different points of view, showing different shapes in each case. Knowing the point of view is equivalent to knowing the relative pose estimation between the object and the observer; once the point of view is known, recognizing the object is much simpler as the observer can explore the set of known objects only under this same point of view. Conversely, knowing the object simplifies pose estimation as well, since the problem is reduced to the exploration of different points of view for this given object.



The complexity of solving both problems increases dramatically when moving from an independent to a concurrent resolution. Therefore, this kind of algorithm is of great value in many applications where object recognition and pose estimation are critical, as is the case of, for instance, object manipulation using a robotic arm.



There have been many proposals to solve each problem separately, since, as stated before, they are critical to many applications. Due to the importance of both topics, reviews are published from time to time regarding them, so there are many sources of information for learning about the state of the art in these two areas.



Recent reviews of available techniques dealing with object recognition can be found in [1] or [2]. A more comprehensive review can be found in [3], or, for a more theoretical point of view, in [4]. Finally, in [5] there is an extensive review of approaches and algorithms.



With respect to pose estimation, the case is much the same, as reviews can be easily found. For instance, in [6] the reader can find an up-to-date review of the most important pose estimation techniques, while in many other sources the reader can find surveys on deeply related techniques as is the case of SLAM [7]. In terms of concurrent solutions of both problems, there have been some remarkable contributions. In [8] the authors introduce an algorithm which uses tensors to generate systems of linear equations that are solved to estimate the affine transformation leading to an object view. In [9], an algorithm using appearance representation is introduced; for a given 3D object, it is coded by extracting brightness information of different views corresponding to different poses. Afterwards, authors perform a dimensionality reduction by applying a PCA to the database. An algorithm for object recognition and pose estimation based on keypoints (SIFT) that builds object models based on pairing keypoints in different views, camera calibration and structure from motion is introduced in [10]. A very similar approach is presented in [11], but in this case no camera calibration is provided. In [12], authors introduce the Viewpoint Feature Histogram, a descriptor based on point clouds that simultaneously encodes geometry and pose, which requires depth information collected with a stereo vision system in order to work. In [13] authors present a probabilistic framework for object recognition, combined with a pose estimation by means of Hu moments applied to the segmented image of tip-shaped objects. In [14] authors combine features describing depth, texture and shape for object recognition, and solve the pose estimation problem by successive steps, using 3D features to find a coarse solution and ICP for fine estimation. In [15], the authors combine 3D CAD descriptions and two-dimensional (2D) texture information to generate a model suitable for the recognition and pose estimation stage, using an approach based on generating multiple virtual snapshots from many different points of view. The authors of [16] introduce an approach based on point cloud alignment, using an RGB-D camera to get a point cloud that is matched against point clouds describing the known 3D objects stored in a database; pose estimation is computed from the alignment process. In [17], authors present an algorithm to estimate the pose of a reduced set of known colored objects; for that purpose, once the colored object is detected in the image and segmented, it is identified by its color and then its 3D model is used to perform a point-of-view sampling process. Finally, in [18], the authors present an algorithm based on template matching and candidate clustering for object recognition and point cloud processing techniques for pose estimation.



In this paper, a new approach to simultaneous object recognition and pose estimation based on the computation of a set of orthonormal moments is introduced. With respect to other methods that use feature spaces or subspaces to solve the task, like for instance [9], this new approach has two main advantages. Firstly, this is an analytic method, with an ability to recognize 3D objects and to estimate their poses as demonstrated in Section 3. For other methods, this ability is a result of experimental work, and therefore is not analytically proved. Second, orthonormal moments are not features in the traditional way, as they capture the object shape itself, not some properties measured on them. In other words, a 3D object can be straightforwardly reconstructed from a complete or truncated series of orthonormal moments, but not from a set of brightness or texture features. Therefore, this algorithm need not be trained each time the database is modified; new objects are simply added by including the orthonormal moment information, formatted in the way that will be explained in Section 3. During an off-line stage a four-dimensional (4D) tensor comprising the information on the 3D object’s shape observed under multiple points of view is built. Additional advantages are that they may be extracted from very low definition images, with a textureless description of detected objects, and that recognition and pose estimation are achieved by means of a matrix product, whose results are straightforwardly interpretable. All these features make it a good candidate for real-time implementations.



The remainder of this paper is organized as follows: related work is reviewed in Section 2. In Section 3 the proposed algorithm is thoroughly explained, first for a simplified case that allows an easier introduction to the underlying concepts where pose estimation is limited to a rotation angle, and after that for the complete case. Section 4 describes how the problem of angular description and balancing has been solved in the proposed approach. In Section 5 experimental results are presented and discussed. Finally, conclusions extracted out of this work are presented in Section 6.




2. Related Work


Moments have been used for object recognition and pose estimation, and sometimes for performing both tasks at the same time. Since object recognition is probably the most classical application of moments, the reader is advised to read a comprehensive review on the topic in [4]. Their application for pose estimation is not that extensive, and therefore it is worth mentioning the most significant efforts in this direction. In [19], authors introduce an algorithm to estimate the pose of a satellite by means of computing Zernike moments and comparison with different views of the spacecraft described in the same way. In [20], authors present two alternative methods to estimate the full pose of planar objects, combining the definition of the interaction matrix, central moments, and invariant definition. In [21] authors calculate the moments of a 3D object with known geometry as it moves freely in 3D space, and compile them in a table whose entries are the rotation angles; observed moments are matched against tabulated descriptions. In [22], the author propose invariants to translation, rotation and scaling departing from shifted geometric moments. In [23] the authors propose a method for IBVS based on a set of moments and the definition of an interaction matrix for that set of moments. Finally, there have been some other methods for object recognition based on the characterization of a 3D object by means of the definition of its projections from multiple points of view. Examples of these works are presented by, for example, Ansary et al. [24], who present the selection of multiple views as an adaptive clustering problem; Daras and Axenopoulos [25], who introduce a 3D shape retrieval framework based on the description of an object by means of multiple views; Rusu et al. [12], who introduce an algorithm to recognize an object and estimate its pose using point clouds captured from different points of view; Rammath et al. [26], who describe and recognize cars based on matching 2D and 3D curves that can be observed in different views; Sarkar et al. [15], who present an object recognition algorithm based on feature extraction from a set of computer generated object views; and finally, Liu et al. [27], who introduce a combination of 3D and 2D features obtained from different captures of an object using RGB-D cameras.




3. Simultaneous Recognition and Pose Estimation


In this section the derivation of the algorithm for simultaneous 3D object recognition and relative pose estimation is presented. In the first subsection, and for the purpose of explaining the basic ideas on a simpler case, a reduced version is presented, defining a 3D problem in terms of cylindrical coordinates. Afterwards, in the second subsection, the algorithm is generalized to the 4D case, allowing for the determination of an arbitrary relative pose of the observer with respect to the unknown 3D object.



3.1. The Problem of a Radial Section in Cylindrical Coordinates


3.1.1. Derivation of the Algorithm


Let the analytic model of a 3D object be expressed as [image: there is no content], where [image: there is no content] stands for the unit cylinder defined as:


[image: there is no content]



(1)




with [image: there is no content] being its radius, [image: there is no content] the angle around its axis, and z its height.



Normalization is required if the original 3D object does not fit and therefore cannot be defined into [image: there is no content].



Let the scalar product between a pair of functions in this region be defined as:


<x(ρ,θ,z),y(ρ,θ,z)>=∫Ωx(ρ,θ,z)y(ρ,θ,z)¯dv



(2)




where [image: there is no content] stands for the complex conjugate of x and [image: there is no content] for the differential of volume within [image: there is no content].



Given this expression for the scalar product, the pair of functions [image: there is no content] and [image: there is no content] are said to be orthonormal in [image: there is no content] if and only if:


[image: there is no content]



(3)




where


[image: there is no content]



(4)







In the same region, let the generic basis function for the moment definition be expressed as:


Bnmp=Πm(ρ)Zn(z)eipθ



(5)




providing that given two different functions of the basis [image: there is no content] and [image: there is no content] they are orthonormal, i.e., they behave as expressed in Equation (4).



Given these definitions, the 3D moment of order [image: there is no content] of the 3D solid [image: there is no content] with respect to the base function [image: there is no content] is defined as:


Vnmp=1Λ∫ΩI(ρ,θ,z)Bnmp(ρ,θ,z)¯dv=1Λ∫ΩI(ρ,θ,z)Πm(ρ)Zn(z)e−ipθdv



(6)




where [image: there is no content] is a normalizing factor that ensures orthonormality.



As the basis functions are orthonormal, the original function defining the 3D solid can be reconstructed from the set of moments by applying the following expression:


[image: there is no content]



(7)







Given the definition of the 3D function characterizing the volume and the approximation stated in Equation (7), a radial section of the volume can be expressed and approximated in the following way:


[image: there is no content]



(8)







This section is a 2D object defined in the region [image: there is no content], so on reducing the 3D basis functions to the 2D case by removing the term depending on [image: there is no content] in Equation (5), the 2D moment [image: there is no content] of this radial section can be defined as:


Skl=∫ΨI(ρ,θ0,z)Πk(ρ)Zl(z)dS



(9)




where [image: there is no content] stands for the differential of surface in [image: there is no content].



Now, replacing in Equation (9) the radial section by its approximation and particularizing for [image: there is no content] in the Equation (8), it can be stated that:


Skl≈∫Ψ∑∀mnpVmnpΠm(ρ)Zn(z)eipθ0Πk(ρ)Zl(z)dS=∑∀mnpVmnpeipθ0∫ΨΠm(ρ)Zn(z)Πk(ρ)Zl(z)dS



(10)




and, taking into account the orthonormality of the basis functions, most of the pairs under the integral sign in Equation (10) cancel out, resulting in:


[image: there is no content]



(11)







Extending this approximation to a set of moments, with [image: there is no content], [image: there is no content] and [image: there is no content], and then reordering 2D moments in a vector, it results in a column vector [image: there is no content] with dimensions [image: there is no content]:


[image: there is no content]



(12)




and 3D moments in the following matrix:


[image: there is no content]



(13)




and finally the angular terms particularized for [image: there is no content]:


[image: there is no content]



(14)







In this way, computing an approximate set of 2D moments of a radial section of a 3D object that has been approximated by the given set of orthonormal 3D moments can be expressed in matrix form as:


[image: there is no content]



(15)







Posing the inverse problem, i.e., finding the angle of a radial section of the volume knowing the 3D set of moments and the computed 2D moments of the section (assuming [image: there is no content]) it is reduced to solve a least squares problem expressed by:


[image: there is no content]



(16)







Recalling the structure of vector [image: there is no content] from Equation (14), the solution to Equation (16) is such that:


[image: there is no content]



(17)




where [image: there is no content] stands for a vector with [image: there is no content] elements whose i-th element takes the value [image: there is no content].




3.1.2. Application to Object Recognition and Pose Estimation


Let us consider a problem where a 3D object among a set of K elements must be recognized departing from a 2D moment representation of one of its radial sections, that will be called [image: there is no content]. In this scenario, not only is the 3D element unknown, but also the angle [image: there is no content] that defines the observed section. Let [image: there is no content] be the 3D moment representation matrix of the k-th element of the 3D object set, that has been computed off line. Then, applying Equation (16) to every [image: there is no content] using [image: there is no content] a corresponding [image: there is no content] results in:


[image: there is no content]



(18)




A new vector is derived from each [image: there is no content] in the following way:


[image: there is no content]



(19)




where [image: there is no content] stands for the second element of the vector [image: there is no content].



Then, the following distance for every [image: there is no content] is computed:


[image: there is no content]



(20)




where [image: there is no content] stands for the Euclidean distance between vectors u and v.



Therefore, the best candidate for the 3D object that has generated the observed section represented by [image: there is no content] is [image: there is no content] if:


[image: there is no content]



(21)




and it will be accepted as the actual solution if [image: there is no content], being [image: there is no content] a threshold that is used to prevent false positives.



Once the 3D object has been identified, the angle [image: there is no content] that generates the observed section can be computed as well; recalling the structure of [image: there is no content] from Equation (14), it is easy to see that:


[image: there is no content]



(22)









3.2. The Problem of an Arbitrary Projection


3.2.1. Derivation of the Generalized Algorithm


The orthogonal projection of a 3D object in a given direction results in a 2D projection whose definition depends on a set of four coordinates: two angles to define the projection vector and two surface coordinates for the projected 2D object. Therefore, the projection function, which depends on those four parameters, can be defined as [image: there is no content], where [image: there is no content] stands for the hypervolume defined by:


[image: there is no content]



(23)




where the pair [image: there is no content] stands for the latitude and longitude that defines the projection direction, and the pair [image: there is no content] stands for the Cartesian coordinates where the 2D object that results from the projection by the given direction is defined. It is worth noting that both Cartesian coordinates range from [image: there is no content] to 1 due to the orthonormality condition in the plane, so the 2D projection has to be normalized to fit into this region.



Note that no roll angle information has been considered in the algorithm. The main reason is that, in most cases, roll is not present as an important part of the relative pose between the object and observer. Nevertheless, in the case of being necessary, it could be incorporated into the algorithm by using a rotation invariant representation for the 2D projection, such as, for instance, Zernike moments on the unit circle.



The function [image: there is no content] can be represented by the method of moments as well as other linear, flat or volumetric functions, and the moment basis for this representation can be chosen to be orthonormal, as in the previous case. Let a 4D orthonormal basis in the given coordinates be:


[image: there is no content]



(24)




where [image: there is no content] stands for the m-th element of a family or orthonormal functions in [image: there is no content], such as, for instance, in Legendre or Tschebychev polynomials; the Fourier basis has been chosen for the transformation of the angular magnitudes [image: there is no content].



Once again, to generate the moment of order [image: there is no content] of the function [image: there is no content], its transformation on the 4D elements of the corresponding moment basis is done by means of the scalar product:


[image: there is no content]



(25)




where [image: there is no content] stands for a normalization factor, [image: there is no content] stands for the 4D moment, and [image: there is no content] stands for the differential of the hypervolume in [image: there is no content].



As in Equation (7), since functions in the base are orthonormal, it is possible to build a reconstruction of the 4D function using the computed moments:


[image: there is no content]



(26)




where [image: there is no content].



In this way, a projection of the 3D object through a given direction [image: there is no content] can be approximated by:


[image: there is no content]



(27)







The 2D moments of this projection will be given, as in Equation (9), by:


Skl=∫Ψχ(ϕ0,λ0,x,z)Pk(x)Pl(z)dS



(28)







being [image: there is no content].



Replacing the analytic expression of the projection function by its 4D moment- based approximation:


Skl≈∫Ψ∑∀{mnpq}[HB]mnpqϕ0λ0Pk(x)Pl(z)dS=∑∀{mnpq}∫Ψ[HB]mnpqϕ0λ0Pk(x)Pl(z)dS



(29)




where [image: there is no content]. Then, following the same reasoning as in Equation (11):


[image: there is no content]



(30)







As in the previous section, extending this approximation to the whole set of 2D moments, with [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] and reordering 2D moments in a vector and 4D moments in a matrix, the following matrices can be defined:


[image: there is no content]



(31)




where


[image: there is no content]



(32)




so [image: there is no content] is a [image: there is no content] matrix containing the complete set of 4D moments.



In addition:


[image: there is no content]



(33)







Then, the vector containing the set of 2D moments [image: there is no content], defined in Equation (12), of a projection of a 3D object through the direction defined by the pair [image: there is no content] can be expressed as:


[image: there is no content]



(34)







Therefore, given a projection of a known 3D object, whose 2D moments are in [image: there is no content], the matrix containing the angular terms particularized for the pair [image: there is no content] that defines the projection can be computed as:


[image: there is no content]



(35)




whenever [image: there is no content].



It is straightforward that the solution to Equation (35) be transformed as:


[image: there is no content]



(36)







Therefore, given [image: there is no content], that is built taking the first P elements of [image: there is no content]:


[image: there is no content]



(37)




and [image: there is no content], that is built taking the elements in positions [image: there is no content], [image: there is no content], of [image: there is no content] is:


[image: there is no content]



(38)








3.2.2. Application to Object Recognition and Pose Estimation


Now, let us suppose that the problem is extended to the determination, not only of the pair of angles defining the projection direction, but also to recognize the 3D object among a given set of K different elements whose projection is observed. In this case, let [image: there is no content] be the set of 2D moments extracted from the observed projection, and [image: there is no content] the 4D moment matrix corresponding to the k-th element of the 3D object set. Applying the expression in Equation (35) to every [image: there is no content], a corresponding [image: there is no content] will be found:


[image: there is no content]



(39)







Then, for each [image: there is no content], the following pair of vectors can be built:


ΔPk=logΓPklogγ2k,ΔNk=logΓNklogγP+2k



(40)




where [image: there is no content] and [image: there is no content] correspond to the second and [image: there is no content]-th elements of vector [image: there is no content].



In order to find out which is the 3D object that is observed in the given 2D projection, the following expression is computed for each candidate k:


D(k)=ud(ΔNk,[i−1]N+1)+vd(ΔPk,[i−1]P+1)



(41)




where again [image: there is no content] stands for the Euclidean distance among vectors u and v, [image: there is no content] is a vector with X elements whose i-th element takes the value [image: there is no content], and [image: there is no content] are a pair of scalars used to give weights to the estimation for each angle in the pair [image: there is no content].



Then, the best candidate for being the observed 3D object is [image: there is no content] if:


[image: there is no content]



(42)




and it will be accepted as the solution if [image: there is no content], where [image: there is no content] is a threshold used to reject false positives.



Once the 3D object has been identified, recovering the pair [image: there is no content] that defines the projection direction is straightforward; recalling the structure of [image: there is no content] from Equation (33) it is easy to see that:


ϕ0=|logγP+2k*|,λ0=|logγ2k*|



(43)







It is worth highlighting that although obtaining 4D moments is a computationally demanding step, as is the computation of the pseudoinverse for each [image: there is no content], both are computed off-line; therefore, the object identification and the latitude and longitude determination are achieved by the product of a precomputed matrix with a vector, and computing two Euclidean distances, making this algorithm well suited for on-line applications. The more complex on-line computation is due to calculating the observed moments vector that can be obtained in real time as has been demonstrated in the literature, for instance in [28].






4. Section vs. Projection: Projected Pseudo-Volume


In Section 3.1 it has been proven that, departing from the orthogonal moment representation of an unknown section of a 3D object in a given set, it is possible not only to recognize what the original object is, but also the angle determining that section. Nevertheless, in any application a common situation is not having the image of a section but of a projection of the whole object that will be assumed to be parallel to a given direction, as is the case of the Radon transform. Yet, in Section 3.2 it is supposed that the projection through a given direction is already defined.



Therefore, in order to make the algorithm work with projections instead of with sections, a transformation of the 3D object must be carried out. This transformation will yield another 3D object gathering all the considered projections through directions at different [image: there is no content] angles for the case of cylindrical coordinates, and will yield a 4D tensor comprising projections from every pair [image: there is no content] in the case of considering any projection direction.



However, before starting with the definition of these transformed objects, it is necessary to study the problem of the polar translation of a Cartesian object in a discrete domain. The main problem is that when this object defined in a Cartesian discrete grid has to be defined through polar coordinates used in the derivation of the algorithm for both cases, the resulting representation is unbalanced in the angular coordinates. To illustrate this point a simple test has been conducted: a simple grid of 60 × 60 pixels has been defined, and the angles of every pixel with a radius under or equal to 60 have been collected in a histogram, where each bin has a width of [image: there is no content] rad. The result of this simple test can be seen in Figure 1.


Figure 1. Histogram of angle values in a 60 × 60 grid.



[image: Sensors 17 02122 g001]






As can be easily observed, the numbers of pixels assigned to each bin are clearly unbalanced. This causes different representation strengths for different angles, affecting the moment transformation as it is based on angular coordinates.



In the recognition stage, the unknown projection image will be represented within a normalized flat grid, with a fixed number of pixels, but, as can be seen from Figure 1, each section for every known object is represented with a varying number of pixels depending on the angle. Obviously, this mismatch will cause the algorithm to perform poorly.



Therefore, as the problem stated herein is defined in angular coordinates, some strategy must be provided in order to balance the pixels contributing to each angle bin, as there is no strength mismatch between unknown projection and object representation.



The solution adopted for this case consists of building a transformed pseudo-volume that packs all these projections into a Cartesian grid, though some axes describe the angles at which the object has been rotated in order to generate a given projection. The construction of this pseudo-volume for cylindrical coordinates is as follows. Let the rotation of the object [image: there is no content] by an angle [image: there is no content] around the z axis be defined as:


[image: there is no content]



(44)




so the rotated object is defined in the same domain as the original object, [image: there is no content], defined in Equation (1), and [image: there is no content] , [image: there is no content]. The upper limit for [image: there is no content] will be explained later on.



In order to make the next steps clearer, the rotated object is now converted to Cartesian coordinates:


[image: there is no content]



(45)




where [image: there is no content], as


[image: there is no content]



(46)




as a result of the change in the coordinate system.



Now, after the object has been rotated, its projection through the y axis is generated:


PIθi(x,z)=∫−11Iθi(x,y,z)dy,∀{x∈[−1,1],z∈[0,1]}



(47)







This projected image, [image: there is no content], is then binarized to bring it back to its original range, i.e., [image: there is no content]:


[image: there is no content]



(48)







Extending this process to every [image: there is no content], and gathering all the resulting binarized projections, a new 3D object, called the projected pseudo-volume, [image: there is no content], is generated:


[image: there is no content]



(49)




being:


[image: there is no content]



(50)







Once the new 3D object, [image: there is no content], is defined, the upper limit for rotation angles, [image: there is no content], can be explained; it is set in order to avoid that any projection, or its reflected image, be represented more than once, as this fact would lead to multiple solutions in a pose estimation problem. Therefore, this upper limit will have a maximum value of [image: there is no content], as both sides of any object have the same (reflected) projections. In case of symmetric objects this upper limit will have to be reduced in order to avoid a multiplicity of projections within [image: there is no content]. The limit case corresponds to objects having central symmetry around its z axis, for which [image: there is no content] pose estimation cannot be computed as the projections from every rotation angle are the same.



The process of generating this transformed object is resumed in Figure 2. It starts with the 3D object with no rotation (a), i.e., with an initial alignment with x and y axes, and then it is rotated [image: there is no content] around the z axis (b). The resulting image has shifted its alignment with the original axes, so once it is projected through the y axis, the result will be different for each rotation (c). This projection is included in the new object, as a slice with coordinate value [image: there is no content] on the [image: there is no content] axis (d).


Figure 2. Generation of the projected pseudo-volume: (a) Original 3D object, [image: there is no content]; (b) Object rotated at the [image: there is no content] angle around the z axis and converted to Cartesian coordinates, [image: there is no content]; (c) Binarized projection through the y axis, [image: there is no content]; (d) Complete [image: there is no content] object, after gathering all the projections.



[image: Sensors 17 02122 g002]






In this way, the projected pseudo-volume, that has the same number of pixels assigned to each angle view, collects information about parallel projections in the sense of a Radon transform, instead of simple object sections.



The same idea has been applied to the generation of a 4D object that will be used in the general case as depicted in Section 3.2.



Starting from the initial definition of the 3D object, [image: there is no content] in [image: there is no content], it is initially converted to Cartesian coordinates to make the next steps clearer, using an expression similar to Equation (45). As a result, the object is now defined in [image: there is no content], described in Equation (46). Then, the 3D object is rotated an angle [image: there is no content] around the x axis, so it is now represented as:


Iϕi(x^,y^,z^),x^y^z^=1000sinϕicosϕi0cosϕi−sinϕixyz



(51)







After that, the object is rotated an angle [image: there is no content] around the z axis, so the object is redefined as:


Iϕi,λj(x˜,y˜,z˜),x˜y˜z˜=cosλj−sinλj0sinλjcosλj0001x^y^z^



(52)







From this point on, the algorithm progresses as in the previous case, starting from the projection through the y axis, as in Equation (47):


PIϕi,λj(x,z)=∫−11Iϕi,λj(x˜,y˜,z˜)dy˜,∀{x˜∈[−1,1],z˜∈[0,1]}



(53)




then there is binarization to bring the image back to its original range, as in Equation (48):


[image: there is no content]



(54)




and, finally, extending the rotation process to every [image: there is no content] and [image: there is no content] and gathering all the resulting projections in a new 4D object, the so-called projected pseudo-hypervolume [image: there is no content] is generated:


[image: there is no content]



(55)




where,


[image: there is no content]



(56)








5. Experimental Results


5.1. Recognition and Pose Estimation in Cylindrical Coordinates


For testing this simple case, prior to testing the complete algorithm with the 4D objects described in the previous section, a set of 70 three-dimensional objects out of the the Pascal3D+ Benchmark set [29] has been compiled, belonging to every included class but `Bottle’, since it has central symmetry and therefore is ill-posed for pose estimation. These 70 objects have been transformed from their original CAD format to a voxel-based representation, and are included in a grid of [image: there is no content] (width, depth, height) voxels, in such a way that the object’s centroid is placed in the center of the grid, and it is touching some of the grid walls.



Once all these objects have been normalized in this way, a projected pseudo-volume has been defined for all of them, covering 20 equally spaced rotations between 0 and [image: there is no content] radians. The angle limit has not been extended to [image: there is no content] because of the observed four-fold symmetry: symmetric objects produce the same projection for different rotation angles (views), leading the algorithm to the impossibility of choosing the right orientation. In mathematical terms, symmetry leads the presented algorithm to ill-posedness, so the pseudoinverse suffers from numeric instability due to a very bad condition number. In this way, the pseudo-volume generated for each original 3D object is defined in a grid of [image: there is no content] ([image: there is no content]).



For every projected pseudo-volume in the collection, the orthogonal moment representation for each coordinate is by:

	
Legendre moments up to the 19th order for the Cartesian coordinates x and z. The Legendre polynomial of order n in x is defined as:


[image: there is no content]



(57)







	
Fourier base. Note that although this coordinate is defined in a Cartesian grid, it represents an angle in the real world so it can be easily transformed using the Fourier basis that on the other hand allows this algorithm to determine the rotation angle of the observed pose. The Fourier base is up to 19th order for [image: there is no content] as well, i.e.,:


[image: there is no content]



(58)












In this way, each pseudo-volume has been represented with 8000 descriptors with a total of 18,000 voxels in the pseudo-volume that represent a 3D object initially defined through 54,000 voxels. All these data have been gathered in Table 1.



Table 1. Summary of data representation.







	
Magnitude

	
Value






	
Number of 3D objects

	
70




	
Classes of 3D objects

	
11




	
Projections per object

	
20




	
[image: there is no content] between projections

	
4.5∘




	
Moments for x

	
Legendre




	
Moments for z

	
Legendre




	
Moments for [image: there is no content]

	
Fourier




	
Orders of moments ([image: there is no content])

	
[image: there is no content]




	
Dimensions in voxels

	
[image: there is no content]




	
Dimensions pseudo-volume

	
[image: there is no content]










Once the moments for each object have been generated and stored in the database, a set of unknown side views is generated. For this purpose, each of the 70 objects has been rotated 10 times at random angles in the interval [image: there is no content] and their projections along the y axis have been computed. Each projection has been represented through its Legendre moments up to the 19th order in x and z.



Using this unknown set, two different tests have been carried out. First, a test was run to determine the precision of the algorithm recognizing the object that generated each projection after rotation. Then, a second test has been conducted to evaluate the accuracy, estimating the rotation angle that has been used to generate each projection.



5.1.1. Recognition Tests


Two different rounds of precision tests have been conducted. In the first one, the orders of x and z moments have been varied from 0 to 19, keeping the order of moments on [image: there is no content] fixed to 19. Mathematically, this means that calling back the general expression in Equation (16), matrix [image: there is no content] has been reduced in terms of its number of rows, keeping constant its number of columns, i.e., the least squares problem to be solved has been defined using fewer equations. This fact can be easily seen going back to the definition of matrix [image: there is no content] in Equation (13). In this way, for this round the problem has been reformulated in reduced versions through:


Γ(19)=[V(m,n,19)T·V(m,n,19)]−1V(m,n,19)T·S(m,n),m,n∈[0…19]



(59)




where [image: there is no content] stands for a matrix [image: there is no content] constructed using moments for x and z up to order m and n respectively. Also, according to the general expression in Equation (13), [image: there is no content] stands for a matrix of 2D moments constructed up to orders m and n as well. Finally, [image: there is no content] stands for a matrix of Fourier basis elements up to order 19, and is particularized for [image: there is no content], where [image: there is no content] is the unknown angle used for generating the projection image under analysis.



In a second round of tests the orders of the moments in x and z were fixed to 19, and the order in [image: there is no content] was varied from 0 up to 19. Mathematically, this means that the least squares problem in Equation (16) has been defined by always using the same number of equations given by the constant number of rows in matrix [image: there is no content], but with an increasing number of unknowns to be estimated, given by the varying number of columns and the corresponding number of elements in vector [image: there is no content]:


Γ(p)=[V(19,19,p)T.V(19,19,p)]−1V(19,19,p)T.S(19,19),p∈[0…19]



(60)







Before starting both rounds of tests, 2D moments for each unknown projection image have been computed, obtaining Sobs,u,u∈[1…700]. After that, tests have run in the following way:

	
First, the order of moments in x, y and [image: there is no content] is set.



	
Matrix [image: there is no content] is reconfigured according to those moment orders to [image: there is no content].



	
Next, [image: there is no content] is computed, according to Equations (59) or (60).



	
Vector [image: there is no content] is computed for each object in the database:


[image: there is no content]



(61)







	
The |RMS| is computed between the observed and estimated sets of moments:


[image: there is no content]



(62)







	
The object [image: there is no content] is obtained, for which the minimum RMS is chosen from the database:


[image: there is no content]



(63)







	
The u-th projection image is recognized as having been generated by object [image: there is no content]








According to this test procedure the total number of pairs [image: there is no content] that has been tested is easily computed: 700 unknown images, in two rounds of 20 [image: there is no content] combinations. Ten comparisons for each combination results in [image: there is no content] 280,000 combinations.



The results of running these two tests are summarized in Figure 3.


Figure 3. Results of the precision in the recognition tests. The dashed line represents varying moment order in [image: there is no content] while keeping the orders in x and z constant in 19. The solid line represents varying moment order in x and z while keeping the 19th order constant in [image: there is no content].



[image: Sensors 17 02122 g003]






	
The evolution of the precision using different orders for the [image: there is no content] coordinate, while keeping constant the orders of moments for the x and z coordinates both fixed to 19 has been represented using a dashed line. It can be seen how for very low moment orders the performance is very poor, as there is not enough data to estimate 2D moments. However when the order in the [image: there is no content] reaches 7, precision in recognizing the unknown object is above 95%, reaching at the end of the series a maximum value of 98%. This reveals that, in terms of precision, it is sufficient to keep a very low order in the angular moments, given a rich representation in x and z.



	
The evolution of the precision varying the orders for x and z (taking both the same value in each case), and keeping the order in [image: there is no content] always equal to 19, is represented using a solid line. It can be seen that the precision degrades smoothly but continuously as the moment order decreases. It is then clear that for good results in terms of precision, a rich representation in x and z is mandatory.







5.1.2. Pose (Angle) Estimation Tests


Following on from the results obtained for the unknown projection images in the tests explained in the previous section, the evaluation is now focused on the accuracy in the estimation of the relative pose of the 3D object (angle [image: there is no content]) that has been used to generate each of the 100 unknown projections. For this, the starting point has been the recognition accomplished in the previous experiment, even if it is wrong. Once the projected 3D object is known, this experiment proceeds by estimating the relative angle between object and observer. Recall that in this simplified case only rotations around the z axis are allowed.



Given the structure of vector [image: there is no content] given in Equation (14), the estimated angle [image: there is no content] is computed following Equation (22), and then it is compared to the actual angle [image: there is no content] that was used to generate each unknown projection. This angle estimation has been carried out, as in the experiment explained above, in two different rounds: first, keeping orders of moments for x and z fixed to 19 while varying order for [image: there is no content] from 0 to 19, and the second one keeping order for [image: there is no content] in 19 and varying orders for x and z at the same time from 0 to 19 as well.



The error between the actual angle, [image: there is no content], and the estimation, [image: there is no content] has been computed for each combination of orders in both rounds, and for each one of the one hundred unknown projections, yielding a grand total of 28,000 analysis. Then, for each combination of orders, the RMS errors corresponding to the measured error for each one of the 100 unknowns has been computed:


[image: there is no content]



(64)







The results of this experiment can be observed in Figure 4.


Figure 4. Results of the angle estimation tests. The dashed line shows varying moment order in [image: there is no content] while keeping orders in x and z constant in 19th, while the solid line shows varying moment order in x and z while keeping the 19th order constant in [image: there is no content].



[image: Sensors 17 02122 g004]






The conclusions of this experiment confirm the behavior observed in the experiments explained in the previous section. It can be seen (dashed line), that although for very low orders in [image: there is no content] results are very poor, they improve quickly to reach very good values for order 8 without significant enhancements as order 19 is reached. On the other hand, it can be seen as well (dashed line) that the behavior of varying orders in x and z keeps almost constant; nevertheless, as seen before, maintaining good precision in object recognition requires a high moment order for both coordinates.



In order to make a comparison with algorithms in the literature presenting results working with the same 3D object database, the overall results have been computed separately for each category. Two recently presented algorithms, by Su et al. [30] and Tulsani et al. [31], have been chosen as the basis for comparison; moreover, in those papers the reader can find further references to previous results. Although both of them use median error to evaluate the results and in this paper RMS is used instead, Table 2 provides a good comparison of all these methods.



Table 2. Summary of estimation accuracy for each database category.







	

	
Aero

	
Bike

	
Boat

	
Bottle

	
Bus

	
Car

	
Chair

	
Table

	
Mbike

	
Sofa

	
Train

	
TV

	
Total






	
Su et al.

	
15.4

	
14.8

	
25.6

	
9.3

	
3.6

	
6.0

	
9.7

	
10.8

	
16.7

	
9.5

	
6.1

	
12.6

	
11.7




	
Tuls. TNet

	
14.7

	
18.6

	
31.2

	
13.5

	
6.3

	
8.8

	
17.7

	
17.4

	
17.6

	
15.1

	
8.9

	
17.8

	
15.6




	
Tuls. ONet

	
13.8

	
17.7

	
21.3

	
12.9

	
5.8

	
9.1

	
14.8

	
15.2

	
14.7

	
13.7

	
8.7

	
15.4

	
13.6




	
Ours

	
7.7

	
7.6

	
8.0

	
-

	
9.5

	
10.6

	
7.5

	
11.9

	
12.2

	
7.6

	
7.1

	
11.3

	
9.3










Quantitatively, the most remarkable result that can be observed is that the RMS value for the complete set has a value of [image: there is no content], being in the same range, or even slightly better, than similar algorithms found in the literature. Nevertheless, it can be observed that the presented algorithm performs worse for some classes.



As an overall conclusion, from these two experiments it can be stated that it is important to keep high orders in x and z, both in terms of precision and pose estimation, whilst order in [image: there is no content] can be reduced to fairly low values without degrading the outcome of the recognition and pose estimation significantly.





5.2. Recognition and Pose Estimation in 4D


In order to test the ability of the algorithm to recognize and estimate the pose of a 3D object, the methodology has been the same as in the former case. The set of test objects has been the same, with the sole difference that, since in this case rotations can be performed over two axes, the 3D grid to define voxelized objects has been increased to a resolution of [image: there is no content] (height, width, depth), so it can completely hold the 3D object in any relative position. In these tests, the center of gravity of each 3D object has been placed in the center of the voxel grid, i.e., [image: there is no content].



In this case, the projected pseudo-object, defined in 4D, has been built using 10 equally spaced rotations in the range [image: there is no content]; once again, this restriction in the total span of the rotations is due to the symmetric nature of the 3D objects in the database. As a result, the dimensions of the 4D object are [image: there is no content].



The definition of moments along each dimension is found in:

	
Cartesian coordinates, i.e., x and z, and Legendre moments, based on the Legendre polynomials defined in Equation (57), up to the 19th order



	
Angular coordinates, i.e., latitude and longitude, and a Fourier basis, as in Equation (58), up to the 9th order. Therefore, the element [image: there is no content] of the basis is defined as:


[image: there is no content]



(65)












Computing the volume of data in each stage (3D object, pseudo-object in 4D and moment set), we find that the initial object is defined through 216,000 voxels, that leads to a pseudo-object in 4D of 360,000 elements, represented through 40,000 moments. All this information is gathered in Table 3.



Table 3. Summary of data representation.







	
Magnitude

	
Value






	
Number of 3D objects

	
55




	
Classes of 3D objects

	
11




	
Projections per object

	
10 × 10




	
[image: there is no content] between projections

	
9∘




	
Moments for x

	
Legendre




	
Moments for z

	
Legendre




	
Moments for [image: there is no content]

	
Fourier




	
Moments for [image: there is no content]

	
Fourier




	
Orders of moments ([image: there is no content])

	
[image: there is no content]




	
Dimensions in voxels

	
[image: there is no content]




	
Dimensions, pseudo 4D object

	
[image: there is no content]










The decision to set the order of moments in each dimension in this manner has been guided by the results shown in the previous section, where it was demonstrated that keeping angular moments in low orders is enough to achieve good results in the pose estimation (in fact, results do not seem to improve when increasing this order). On the other hand, moments in the Cartesian coordinates have been kept at the same order as in the previous section, even though there are more pixels representing each section (recall that now each projection has 60 × 60 pixels, whereas in the previous experiments the size was 60 × 15). This means that having four times the amount of data per projection, the number of moments to represent it is kept the same. The reason is twofold: first, the data volume must kept as low as possible in order to favor computing time and therefore keep the algorithm as close as possible to real time; and second, the resilience of the algorithm should be checked in a situation of data starvation, as the problem now is much more complex than before.



Therefore, in this experimental moment orders have been kept fixed in every case. Once again, it has been split in two stages: object recognition and pose estimation. For the recognition stage, the procedure was the same as in the previous section:

	
One hundred different projections of the 3D objects in the database have been generated through randomly selected [image: there is no content] and [image: there is no content] angles.



	
For each projection, 2D moments up to the 19th order for both x and z have been computed. These moments have been arranged in the vector [image: there is no content].



	
For each projection u and each object k in the database, the estimation of vector [image: there is no content] has been computed, following Equation (39).



	
With each computed estimation [image: there is no content], vector [image: there is no content] has been reconstructed, using the expression in Equation (34).



	
The RMS error between each estimated and observed vectors has been computed, as in Equation (62).



	
The recognition is carried out by selecting the object that has generated a reconstruction with minimum RMS error, as in Equation (63).








Finally, for the pose estimation stage, as in previous section, the angles defining the relative pose estimation have been computed following on from the assumption that the previous recognition is right, therefore, the calculations include the false positives. Angles [image: there is no content] and [image: there is no content] are computed following Equation (43), and after that, RMS error has been computed for each angle separately, taking into account all the test projections that were generated.



Results for both experiments are summarized in Table 4.



Table 4. Summary of recognition and pose estimation results.







	
Magnitude

	
Value






	
Precision in recognition

	
91%




	
RMS in [image: there is no content] estimation

	
11.93∘




	
Mean error in [image: there is no content] estimation

	
7.72∘




	
RMS in [image: there is no content] estimation

	
13.59∘




	
Mean error in [image: there is no content] estimation

	
9.21∘










First, it is worth noting the recognition accuracy rate results, which are notably lower than the rate in the cylindrical coordinates problem presented before. The main reason is that many of 3D objects selected, for instance cars or buses, share almost the same look from above, being in every case roughly rectangle-shaped. Therefore, it is hard to precisely recognize which object is seen, leading to some misclassifications.



In Table 4 the RMS values are significantly greater than mean values, showing that there could be outliers in the error series that can largely distort results. In Figure 5 the module of the error value for both angle estimations and each test projection in the ‘Cars’ category can be observed in order to illustrate this fact.


Figure 5. Results of the angle estimation tests for the `Cars’ category: in the solid line, the module of the error series for [image: there is no content] angle, and in the dashed line, the module of the error series for the [image: there is no content] angle.



[image: Sensors 17 02122 g005]






As can be seen in Figure 5, wrong recognitions have largely affected the error values, as they tend to generate estimation errors over 20 degrees whilst the trend for objects correctly recognized is to keep errors to under 10 degrees. Table 5 shows the updated results from Table 4 after removing these false positives from the series.



Table 5. Results computed removing false positives.







	
Magnitude

	
Value






	
RMS in [image: there is no content] estimation

	
10.37∘




	
Mean error in [image: there is no content] estimation

	
6.81∘




	
RMS in [image: there is no content] estimation

	
11.77∘




	
Mean error in [image: there is no content] estimation

	
8.04∘










It can be seen that the values obtained for pose estimation are similar to those observed in the reduced cylindrical problem in the previous section.



These results show that the proposed algorithm achieves the same quality as other approaches in the literature in which angle estimation accuracy have been reported, such as in [32] or [17], or a better tradeoff between computing time and quality of estimation, as compared to the work in [14].




5.3. Results on Real Images


In order to qualitatively test the algorithm in a real world scenario, in the same way as introduced in [30], images depicting the same car models as those stored in the database were downloaded from the Internet. The only concerns in selecting them were, on one hand, the absence of a strong perspective effect, since the algorithm works under the assumption that projections are orthogonal (parallel), while on the other hand, lens distortions were avoided as well for the same reason. In a real application, these requirements should not be an issue, as the chosen camera can be calibrated previously.



Images were manually segmented and binarized. After that, they were converted to the same size as the projections defining each pseudo-volume stored in the database, i.e., [image: there is no content] pixels, and normalized in the same way as they were, i.e., with the full height and x coordinate of the CDG of the object in the middle of the image. After that, 2D moments up to the 19th order in each dimension, x and z, were computed and passed to the algorithm. The results obtained in this experiment are consistent with the observer evaluation, though, obviously, no ground truth data were available in order to quantitatively evaluate the outcome.



Real images, segmentation results, and projections from the 3D objects in the database using the pose estimation obtained with the algorithm, are collected in Figure 6. Numerical results are gathered in Table 6.


Figure 6. Results of tests on real images. In the first row, the original images as downloaded from the Internet. Second row, 3D objects rotated in the estimated angle and seen from above. Third row, projections after manually segmenting, centering and reducing the scale to 15 × 60 pixels. Fourth row, projections generated applying the estimated rotation angle to the 3D model in the database.



[image: Sensors 17 02122 g006]






Table 6. Results of tests with real images.







	
Car Model

	
Classic VW Beetle

	
Peugeot 207

	
Ambulance

	
2011 Ford Focus






	
Rotated Angle

	
183.29∘

	
42.54∘

	
26.35∘

	
179.83∘










As can be seen, the 3D simulations and the projections generated after them (using the rotation angle obtained with the algorithm) are very close to the segmented images, showing that the estimations, though lacking ground truth data about their true generation, are very consistent with the observed reality.





6. Discussion


In this paper, a new method for simultaneous 3D object recognition and pose estimation based on the definition of a set of 4D moments is introduced. The proposed moment set combines Cartesian and angular representations to extract the maximum information of the polynomial approximation achieved by using orthonormal moment bases.



Four-dimensional tensors comprise all the information regarding projection generation, including the 2D Cartesian definition of the projection itself and two angular components to define both latitude and longitude defining the relative pose of the observer.



Cartesian moments allow an efficient representation of object projection, while Fourier moments ease the computation of pose angles through exponential terms. In this way, 3D objects are defined by compact matrices that can be computed off line, leaving recognition and pose estimation stages to rely on simple matrix calculations. Moreover, recognition and pose estimation are accomplished using very low-definition projection images and low-order moments, that allow this algorithm to run in real time.



In addition, this algorithm works for textureless objects, as it is only based on contours, this being a great advantage as opposed to algorithms that need textured objects in order to define keypoints to be matched against known sets.



Results show that both the recognition and pose estimation precision rates are at the level of the state-of-the-art algorithms, proving that this approach is a valuable option for performing both tasks with the advantage of doing it simultaneously.
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